Properties

Label 3720.2.a.r.1.1
Level $3720$
Weight $2$
Character 3720.1
Self dual yes
Analytic conductor $29.704$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3720,2,Mod(1,3720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3720.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3720.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7043495519\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.78292.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 8x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.78678\) of defining polynomial
Character \(\chi\) \(=\) 3720.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} -2.78678 q^{7} +1.00000 q^{9} -4.92191 q^{11} -3.39720 q^{13} +1.00000 q^{15} -2.41782 q^{17} -6.92191 q^{19} +2.78678 q^{21} -3.80740 q^{23} +1.00000 q^{25} -1.00000 q^{27} +1.02062 q^{29} +1.00000 q^{31} +4.92191 q^{33} +2.78678 q^{35} +1.39720 q^{37} +3.39720 q^{39} +4.00000 q^{41} -1.38959 q^{43} -1.00000 q^{45} -2.37657 q^{47} +0.766162 q^{49} +2.41782 q^{51} +0.233838 q^{53} +4.92191 q^{55} +6.92191 q^{57} +3.29088 q^{59} -4.31150 q^{61} -2.78678 q^{63} +3.39720 q^{65} +0.176371 q^{67} +3.80740 q^{69} +3.58979 q^{71} +2.74554 q^{73} -1.00000 q^{75} +13.7163 q^{77} +5.06947 q^{79} +1.00000 q^{81} -5.63864 q^{83} +2.41782 q^{85} -1.02062 q^{87} +9.94253 q^{89} +9.46725 q^{91} -1.00000 q^{93} +6.92191 q^{95} -12.3680 q^{97} -4.92191 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{5} + q^{7} + 4 q^{9} + q^{11} - 2 q^{13} + 4 q^{15} + 4 q^{17} - 7 q^{19} - q^{21} - q^{23} + 4 q^{25} - 4 q^{27} + 2 q^{29} + 4 q^{31} - q^{33} - q^{35} - 6 q^{37} + 2 q^{39}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.78678 −1.05331 −0.526653 0.850081i \(-0.676553\pi\)
−0.526653 + 0.850081i \(0.676553\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.92191 −1.48401 −0.742006 0.670393i \(-0.766126\pi\)
−0.742006 + 0.670393i \(0.766126\pi\)
\(12\) 0 0
\(13\) −3.39720 −0.942213 −0.471106 0.882076i \(-0.656145\pi\)
−0.471106 + 0.882076i \(0.656145\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −2.41782 −0.586407 −0.293203 0.956050i \(-0.594721\pi\)
−0.293203 + 0.956050i \(0.594721\pi\)
\(18\) 0 0
\(19\) −6.92191 −1.58800 −0.793998 0.607921i \(-0.792004\pi\)
−0.793998 + 0.607921i \(0.792004\pi\)
\(20\) 0 0
\(21\) 2.78678 0.608126
\(22\) 0 0
\(23\) −3.80740 −0.793899 −0.396949 0.917841i \(-0.629931\pi\)
−0.396949 + 0.917841i \(0.629931\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 1.02062 0.189525 0.0947623 0.995500i \(-0.469791\pi\)
0.0947623 + 0.995500i \(0.469791\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 4.92191 0.856795
\(34\) 0 0
\(35\) 2.78678 0.471052
\(36\) 0 0
\(37\) 1.39720 0.229698 0.114849 0.993383i \(-0.463362\pi\)
0.114849 + 0.993383i \(0.463362\pi\)
\(38\) 0 0
\(39\) 3.39720 0.543987
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) −1.38959 −0.211910 −0.105955 0.994371i \(-0.533790\pi\)
−0.105955 + 0.994371i \(0.533790\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −2.37657 −0.346659 −0.173330 0.984864i \(-0.555453\pi\)
−0.173330 + 0.984864i \(0.555453\pi\)
\(48\) 0 0
\(49\) 0.766162 0.109452
\(50\) 0 0
\(51\) 2.41782 0.338562
\(52\) 0 0
\(53\) 0.233838 0.0321201 0.0160600 0.999871i \(-0.494888\pi\)
0.0160600 + 0.999871i \(0.494888\pi\)
\(54\) 0 0
\(55\) 4.92191 0.663671
\(56\) 0 0
\(57\) 6.92191 0.916830
\(58\) 0 0
\(59\) 3.29088 0.428436 0.214218 0.976786i \(-0.431280\pi\)
0.214218 + 0.976786i \(0.431280\pi\)
\(60\) 0 0
\(61\) −4.31150 −0.552031 −0.276015 0.961153i \(-0.589014\pi\)
−0.276015 + 0.961153i \(0.589014\pi\)
\(62\) 0 0
\(63\) −2.78678 −0.351102
\(64\) 0 0
\(65\) 3.39720 0.421370
\(66\) 0 0
\(67\) 0.176371 0.0215472 0.0107736 0.999942i \(-0.496571\pi\)
0.0107736 + 0.999942i \(0.496571\pi\)
\(68\) 0 0
\(69\) 3.80740 0.458358
\(70\) 0 0
\(71\) 3.58979 0.426030 0.213015 0.977049i \(-0.431672\pi\)
0.213015 + 0.977049i \(0.431672\pi\)
\(72\) 0 0
\(73\) 2.74554 0.321341 0.160671 0.987008i \(-0.448634\pi\)
0.160671 + 0.987008i \(0.448634\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 13.7163 1.56312
\(78\) 0 0
