Properties

Label 3720.2.a.o.1.2
Level $3720$
Weight $2$
Character 3720.1
Self dual yes
Analytic conductor $29.704$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3720,2,Mod(1,3720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3720.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3720.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7043495519\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 3720.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -0.688892 q^{7} +1.00000 q^{9} +3.80642 q^{11} +0.688892 q^{13} -1.00000 q^{15} -6.70964 q^{17} -4.00000 q^{19} -0.688892 q^{21} -4.14764 q^{23} +1.00000 q^{25} +1.00000 q^{27} -0.969888 q^{29} -1.00000 q^{31} +3.80642 q^{33} +0.688892 q^{35} -5.73975 q^{37} +0.688892 q^{39} -7.05086 q^{41} -6.00000 q^{43} -1.00000 q^{45} +10.3827 q^{47} -6.52543 q^{49} -6.70964 q^{51} +12.3827 q^{53} -3.80642 q^{55} -4.00000 q^{57} -4.77631 q^{59} -6.29529 q^{61} -0.688892 q^{63} -0.688892 q^{65} -0.453829 q^{67} -4.14764 q^{69} -3.45875 q^{71} +13.3526 q^{73} +1.00000 q^{75} -2.62222 q^{77} -8.08742 q^{79} +1.00000 q^{81} +11.7605 q^{83} +6.70964 q^{85} -0.969888 q^{87} -14.0207 q^{89} -0.474572 q^{91} -1.00000 q^{93} +4.00000 q^{95} -0.949145 q^{97} +3.80642 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{5} - 2 q^{7} + 3 q^{9} - 2 q^{11} + 2 q^{13} - 3 q^{15} - 12 q^{19} - 2 q^{21} - 6 q^{23} + 3 q^{25} + 3 q^{27} + 4 q^{29} - 3 q^{31} - 2 q^{33} + 2 q^{35} - 4 q^{37} + 2 q^{39} - 8 q^{41}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.688892 −0.260377 −0.130188 0.991489i \(-0.541558\pi\)
−0.130188 + 0.991489i \(0.541558\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.80642 1.14768 0.573840 0.818967i \(-0.305453\pi\)
0.573840 + 0.818967i \(0.305453\pi\)
\(12\) 0 0
\(13\) 0.688892 0.191064 0.0955322 0.995426i \(-0.469545\pi\)
0.0955322 + 0.995426i \(0.469545\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −6.70964 −1.62733 −0.813663 0.581337i \(-0.802530\pi\)
−0.813663 + 0.581337i \(0.802530\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −0.688892 −0.150329
\(22\) 0 0
\(23\) −4.14764 −0.864843 −0.432422 0.901671i \(-0.642341\pi\)
−0.432422 + 0.901671i \(0.642341\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.969888 −0.180104 −0.0900519 0.995937i \(-0.528703\pi\)
−0.0900519 + 0.995937i \(0.528703\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 3.80642 0.662613
\(34\) 0 0
\(35\) 0.688892 0.116444
\(36\) 0 0
\(37\) −5.73975 −0.943609 −0.471804 0.881703i \(-0.656397\pi\)
−0.471804 + 0.881703i \(0.656397\pi\)
\(38\) 0 0
\(39\) 0.688892 0.110311
\(40\) 0 0
\(41\) −7.05086 −1.10116 −0.550579 0.834783i \(-0.685593\pi\)
−0.550579 + 0.834783i \(0.685593\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 10.3827 1.51447 0.757237 0.653141i \(-0.226549\pi\)
0.757237 + 0.653141i \(0.226549\pi\)