\(79\) 5.06947 0.570360 0.285180 0.958474i \(-0.407947\pi\)
0.285180 + 0.958474i \(0.407947\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.63864 −0.618921 −0.309461 0.950912i \(-0.600149\pi\)
−0.309461 + 0.950912i \(0.600149\pi\)
\(84\) 0 0
\(85\) 2.41782 0.262249
\(86\) 0 0
\(87\) −1.02062 −0.109422
\(88\) 0 0
\(89\) 9.94253 1.05391 0.526953 0.849894i \(-0.323334\pi\)
0.526953 + 0.849894i \(0.323334\pi\)
\(90\) 0 0
\(91\) 9.46725 0.992437
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 6.92191 0.710173
\(96\) 0 0
\(97\) −12.3680 −1.25578 −0.627888 0.778304i \(-0.716080\pi\)
−0.627888 + 0.778304i \(0.716080\pi\)
\(98\) 0 0
\(99\) −4.92191 −0.494671
\(100\) 0 0
\(101\) −13.6014 −1.35339 −0.676694 0.736265i \(-0.736588\pi\)
−0.676694 + 0.736265i \(0.736588\pi\)
\(102\) 0 0
\(103\) −0.644046 −0.0634598 −0.0317299 0.999496i \(-0.510102\pi\)
−0.0317299 + 0.999496i \(0.510102\pi\)
\(104\) 0 0
\(105\) −2.78678 −0.271962
\(106\) 0 0
\(107\) −14.1189 −1.36493 −0.682463 0.730920i \(-0.739091\pi\)
−0.682463 + 0.730920i \(0.739091\pi\)
\(108\) 0 0
\(109\) −3.11451 −0.298316 −0.149158 0.988813i \(-0.547656\pi\)
−0.149158 + 0.988813i \(0.547656\pi\)
\(110\) 0 0
\(111\) −1.39720 −0.132616
\(112\) 0 0
\(113\) 3.81602 0.358981 0.179491 0.983760i \(-0.442555\pi\)
0.179491 + 0.983760i \(0.442555\pi\)
\(114\) 0 0
\(115\) 3.80740 0.355042
\(116\) 0 0
\(117\) −3.39720 −0.314071
\(118\) 0 0
\(119\) 6.73793 0.617665
\(120\) 0 0
\(121\) 13.2252 1.20229
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −13.8590 −1.22979 −0.614896 0.788609i \(-0.710802\pi\)
−0.614896 + 0.788609i \(0.710802\pi\)
\(128\) 0 0
\(129\) 1.38959 0.122346
\(130\) 0 0
\(131\) 12.0440 1.05229 0.526146 0.850394i \(-0.323637\pi\)
0.526146 + 0.850394i \(0.323637\pi\)
\(132\) 0 0
\(133\) 19.2899 1.67264
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 22.7858 1.94672 0.973360 0.229282i \(-0.0736377\pi\)
0.973360 + 0.229282i \(0.0736377\pi\)
\(138\) 0 0
\(139\) 1.57357 0.133468 0.0667341 0.997771i \(-0.478742\pi\)
0.0667341 + 0.997771i \(0.478742\pi\)
\(140\) 0 0
\(141\) 2.37657 0.200144
\(142\) 0 0
\(143\) 16.7207 1.39826
\(144\) 0 0
\(145\) −1.02062 −0.0847580
\(146\) 0 0
\(147\) −0.766162 −0.0631920
\(148\) 0 0
\(149\) 5.07809 0.416013 0.208007 0.978127i \(-0.433302\pi\)
0.208007 + 0.978127i \(0.433302\pi\)
\(150\) 0 0
\(151\) −0.729317 −0.0593510 −0.0296755 0.999560i \(-0.509447\pi\)
−0.0296755 + 0.999560i \(0.509447\pi\)
\(152\) 0 0
\(153\) −2.41782 −0.195469
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) 4.69290 0.374534 0.187267 0.982309i \(-0.440037\pi\)
0.187267 + 0.982309i \(0.440037\pi\)
\(158\) 0 0
\(159\) −0.233838 −0.0185445
\(160\) 0 0
\(161\) 10.6104 0.836218
\(162\) 0 0
\(163\) −11.7239 −0.918288 −0.459144 0.888362i \(-0.651844\pi\)
−0.459144 + 0.888362i \(0.651844\pi\)
\(164\) 0 0
\(165\) −4.92191 −0.383170
\(166\) 0 0
\(167\) −8.02780 −0.621210 −0.310605 0.950539i \(-0.600532\pi\)
−0.310605 + 0.950539i \(0.600532\pi\)
\(168\) 0 0
\(169\) −1.45906 −0.112235
\(170\) 0 0
\(171\) −6.92191 −0.529332
\(172\) 0 0
\(173\) −3.10589 −0.236137 −0.118068 0.993005i \(-0.537670\pi\)
−0.118068 + 0.993005i \(0.537670\pi\)
\(174\) 0 0
\(175\) −2.78678 −0.210661
\(176\) 0 0
\(177\) −3.29088 −0.247358
\(178\) 0 0
\(179\) 2.22902 0.166604 0.0833022 0.996524i \(-0.473453\pi\)
0.0833022 + 0.996524i \(0.473453\pi\)
\(180\) 0 0
\(181\) 8.16876 0.607179 0.303590 0.952803i \(-0.401815\pi\)
0.303590 + 0.952803i \(0.401815\pi\)
\(182\) 0 0
\(183\) 4.31150 0.318715
\(184\) 0 0
\(185\) −1.39720 −0.102724
\(186\) 0 0
\(187\) 11.9003 0.870235
\(188\) 0 0
\(189\) 2.78678 0.202709
\(190\) 0 0
\(191\) 13.0771 0.946224 0.473112 0.881002i \(-0.343131\pi\)
0.473112 + 0.881002i \(0.343131\pi\)
\(192\) 0 0
\(193\) 7.53232 0.542189 0.271094 0.962553i \(-0.412614\pi\)
0.271094 + 0.962553i \(0.412614\pi\)
\(194\) 0 0
\(195\) −3.39720 −0.243278
\(196\) 0 0
\(197\) 10.8855 0.775559 0.387780 0.921752i \(-0.373242\pi\)
0.387780 + 0.921752i \(0.373242\pi\)
\(198\) 0 0
\(199\) 5.33973 0.378523 0.189262 0.981927i \(-0.439391\pi\)
0.189262 + 0.981927i \(0.439391\pi\)
\(200\) 0 0
\(201\) −0.176371 −0.0124403
\(202\) 0 0
\(203\) −2.84425 −0.199627
\(204\) 0 0
\(205\) −4.00000 −0.279372
\(206\) 0 0
\(207\) −3.80740 −0.264633
\(208\) 0 0
\(209\) 34.0690 2.35661
\(210\) 0 0
\(211\) 11.6598 0.802697 0.401348 0.915925i \(-0.368542\pi\)
0.401348 + 0.915925i \(0.368542\pi\)
\(212\) 0 0
\(213\) −3.58979 −0.245968
\(214\) 0 0
\(215\) 1.38959 0.0947691
\(216\) 0 0
\(217\) −2.78678 −0.189179
\(218\) 0 0
\(219\) −2.74554 −0.185526
\(220\) 0 0
\(221\) 8.21380 0.552520
\(222\) 0 0
\(223\) 9.63003 0.644874 0.322437 0.946591i \(-0.395498\pi\)
0.322437 + 0.946591i \(0.395498\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −1.20079 −0.0796990 −0.0398495 0.999206i \(-0.512688\pi\)
−0.0398495 + 0.999206i \(0.512688\pi\)
\(228\) 0 0
\(229\) −26.4782 −1.74973 −0.874866 0.484365i \(-0.839051\pi\)
−0.874866 + 0.484365i \(0.839051\pi\)
\(230\) 0 0
\(231\) −13.7163 −0.902467
\(232\) 0 0
\(233\) −25.7653 −1.68794 −0.843971 0.536389i \(-0.819788\pi\)
−0.843971 + 0.536389i \(0.819788\pi\)
\(234\) 0 0
\(235\) 2.37657 0.155031
\(236\) 0 0
\(237\) −5.06947 −0.329298
\(238\) 0 0
\(239\) 20.3267 1.31483 0.657413 0.753530i \(-0.271651\pi\)
0.657413 + 0.753530i \(0.271651\pi\)
\(240\) 0 0
\(241\) −11.9415 −0.769221 −0.384611 0.923079i \(-0.625664\pi\)
−0.384611 + 0.923079i \(0.625664\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −0.766162 −0.0489483
\(246\) 0 0
\(247\) 23.5151 1.49623
\(248\) 0 0
\(249\) 5.63864 0.357334
\(250\) 0 0
\(251\) −9.37615 −0.591817 −0.295909 0.955216i \(-0.595622\pi\)
−0.295909 + 0.955216i \(0.595622\pi\)
\(252\) 0 0
\(253\) 18.7397 1.17816
\(254\) 0 0
\(255\) −2.41782 −0.151410
\(256\) 0 0
\(257\) 2.93053 0.182801 0.0914007 0.995814i \(-0.470866\pi\)
0.0914007 + 0.995814i \(0.470866\pi\)
\(258\) 0 0
\(259\) −3.89368 −0.241942
\(260\) 0 0
\(261\) 1.02062 0.0631749
\(262\) 0 0
\(263\) −20.8933 −1.28833 −0.644167 0.764885i \(-0.722796\pi\)
−0.644167 + 0.764885i \(0.722796\pi\)
\(264\) 0 0
\(265\) −0.233838 −0.0143645
\(266\) 0 0
\(267\) −9.94253 −0.608473
\(268\) 0 0
\(269\) 28.4532 1.73482 0.867412 0.497591i \(-0.165782\pi\)
0.867412 + 0.497591i \(0.165782\pi\)
\(270\) 0 0
\(271\) 13.8889 0.843688 0.421844 0.906668i \(-0.361383\pi\)
0.421844 + 0.906668i \(0.361383\pi\)
\(272\) 0 0
\(273\) −9.46725 −0.572984
\(274\) 0 0
\(275\) −4.92191 −0.296802
\(276\) 0 0
\(277\) 16.7321 1.00533 0.502667 0.864480i \(-0.332352\pi\)
0.502667 + 0.864480i \(0.332352\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 18.0977 1.07962 0.539809 0.841787i \(-0.318496\pi\)
0.539809 + 0.841787i \(0.318496\pi\)
\(282\) 0 0
\(283\) −32.3882 −1.92528 −0.962638 0.270792i \(-0.912715\pi\)
−0.962638 + 0.270792i \(0.912715\pi\)
\(284\) 0 0
\(285\) −6.92191 −0.410019
\(286\) 0 0
\(287\) −11.1471 −0.657995
\(288\) 0 0
\(289\) −11.1542 −0.656127
\(290\) 0 0
\(291\) 12.3680 0.725023
\(292\) 0 0
\(293\) −4.92673 −0.287823 −0.143911 0.989591i \(-0.545968\pi\)
−0.143911 + 0.989591i \(0.545968\pi\)
\(294\) 0 0
\(295\) −3.29088 −0.191602
\(296\) 0 0
\(297\) 4.92191 0.285598
\(298\) 0 0
\(299\) 12.9345 0.748021
\(300\) 0 0
\(301\) 3.87248 0.223206
\(302\) 0 0
\(303\) 13.6014 0.781378
\(304\) 0 0
\(305\) 4.31150 0.246876
\(306\) 0 0
\(307\) −15.3647 −0.876912 −0.438456 0.898753i \(-0.644475\pi\)
−0.438456 + 0.898753i \(0.644475\pi\)
\(308\) 0 0
\(309\) 0.644046 0.0366385
\(310\) 0 0
\(311\) 14.5790 0.826698 0.413349 0.910573i \(-0.364359\pi\)
0.413349 + 0.910573i \(0.364359\pi\)
\(312\) 0 0
\(313\) −21.3387 −1.20614 −0.603068 0.797690i \(-0.706055\pi\)
−0.603068 + 0.797690i \(0.706055\pi\)
\(314\) 0 0
\(315\) 2.78678 0.157017
\(316\) 0 0
\(317\) 27.3111 1.53394 0.766971 0.641681i \(-0.221763\pi\)
0.766971 + 0.641681i \(0.221763\pi\)
\(318\) 0 0
\(319\) −5.02341 −0.281257
\(320\) 0 0
\(321\) 14.1189 0.788040
\(322\) 0 0
\(323\) 16.7359 0.931211
\(324\) 0 0
\(325\) −3.39720 −0.188443
\(326\) 0 0
\(327\) 3.11451 0.172233
\(328\) 0 0
\(329\) 6.62300 0.365138
\(330\) 0 0
\(331\) 5.85244 0.321679 0.160840 0.986981i \(-0.448580\pi\)
0.160840 + 0.986981i \(0.448580\pi\)
\(332\) 0 0
\(333\) 1.39720 0.0765659