\(48\) 0 0
\(49\) −6.52543 −0.932204
\(50\) 0 0
\(51\) −6.70964 −0.939537
\(52\) 0 0
\(53\) 12.3827 1.70090 0.850448 0.526059i \(-0.176331\pi\)
0.850448 + 0.526059i \(0.176331\pi\)
\(54\) 0 0
\(55\) −3.80642 −0.513258
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) −4.77631 −0.621823 −0.310911 0.950439i \(-0.600634\pi\)
−0.310911 + 0.950439i \(0.600634\pi\)
\(60\) 0 0
\(61\) −6.29529 −0.806029 −0.403014 0.915194i \(-0.632038\pi\)
−0.403014 + 0.915194i \(0.632038\pi\)
\(62\) 0 0
\(63\) −0.688892 −0.0867923
\(64\) 0 0
\(65\) −0.688892 −0.0854466
\(66\) 0 0
\(67\) −0.453829 −0.0554440 −0.0277220 0.999616i \(-0.508825\pi\)
−0.0277220 + 0.999616i \(0.508825\pi\)
\(68\) 0 0
\(69\) −4.14764 −0.499318
\(70\) 0 0
\(71\) −3.45875 −0.410478 −0.205239 0.978712i \(-0.565797\pi\)
−0.205239 + 0.978712i \(0.565797\pi\)
\(72\) 0 0
\(73\) 13.3526 1.56280 0.781402 0.624029i \(-0.214505\pi\)
0.781402 + 0.624029i \(0.214505\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −2.62222 −0.298829
\(78\) 0 0
\(79\) −8.08742 −0.909906 −0.454953 0.890515i \(-0.650344\pi\)
−0.454953 + 0.890515i \(0.650344\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 11.7605 1.29088 0.645441 0.763810i \(-0.276674\pi\)
0.645441 + 0.763810i \(0.276674\pi\)
\(84\) 0 0
\(85\) 6.70964 0.727762
\(86\) 0 0
\(87\) −0.969888 −0.103983
\(88\) 0 0
\(89\) −14.0207 −1.48620 −0.743098 0.669183i \(-0.766644\pi\)
−0.743098 + 0.669183i \(0.766644\pi\)
\(90\) 0 0
\(91\) −0.474572 −0.0497487
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −0.949145 −0.0963711 −0.0481855 0.998838i \(-0.515344\pi\)
−0.0481855 + 0.998838i \(0.515344\pi\)
\(98\) 0 0
\(99\) 3.80642 0.382560
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 5.87310 0.578694 0.289347 0.957224i \(-0.406562\pi\)
0.289347 + 0.957224i \(0.406562\pi\)
\(104\) 0 0
\(105\) 0.688892 0.0672290
\(106\) 0 0
\(107\) −5.39207 −0.521272 −0.260636 0.965437i \(-0.583932\pi\)
−0.260636 + 0.965437i \(0.583932\pi\)
\(108\) 0 0
\(109\) 12.6178 1.20856 0.604282 0.796771i \(-0.293460\pi\)
0.604282 + 0.796771i \(0.293460\pi\)
\(110\) 0 0
\(111\) −5.73975 −0.544793
\(112\) 0 0
\(113\) −11.2859 −1.06169 −0.530845 0.847469i \(-0.678125\pi\)
−0.530845 + 0.847469i \(0.678125\pi\)
\(114\) 0 0
\(115\) 4.14764 0.386770
\(116\) 0 0
\(117\) 0.688892 0.0636881
\(118\) 0 0
\(119\) 4.62222 0.423718
\(120\) 0 0
\(121\) 3.48886 0.317169
\(122\) 0 0
\(123\) −7.05086 −0.635754
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −15.4795 −1.37358 −0.686792 0.726854i \(-0.740981\pi\)
−0.686792 + 0.726854i \(0.740981\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) −2.96989 −0.259480 −0.129740 0.991548i \(-0.541414\pi\)
−0.129740 + 0.991548i \(0.541414\pi\)
\(132\) 0 0
\(133\) 2.75557 0.238938
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −3.65878 −0.312591 −0.156295 0.987710i \(-0.549955\pi\)