\(334\) 0 0
\(335\) −0.176371 −0.00963618
\(336\) 0 0
\(337\) −6.88828 −0.375228 −0.187614 0.982243i \(-0.560075\pi\)
−0.187614 + 0.982243i \(0.560075\pi\)
\(338\) 0 0
\(339\) −3.81602 −0.207258
\(340\) 0 0
\(341\) −4.92191 −0.266537
\(342\) 0 0
\(343\) 17.3724 0.938019
\(344\) 0 0
\(345\) −3.80740 −0.204984
\(346\) 0 0
\(347\) 2.58176 0.138596 0.0692980 0.997596i \(-0.477924\pi\)
0.0692980 + 0.997596i \(0.477924\pi\)
\(348\) 0 0
\(349\) −5.50849 −0.294863 −0.147431 0.989072i \(-0.547101\pi\)
−0.147431 + 0.989072i \(0.547101\pi\)
\(350\) 0 0
\(351\) 3.39720 0.181329
\(352\) 0 0
\(353\) −4.26164 −0.226824 −0.113412 0.993548i \(-0.536178\pi\)
−0.113412 + 0.993548i \(0.536178\pi\)
\(354\) 0 0
\(355\) −3.58979 −0.190526
\(356\) 0 0
\(357\) −6.73793 −0.356609
\(358\) 0 0
\(359\) −27.6714 −1.46044 −0.730221 0.683211i \(-0.760583\pi\)
−0.730221 + 0.683211i \(0.760583\pi\)
\(360\) 0 0
\(361\) 28.9129 1.52173
\(362\) 0 0
\(363\) −13.2252 −0.694144
\(364\) 0 0
\(365\) −2.74554 −0.143708
\(366\) 0 0
\(367\) 22.4668 1.17276 0.586379 0.810037i \(-0.300553\pi\)
0.586379 + 0.810037i \(0.300553\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) −0.651655 −0.0338322
\(372\) 0 0
\(373\) −17.9453 −0.929173 −0.464587 0.885528i \(-0.653797\pi\)
−0.464587 + 0.885528i \(0.653797\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −3.46725 −0.178572
\(378\) 0 0
\(379\) −35.3724 −1.81696 −0.908478 0.417933i \(-0.862755\pi\)
−0.908478 + 0.417933i \(0.862755\pi\)
\(380\) 0 0
\(381\) 13.8590 0.710020
\(382\) 0 0
\(383\) 11.1798 0.571259 0.285630 0.958340i \(-0.407797\pi\)
0.285630 + 0.958340i \(0.407797\pi\)
\(384\) 0 0
\(385\) −13.7163 −0.699048
\(386\) 0 0
\(387\) −1.38959 −0.0706367
\(388\) 0 0
\(389\) 17.2496 0.874591 0.437296 0.899318i \(-0.355936\pi\)
0.437296 + 0.899318i \(0.355936\pi\)
\(390\) 0 0
\(391\) 9.20561 0.465548
\(392\) 0 0
\(393\) −12.0440 −0.607541
\(394\) 0 0
\(395\) −5.06947 −0.255073
\(396\) 0 0
\(397\) 23.6014 1.18452 0.592259 0.805747i \(-0.298236\pi\)
0.592259 + 0.805747i \(0.298236\pi\)
\(398\) 0 0
\(399\) −19.2899 −0.965701
\(400\) 0 0
\(401\) −11.1634 −0.557472 −0.278736 0.960368i \(-0.589915\pi\)
−0.278736 + 0.960368i \(0.589915\pi\)
\(402\) 0 0
\(403\) −3.39720 −0.169226
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −6.87688 −0.340874
\(408\) 0 0
\(409\) 4.13894 0.204658 0.102329 0.994751i \(-0.467371\pi\)
0.102329 + 0.994751i \(0.467371\pi\)
\(410\) 0 0
\(411\) −22.7858 −1.12394
\(412\) 0 0
\(413\) −9.17097 −0.451274
\(414\) 0 0
\(415\) 5.63864 0.276790
\(416\) 0 0
\(417\) −1.57357 −0.0770579
\(418\) 0 0
\(419\) −10.8969 −0.532348 −0.266174 0.963925i \(-0.585760\pi\)
−0.266174 + 0.963925i \(0.585760\pi\)
\(420\) 0 0
\(421\) −2.37657 −0.115827 −0.0579136 0.998322i \(-0.518445\pi\)
−0.0579136 + 0.998322i \(0.518445\pi\)
\(422\) 0 0
\(423\) −2.37657 −0.115553
\(424\) 0 0
\(425\) −2.41782 −0.117281
\(426\) 0 0
\(427\) 12.0152 0.581457
\(428\) 0 0
\(429\) −16.7207 −0.807283
\(430\) 0 0
\(431\) 29.7261 1.43186 0.715928 0.698174i \(-0.246004\pi\)
0.715928 + 0.698174i \(0.246004\pi\)
\(432\) 0 0
\(433\) −15.0158 −0.721613 −0.360807 0.932641i \(-0.617499\pi\)
−0.360807 + 0.932641i \(0.617499\pi\)
\(434\) 0 0
\(435\) 1.02062 0.0489350
\(436\) 0 0
\(437\) 26.3545 1.26071
\(438\) 0 0
\(439\) −13.3033 −0.634932 −0.317466 0.948270i \(-0.602832\pi\)
−0.317466 + 0.948270i \(0.602832\pi\)
\(440\) 0 0
\(441\) 0.766162 0.0364839
\(442\) 0 0
\(443\) −34.4869 −1.63852 −0.819260 0.573422i \(-0.805616\pi\)
−0.819260 + 0.573422i \(0.805616\pi\)
\(444\) 0 0
\(445\) −9.94253 −0.471321
\(446\) 0 0
\(447\) −5.07809 −0.240185
\(448\) 0 0
\(449\) 35.2736 1.66467 0.832333 0.554276i \(-0.187005\pi\)
0.832333 + 0.554276i \(0.187005\pi\)
\(450\) 0 0
\(451\) −19.6876 −0.927055
\(452\) 0 0
\(453\) 0.729317 0.0342663
\(454\) 0 0
\(455\) −9.46725 −0.443832
\(456\) 0 0
\(457\) −3.96374 −0.185416 −0.0927079 0.995693i \(-0.529552\pi\)
−0.0927079 + 0.995693i \(0.529552\pi\)
\(458\) 0 0
\(459\) 2.41782 0.112854
\(460\) 0 0
\(461\) 40.4208 1.88258 0.941292 0.337594i \(-0.109613\pi\)
0.941292 + 0.337594i \(0.109613\pi\)