−0.156295 + 0.987710i \(0.549955\pi\)
\(138\) 0 0
\(139\) −14.6222 −1.24024 −0.620120 0.784507i \(-0.712916\pi\)
−0.620120 + 0.784507i \(0.712916\pi\)
\(140\) 0 0
\(141\) 10.3827 0.874382
\(142\) 0 0
\(143\) 2.62222 0.219281
\(144\) 0 0
\(145\) 0.969888 0.0805449
\(146\) 0 0
\(147\) −6.52543 −0.538208
\(148\) 0 0
\(149\) −4.56199 −0.373733 −0.186866 0.982385i \(-0.559833\pi\)
−0.186866 + 0.982385i \(0.559833\pi\)
\(150\) 0 0
\(151\) 4.63651 0.377313 0.188657 0.982043i \(-0.439587\pi\)
0.188657 + 0.982043i \(0.439587\pi\)
\(152\) 0 0
\(153\) −6.70964 −0.542442
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) −3.61285 −0.288337 −0.144168 0.989553i \(-0.546051\pi\)
−0.144168 + 0.989553i \(0.546051\pi\)
\(158\) 0 0
\(159\) 12.3827 0.982013
\(160\) 0 0
\(161\) 2.85728 0.225185
\(162\) 0 0
\(163\) −19.9748 −1.56455 −0.782274 0.622935i \(-0.785940\pi\)
−0.782274 + 0.622935i \(0.785940\pi\)
\(164\) 0 0
\(165\) −3.80642 −0.296330
\(166\) 0 0
\(167\) −20.0415 −1.55086 −0.775428 0.631435i \(-0.782466\pi\)
−0.775428 + 0.631435i \(0.782466\pi\)
\(168\) 0 0
\(169\) −12.5254 −0.963494
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 15.2859 1.16217 0.581083 0.813844i \(-0.302629\pi\)
0.581083 + 0.813844i \(0.302629\pi\)
\(174\) 0 0
\(175\) −0.688892 −0.0520754
\(176\) 0 0
\(177\) −4.77631 −0.359010
\(178\) 0 0
\(179\) −6.19358 −0.462930 −0.231465 0.972843i \(-0.574352\pi\)
−0.231465 + 0.972843i \(0.574352\pi\)
\(180\) 0 0
\(181\) −9.05086 −0.672745 −0.336372 0.941729i \(-0.609200\pi\)
−0.336372 + 0.941729i \(0.609200\pi\)
\(182\) 0 0
\(183\) −6.29529 −0.465361
\(184\) 0 0
\(185\) 5.73975 0.421995
\(186\) 0 0
\(187\) −25.5397 −1.86765
\(188\) 0 0
\(189\) −0.688892 −0.0501095
\(190\) 0 0
\(191\) −18.0622 −1.30694 −0.653469 0.756954i \(-0.726687\pi\)
−0.653469 + 0.756954i \(0.726687\pi\)
\(192\) 0 0
\(193\) −15.2257 −1.09597 −0.547985 0.836488i \(-0.684605\pi\)
−0.547985 + 0.836488i \(0.684605\pi\)
\(194\) 0 0
\(195\) −0.688892 −0.0493326
\(196\) 0 0
\(197\) 26.8845 1.91544 0.957720 0.287703i \(-0.0928915\pi\)
0.957720 + 0.287703i \(0.0928915\pi\)
\(198\) 0 0
\(199\) −4.34122 −0.307741 −0.153870 0.988091i \(-0.549174\pi\)
−0.153870 + 0.988091i \(0.549174\pi\)
\(200\) 0 0
\(201\) −0.453829 −0.0320106
\(202\) 0 0
\(203\) 0.668149 0.0468948
\(204\) 0 0
\(205\) 7.05086 0.492453
\(206\) 0 0
\(207\) −4.14764 −0.288281
\(208\) 0 0
\(209\) −15.2257 −1.05318
\(210\) 0 0
\(211\) −9.67307 −0.665922 −0.332961 0.942941i \(-0.608048\pi\)
−0.332961 + 0.942941i \(0.608048\pi\)
\(212\) 0 0
\(213\) −3.45875 −0.236990
\(214\) 0 0
\(215\) 6.00000 0.409197
\(216\) 0 0
\(217\) 0.688892 0.0467650
\(218\) 0 0
\(219\) 13.3526 0.902285
\(220\) 0 0
\(221\) −4.62222 −0.310924
\(222\) 0 0
\(223\) 3.96836 0.265741 0.132870 0.991133i \(-0.457581\pi\)