\(462\) 0 0
\(463\) 5.23721 0.243394 0.121697 0.992567i \(-0.461166\pi\)
0.121697 + 0.992567i \(0.461166\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) −2.76177 −0.127799 −0.0638996 0.997956i \(-0.520354\pi\)
−0.0638996 + 0.997956i \(0.520354\pi\)
\(468\) 0 0
\(469\) −0.491508 −0.0226957
\(470\) 0 0
\(471\) −4.69290 −0.216237
\(472\) 0 0
\(473\) 6.83943 0.314477
\(474\) 0 0
\(475\) −6.92191 −0.317599
\(476\) 0 0
\(477\) 0.233838 0.0107067
\(478\) 0 0
\(479\) −32.8510 −1.50100 −0.750500 0.660870i \(-0.770187\pi\)
−0.750500 + 0.660870i \(0.770187\pi\)
\(480\) 0 0
\(481\) −4.74655 −0.216424
\(482\) 0 0
\(483\) −10.6104 −0.482790
\(484\) 0 0
\(485\) 12.3680 0.561600
\(486\) 0 0
\(487\) −9.72889 −0.440858 −0.220429 0.975403i \(-0.570746\pi\)
−0.220429 + 0.975403i \(0.570746\pi\)
\(488\) 0 0
\(489\) 11.7239 0.530174
\(490\) 0 0
\(491\) 37.6166 1.69761 0.848806 0.528704i \(-0.177322\pi\)
0.848806 + 0.528704i \(0.177322\pi\)
\(492\) 0 0
\(493\) −2.46768 −0.111138
\(494\) 0 0
\(495\) 4.92191 0.221224
\(496\) 0 0
\(497\) −10.0040 −0.448739
\(498\) 0 0
\(499\) −15.1167 −0.676716 −0.338358 0.941017i \(-0.609872\pi\)
−0.338358 + 0.941017i \(0.609872\pi\)
\(500\) 0 0
\(501\) 8.02780 0.358656
\(502\) 0 0
\(503\) −41.8917 −1.86786 −0.933929 0.357460i \(-0.883643\pi\)
−0.933929 + 0.357460i \(0.883643\pi\)
\(504\) 0 0
\(505\) 13.6014 0.605253
\(506\) 0 0
\(507\) 1.45906 0.0647991
\(508\) 0 0
\(509\) −24.8472 −1.10133 −0.550667 0.834725i \(-0.685626\pi\)
−0.550667 + 0.834725i \(0.685626\pi\)
\(510\) 0 0
\(511\) −7.65123 −0.338470
\(512\) 0 0
\(513\) 6.92191 0.305610
\(514\) 0 0
\(515\) 0.644046 0.0283801
\(516\) 0 0
\(517\) 11.6973 0.514446
\(518\) 0 0
\(519\) 3.10589 0.136334
\(520\) 0 0
\(521\) 20.9910 0.919631 0.459815 0.888015i \(-0.347916\pi\)
0.459815 + 0.888015i \(0.347916\pi\)
\(522\) 0 0
\(523\) −34.1267 −1.49226 −0.746128 0.665803i \(-0.768089\pi\)
−0.746128 + 0.665803i \(0.768089\pi\)
\(524\) 0 0
\(525\) 2.78678 0.121625
\(526\) 0 0
\(527\) −2.41782 −0.105322
\(528\) 0 0
\(529\) −8.50367 −0.369725
\(530\) 0 0
\(531\) 3.29088 0.142812
\(532\) 0 0
\(533\) −13.5888 −0.588596
\(534\) 0 0
\(535\) 14.1189 0.610413
\(536\) 0 0
\(537\) −2.22902 −0.0961891
\(538\) 0 0
\(539\) −3.77098 −0.162428
\(540\) 0 0
\(541\) −22.9171 −0.985283 −0.492641 0.870232i \(-0.663969\pi\)
−0.492641 + 0.870232i \(0.663969\pi\)
\(542\) 0 0
\(543\) −8.16876 −0.350555
\(544\) 0 0
\(545\) 3.11451 0.133411
\(546\) 0 0
\(547\) 34.2580 1.46477 0.732383 0.680893i \(-0.238408\pi\)
0.732383 + 0.680893i \(0.238408\pi\)
\(548\) 0 0
\(549\) −4.31150 −0.184010
\(550\) 0 0
\(551\) −7.06465 −0.300964
\(552\) 0 0
\(553\) −14.1275 −0.600763
\(554\) 0 0
\(555\) 1.39720 0.0593077
\(556\) 0 0
\(557\) 1.22681 0.0519817 0.0259908 0.999662i \(-0.491726\pi\)
0.0259908 + 0.999662i \(0.491726\pi\)
\(558\) 0 0
\(559\) 4.72070 0.199664
\(560\) 0 0
\(561\) −11.9003 −0.502430
\(562\) 0 0
\(563\) 33.0964 1.39485 0.697424 0.716659i \(-0.254329\pi\)
0.697424 + 0.716659i \(0.254329\pi\)
\(564\) 0 0
\(565\) −3.81602 −0.160541
\(566\) 0 0
\(567\) −2.78678 −0.117034
\(568\) 0 0
\(569\) 18.4819 0.774801 0.387400 0.921912i \(-0.373373\pi\)
0.387400 + 0.921912i \(0.373373\pi\)
\(570\) 0 0
\(571\) 13.5736 0.568036 0.284018 0.958819i \(-0.408332\pi\)
0.284018 + 0.958819i \(0.408332\pi\)
\(572\) 0 0
\(573\) −13.0771 −0.546303
\(574\) 0 0
\(575\) −3.80740 −0.158780
\(576\) 0 0
\(577\) −33.8590 −1.40957 −0.704785 0.709421i \(-0.748957\pi\)
−0.704785 + 0.709421i \(0.748957\pi\)
\(578\) 0 0
\(579\) −7.53232 −0.313033
\(580\) 0 0
\(581\) 15.7137 0.651913
\(582\) 0 0
\(583\) −1.15093 −0.0476666
\(584\) 0 0
\(585\) 3.39720 0.140457
\(586\) 0 0
\(587\) −4.27026 −0.176252 −0.0881262 0.996109i \(-0.528088\pi\)
−0.0881262 + 0.996109i \(0.528088\pi\)
\(588\) 0 0
\(589\) −6.92191 −0.285212
\(590\) 0 0
\(591\) −10.8855 −0.447769
\(592\) 0 0
\(593\) 25.4478 1.04502 0.522508 0.852634i \(-0.324996\pi\)
0.522508 + 0.852634i \(0.324996\pi\)
\(594\) 0 0
\(595\) −6.73793 −0.276228
\(596\) 0 0
\(597\) −5.33973 −0.218541
\(598\) 0 0
\(599\) −20.3257 −0.830486 −0.415243 0.909711i \(-0.636303\pi\)
−0.415243 + 0.909711i \(0.636303\pi\)
\(600\) 0 0
\(601\) −18.8933 −0.770672 −0.385336 0.922776i \(-0.625914\pi\)
−0.385336 + 0.922776i \(0.625914\pi\)
\(602\) 0 0
\(603\) 0.176371 0.00718238
\(604\) 0 0
\(605\) −13.2252 −0.537682
\(606\) 0 0
\(607\) 20.2042 0.820062 0.410031 0.912072i \(-0.365518\pi\)
0.410031 + 0.912072i \(0.365518\pi\)
\(608\) 0 0
\(609\) 2.84425 0.115255
\(610\) 0 0
\(611\) 8.07369 0.326627
\(612\) 0 0
\(613\) −5.45567 −0.220352 −0.110176 0.993912i \(-0.535142\pi\)
−0.110176 + 0.993912i \(0.535142\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) −6.68325 −0.269058 −0.134529 0.990910i \(-0.542952\pi\)
−0.134529 + 0.990910i \(0.542952\pi\)
\(618\) 0 0
\(619\) −36.7445 −1.47689 −0.738444 0.674315i \(-0.764439\pi\)
−0.738444 + 0.674315i \(0.764439\pi\)
\(620\) 0 0
\(621\) 3.80740 0.152786
\(622\) 0 0
\(623\) −27.7077 −1.11009
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −34.0690 −1.36059
\(628\) 0 0
\(629\) −3.37816 −0.134696
\(630\) 0 0
\(631\) −13.2162 −0.526128 −0.263064 0.964778i \(-0.584733\pi\)
−0.263064 + 0.964778i \(0.584733\pi\)
\(632\) 0 0
\(633\) −11.6598 −0.463437
\(634\) 0 0
\(635\) 13.8590 0.549979
\(636\) 0 0
\(637\) −2.60280 −0.103127
\(638\) 0 0
\(639\) 3.58979 0.142010
\(640\) 0 0
\(641\) 11.9051 0.470223 0.235111 0.971968i \(-0.424455\pi\)
0.235111 + 0.971968i \(0.424455\pi\)
\(642\) 0 0
\(643\) −13.2486 −0.522475 −0.261237 0.965275i \(-0.584131\pi\)
−0.261237 + 0.965275i \(0.584131\pi\)
\(644\) 0 0
\(645\) −1.38959 −0.0547150
\(646\) 0 0
\(647\) 24.2981 0.955255 0.477628 0.878562i \(-0.341497\pi\)
0.477628 + 0.878562i \(0.341497\pi\)
\(648\) 0 0
\(649\) −16.1974 −0.635804
\(650\) 0 0
\(651\) 2.78678 0.109223
\(652\) 0 0
\(653\) −3.15575 −0.123494 −0.0617470 0.998092i \(-0.519667\pi\)
−0.0617470 + 0.998092i \(0.519667\pi\)
\(654\) 0 0
\(655\) −12.0440 −0.470599
\(656\) 0 0
\(657\) 2.74554 0.107114
\(658\) 0 0
\(659\) −15.4202 −0.600685 −0.300342 0.953831i \(-0.597101\pi\)
−0.300342 + 0.953831i \(0.597101\pi\)
\(660\) 0 0
\(661\) 35.6768 1.38767 0.693834 0.720135i \(-0.255920\pi\)
0.693834 + 0.720135i \(0.255920\pi\)
\(662\) 0 0
\(663\) −8.21380 −0.318998
\(664\) 0 0
\(665\) −19.2899 −0.748029
\(666\) 0 0
\(667\) −3.88592 −0.150463
\(668\) 0 0
\(669\) −9.63003 −0.372318
\(670\) 0 0
\(671\) 21.2208 0.819221
\(672\) 0 0
\(673\) −15.2975 −0.589675 −0.294837 0.955547i \(-0.595265\pi\)
−0.294837 + 0.955547i \(0.595265\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −9.43743 −0.362710 −0.181355 0.983418i \(-0.558048\pi\)
−0.181355 + 0.983418i \(0.558048\pi\)
\(678\) 0 0
\(679\) 34.4668 1.32272
\(680\) 0 0
\(681\) 1.20079 0.0460142
\(682\) 0 0
\(683\) 6.27423 0.240077 0.120038 0.992769i \(-0.461698\pi\)
0.120038 + 0.992769i \(0.461698\pi\)
\(684\) 0 0
\(685\) −22.7858 −0.870600
\(686\) 0 0
\(687\) 26.4782 1.01021
\(688\) 0 0
\(689\) −0.794392 −0.0302639
\(690\) 0 0
\(691\) 20.7081 0.787774 0.393887 0.919159i \(-0.371130\pi\)
0.393887 + 0.919159i \(0.371130\pi\)
\(692\) 0 0
\(693\) 13.7163 0.521039
\(694\) 0 0
\(695\) −1.57357 −0.0596888
\(696\) 0 0
\(697\) −9.67127 −0.366325
\(698\) 0 0
\(699\) 25.7653 0.974534
\(700\) 0 0
\(701\) −25.9713 −0.980924 −0.490462 0.871463i \(-0.663172\pi\)
−0.490462 + 0.871463i \(0.663172\pi\)
\(702\) 0 0
\(703\) −9.67127 −0.364759
\(704\) 0 0
\(705\) −2.37657 −0.0895070
\(706\) 0 0
\(707\) 37.9041 1.42553
\(708\) 0 0
\(709\) −5.93975 −0.223072 −0.111536 0.993760i \(-0.535577\pi\)
−0.111536 + 0.993760i \(0.535577\pi\)
\(710\) 0 0
\(711\) 5.06947 0.190120
\(712\) 0 0
\(713\) −3.80740 −0.142588
\(714\) 0 0
\(715\) −16.7207 −0.625319
\(716\) 0 0
\(717\) −20.3267 −0.759115
\(718\) 0 0
\(719\) 26.6534 0.994005 0.497003 0.867749i \(-0.334434\pi\)
0.497003 + 0.867749i \(0.334434\pi\)
\(720\) 0 0
\(721\) 1.79482 0.0668425
\(722\) 0 0
\(723\) 11.9415 0.444110
\(724\) 0 0
\(725\) 1.02062 0.0379049
\(726\) 0 0
\(727\) −11.0006 −0.407989 −0.203995 0.978972i \(-0.565392\pi\)
−0.203995 + 0.978972i \(0.565392\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 3.35977 0.124266
\(732\) 0 0
\(733\) 23.7865 0.878575 0.439287 0.898347i \(-0.355231\pi\)
0.439287 + 0.898347i \(0.355231\pi\)
\(734\) 0 0
\(735\) 0.766162 0.0282603
\(736\) 0 0
\(737\) −0.868083 −0.0319762
\(738\) 0 0
\(739\) −33.4652 −1.23104 −0.615519 0.788122i \(-0.711054\pi\)
−0.615519 + 0.788122i \(0.711054\pi\)
\(740\) 0 0
\(741\) −23.5151 −0.863849
\(742\) 0 0
\(743\) 11.3051 0.414743 0.207372 0.978262i \(-0.433509\pi\)
0.207372 + 0.978262i \(0.433509\pi\)
\(744\) 0 0
\(745\) −5.07809 −0.186047
\(746\) 0 0
\(747\) −5.63864 −0.206307
\(748\) 0 0
\(749\) 39.3463 1.43768
\(750\) 0 0
\(751\) 43.5555 1.58936 0.794681 0.607027i \(-0.207638\pi\)
0.794681 + 0.607027i \(0.207638\pi\)
\(752\) 0 0
\(753\) 9.37615 0.341686
\(754\) 0 0
\(755\) 0.729317 0.0265426
\(756\) 0 0
\(757\) −9.70870 −0.352869 −0.176434 0.984312i \(-0.556456\pi\)
−0.176434 + 0.984312i \(0.556456\pi\)
\(758\) 0 0
\(759\) −18.7397 −0.680208
\(760\) 0 0
\(761\) −12.9083 −0.467926 −0.233963 0.972245i \(-0.575169\pi\)
−0.233963 + 0.972245i \(0.575169\pi\)
\(762\) 0 0
\(763\) 8.67946 0.314218
\(764\) 0 0
\(765\) 2.41782 0.0874164
\(766\) 0 0
\(767\) −11.1798 −0.403678
\(768\) 0 0
\(769\) −18.1189 −0.653384 −0.326692 0.945131i \(-0.605934\pi\)
−0.326692 + 0.945131i \(0.605934\pi\)
\(770\) 0 0
\(771\) −2.93053 −0.105540
\(772\) 0 0
\(773\) −15.9808 −0.574790 −0.287395 0.957812i \(-0.592789\pi\)
−0.287395 + 0.957812i \(0.592789\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) 3.89368 0.139685
\(778\) 0 0
\(779\) −27.6876 −0.992013
\(780\) 0 0
\(781\) −17.6686 −0.632234
\(782\) 0 0
\(783\) −1.02062 −0.0364740
\(784\) 0 0
\(785\) −4.69290 −0.167497
\(786\) 0 0
\(787\) 38.8634 1.38533 0.692666 0.721259i \(-0.256436\pi\)
0.692666 + 0.721259i \(0.256436\pi\)
\(788\) 0 0
\(789\) 20.8933 0.743820
\(790\) 0 0
\(791\) −10.6344 −0.378117
\(792\) 0 0
\(793\) 14.6470 0.520131
\(794\) 0 0
\(795\) 0.233838 0.00829336
\(796\) 0 0
\(797\) −41.6378 −1.47489 −0.737443 0.675409i \(-0.763967\pi\)
−0.737443 + 0.675409i \(0.763967\pi\)
\(798\) 0 0
\(799\) 5.74612 0.203283
\(800\) 0 0
\(801\) 9.94253 0.351302
\(802\) 0 0
\(803\) −13.5133 −0.476874
\(804\) 0 0
\(805\) −10.6104 −0.373968
\(806\) 0 0
\(807\) −28.4532 −1.00160
\(808\) 0 0
\(809\) −40.6524 −1.42926 −0.714632 0.699501i \(-0.753406\pi\)
−0.714632 + 0.699501i \(0.753406\pi\)
\(810\) 0 0
\(811\) −28.7810 −1.01064 −0.505318 0.862933i \(-0.668625\pi\)
−0.505318 + 0.862933i \(0.668625\pi\)
\(812\) 0 0
\(813\) −13.8889 −0.487104
\(814\) 0 0
\(815\) 11.7239 0.410671
\(816\) 0 0
\(817\) 9.61860 0.336512
\(818\) 0 0
\(819\) 9.46725 0.330812
\(820\) 0 0
\(821\) −44.9873 −1.57007 −0.785034 0.619452i \(-0.787355\pi\)
−0.785034 + 0.619452i \(0.787355\pi\)
\(822\) 0 0
\(823\) 22.5405 0.785713 0.392856 0.919600i \(-0.371487\pi\)
0.392856 + 0.919600i \(0.371487\pi\)
\(824\) 0 0
\(825\) 4.92191 0.171359
\(826\) 0 0
\(827\) −25.2438 −0.877813 −0.438907 0.898533i \(-0.644634\pi\)
−0.438907 + 0.898533i \(0.644634\pi\)
\(828\) 0 0
\(829\) −48.4946 −1.68429 −0.842144 0.539253i \(-0.818707\pi\)
−0.842144 + 0.539253i \(0.818707\pi\)
\(830\) 0 0
\(831\) −16.7321 −0.580430
\(832\) 0 0
\(833\) −1.85244 −0.0641833
\(834\) 0 0
\(835\) 8.02780 0.277814
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) 24.2444 0.837009 0.418505 0.908215i \(-0.362554\pi\)
0.418505 + 0.908215i \(0.362554\pi\)
\(840\) 0 0
\(841\) −27.9583 −0.964080
\(842\) 0 0
\(843\) −18.0977 −0.623318
\(844\) 0 0
\(845\) 1.45906 0.0501932
\(846\) 0 0
\(847\) −36.8558 −1.26638
\(848\) 0 0
\(849\) 32.3882 1.11156
\(850\) 0 0
\(851\) −5.31969 −0.182357
\(852\) 0 0
\(853\) −36.7906 −1.25969 −0.629843 0.776722i \(-0.716881\pi\)
−0.629843 + 0.776722i \(0.716881\pi\)
\(854\) 0 0
\(855\) 6.92191 0.236724
\(856\) 0 0
\(857\) −19.8114 −0.676744 −0.338372 0.941012i \(-0.609876\pi\)
−0.338372 + 0.941012i \(0.609876\pi\)
\(858\) 0 0
\(859\) 1.39338 0.0475416 0.0237708 0.999717i \(-0.492433\pi\)
0.0237708 + 0.999717i \(0.492433\pi\)
\(860\) 0 0
\(861\) 11.1471 0.379893
\(862\) 0 0
\(863\) −0.995603 −0.0338907 −0.0169454 0.999856i \(-0.505394\pi\)
−0.0169454 + 0.999856i \(0.505394\pi\)
\(864\) 0 0
\(865\) 3.10589 0.105603
\(866\) 0 0
\(867\) 11.1542 0.378815
\(868\) 0 0
\(869\) −24.9515 −0.846422
\(870\) 0 0
\(871\) −0.599167 −0.0203020
\(872\) 0 0
\(873\) −12.3680 −0.418592
\(874\) 0 0
\(875\) 2.78678 0.0942105
\(876\) 0 0
\(877\) 28.8857 0.975400 0.487700 0.873011i \(-0.337836\pi\)
0.487700 + 0.873011i \(0.337836\pi\)
\(878\) 0 0
\(879\) 4.92673 0.166175
\(880\) 0 0
\(881\) −10.7504 −0.362189 −0.181094 0.983466i \(-0.557964\pi\)
−0.181094 + 0.983466i \(0.557964\pi\)
\(882\) 0 0
\(883\) 26.1831 0.881132 0.440566 0.897720i \(-0.354778\pi\)
0.440566 + 0.897720i \(0.354778\pi\)
\(884\) 0 0
\(885\) 3.29088 0.110622
\(886\) 0 0
\(887\) 14.0642 0.472230 0.236115 0.971725i \(-0.424126\pi\)
0.236115 + 0.971725i \(0.424126\pi\)
\(888\) 0 0
\(889\) 38.6221 1.29535
\(890\) 0 0
\(891\) −4.92191 −0.164890
\(892\) 0 0
\(893\) 16.4504 0.550493
\(894\) 0 0
\(895\) −2.22902 −0.0745078
\(896\) 0 0
\(897\) −12.9345 −0.431870
\(898\) 0 0
\(899\) 1.02062 0.0340396
\(900\) 0 0
\(901\) −0.565376 −0.0188354
\(902\) 0 0
\(903\) −3.87248 −0.128868
\(904\) 0 0
\(905\) −8.16876 −0.271539
\(906\) 0 0
\(907\) 11.5698 0.384167 0.192084 0.981379i \(-0.438476\pi\)
0.192084 + 0.981379i \(0.438476\pi\)
\(908\) 0 0
\(909\) −13.6014 −0.451129
\(910\) 0 0
\(911\) 27.8438 0.922507 0.461254 0.887268i \(-0.347400\pi\)
0.461254 + 0.887268i \(0.347400\pi\)
\(912\) 0 0
\(913\) 27.7529 0.918487
\(914\) 0 0
\(915\) −4.31150 −0.142534
\(916\) 0 0
\(917\) −33.5641 −1.10838
\(918\) 0 0
\(919\) 35.4154 1.16825 0.584123 0.811665i \(-0.301439\pi\)
0.584123 + 0.811665i \(0.301439\pi\)
\(920\) 0 0
\(921\) 15.3647 0.506286
\(922\) 0 0
\(923\) −12.1952 −0.401411
\(924\) 0 0
\(925\) 1.39720 0.0459395
\(926\) 0 0
\(927\) −0.644046 −0.0211533
\(928\) 0 0
\(929\) 20.0250 0.657000 0.328500 0.944504i \(-0.393457\pi\)
0.328500 + 0.944504i \(0.393457\pi\)
\(930\) 0 0
\(931\) −5.30331 −0.173809
\(932\) 0 0
\(933\) −14.5790 −0.477294
\(934\) 0 0
\(935\) −11.9003 −0.389181
\(936\) 0 0
\(937\) −32.0825 −1.04809 −0.524045 0.851691i \(-0.675577\pi\)
−0.524045 + 0.851691i \(0.675577\pi\)
\(938\) 0 0
\(939\) 21.3387 0.696363
\(940\) 0 0
\(941\) −6.05282 −0.197316 −0.0986582 0.995121i \(-0.531455\pi\)
−0.0986582 + 0.995121i \(0.531455\pi\)
\(942\) 0 0
\(943\) −15.2296 −0.495945
\(944\) 0 0
\(945\) −2.78678 −0.0906541
\(946\) 0 0
\(947\) −31.1873 −1.01345 −0.506726 0.862107i \(-0.669145\pi\)
−0.506726 + 0.862107i \(0.669145\pi\)
\(948\) 0 0
\(949\) −9.32714 −0.302772
\(950\) 0 0
\(951\) −27.3111 −0.885622
\(952\) 0 0
\(953\) 14.7129 0.476599 0.238299 0.971192i \(-0.423410\pi\)
0.238299 + 0.971192i \(0.423410\pi\)
\(954\) 0 0
\(955\) −13.0771 −0.423164
\(956\) 0 0
\(957\) 5.02341 0.162384
\(958\) 0 0
\(959\) −63.4990 −2.05049
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −14.1189 −0.454975
\(964\) 0 0
\(965\) −7.53232 −0.242474
\(966\) 0 0
\(967\) −9.83302 −0.316208 −0.158104 0.987422i \(-0.550538\pi\)
−0.158104 + 0.987422i \(0.550538\pi\)
\(968\) 0 0
\(969\) −16.7359 −0.537635
\(970\) 0 0
\(971\) −46.9048 −1.50525 −0.752624 0.658451i \(-0.771212\pi\)
−0.752624 + 0.658451i \(0.771212\pi\)
\(972\) 0 0
\(973\) −4.38519 −0.140583
\(974\) 0 0
\(975\) 3.39720 0.108797
\(976\) 0 0
\(977\) 15.6713 0.501368 0.250684 0.968069i \(-0.419344\pi\)
0.250684 + 0.968069i \(0.419344\pi\)
\(978\) 0 0
\(979\) −48.9363 −1.56401
\(980\) 0 0
\(981\) −3.11451 −0.0994386
\(982\) 0 0
\(983\) 0.212634 0.00678198 0.00339099 0.999994i \(-0.498921\pi\)
0.00339099 + 0.999994i \(0.498921\pi\)
\(984\) 0 0
\(985\) −10.8855 −0.346841
\(986\) 0 0
\(987\) −6.62300 −0.210812
\(988\) 0 0
\(989\) 5.29072 0.168235
\(990\) 0 0
\(991\) 21.9638 0.697702 0.348851 0.937178i \(-0.386572\pi\)
0.348851 + 0.937178i \(0.386572\pi\)
\(992\) 0 0
\(993\) −5.85244 −0.185722
\(994\) 0 0
\(995\) −5.33973 −0.169281
\(996\) 0 0
\(997\) −9.31768 −0.295094 −0.147547 0.989055i \(-0.547138\pi\)
−0.147547 + 0.989055i \(0.547138\pi\)
\(998\) 0 0
\(999\) −1.39720 −0.0442053
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3720.2.a.r.1.1 4
4.3 odd 2 7440.2.a.bx.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3720.2.a.r.1.1 4 1.1 even 1 trivial
7440.2.a.bx.1.4 4 4.3 odd 2