0.132870 + 0.991133i \(0.457581\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 19.3733 1.28585 0.642927 0.765928i \(-0.277720\pi\)
0.642927 + 0.765928i \(0.277720\pi\)
\(228\) 0 0
\(229\) −7.67307 −0.507051 −0.253525 0.967329i \(-0.581590\pi\)
−0.253525 + 0.967329i \(0.581590\pi\)
\(230\) 0 0
\(231\) −2.62222 −0.172529
\(232\) 0 0
\(233\) −16.6780 −1.09261 −0.546306 0.837586i \(-0.683966\pi\)
−0.546306 + 0.837586i \(0.683966\pi\)
\(234\) 0 0
\(235\) −10.3827 −0.677293
\(236\) 0 0
\(237\) −8.08742 −0.525334
\(238\) 0 0
\(239\) 2.13335 0.137995 0.0689976 0.997617i \(-0.478020\pi\)
0.0689976 + 0.997617i \(0.478020\pi\)
\(240\) 0 0
\(241\) −14.3368 −0.923513 −0.461756 0.887007i \(-0.652781\pi\)
−0.461756 + 0.887007i \(0.652781\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 6.52543 0.416894
\(246\) 0 0
\(247\) −2.75557 −0.175333
\(248\) 0 0
\(249\) 11.7605 0.745291
\(250\) 0 0
\(251\) 0.295286 0.0186383 0.00931916 0.999957i \(-0.497034\pi\)
0.00931916 + 0.999957i \(0.497034\pi\)
\(252\) 0 0
\(253\) −15.7877 −0.992563
\(254\) 0 0
\(255\) 6.70964 0.420174
\(256\) 0 0
\(257\) 27.4336 1.71126 0.855629 0.517589i \(-0.173170\pi\)
0.855629 + 0.517589i \(0.173170\pi\)
\(258\) 0 0
\(259\) 3.95407 0.245694
\(260\) 0 0
\(261\) −0.969888 −0.0600346
\(262\) 0 0
\(263\) 16.7239 1.03124 0.515621 0.856817i \(-0.327561\pi\)
0.515621 + 0.856817i \(0.327561\pi\)
\(264\) 0 0
\(265\) −12.3827 −0.760664
\(266\) 0 0
\(267\) −14.0207 −0.858056
\(268\) 0 0
\(269\) 2.05239 0.125136 0.0625681 0.998041i \(-0.480071\pi\)
0.0625681 + 0.998041i \(0.480071\pi\)
\(270\) 0 0
\(271\) 24.3368 1.47835 0.739177 0.673511i \(-0.235215\pi\)
0.739177 + 0.673511i \(0.235215\pi\)
\(272\) 0 0
\(273\) −0.474572 −0.0287224
\(274\) 0 0
\(275\) 3.80642 0.229536
\(276\) 0 0
\(277\) 8.88247 0.533696 0.266848 0.963739i \(-0.414018\pi\)
0.266848 + 0.963739i \(0.414018\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 31.4608 1.87679 0.938396 0.345562i \(-0.112312\pi\)
0.938396 + 0.345562i \(0.112312\pi\)
\(282\) 0 0
\(283\) −16.2099 −0.963577 −0.481788 0.876288i \(-0.660013\pi\)
−0.481788 + 0.876288i \(0.660013\pi\)
\(284\) 0 0
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) 4.85728 0.286716
\(288\) 0 0
\(289\) 28.0192 1.64819
\(290\) 0 0
\(291\) −0.949145 −0.0556399
\(292\) 0 0
\(293\) 12.4746 0.728772 0.364386 0.931248i \(-0.381279\pi\)
0.364386 + 0.931248i \(0.381279\pi\)
\(294\) 0 0
\(295\) 4.77631 0.278088
\(296\) 0 0
\(297\) 3.80642 0.220871
\(298\) 0 0
\(299\) −2.85728 −0.165241
\(300\) 0 0
\(301\) 4.13335 0.238243
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.29529 0.360467
\(306\) 0 0
\(307\) 14.4035 0.822048 0.411024 0.911624i \(-0.365171\pi\)
0.411024 + 0.911624i \(0.365171\pi\)
\(308\) 0 0
\(309\) 5.87310 0.334109
\(310\) 0 0
\(311\) 6.77631 0.384249 0.192125 0.981371i \(-0.438462\pi\)
0.192125 + 0.981371i \(0.438462\pi\)
\(312\) 0 0
\(313\) 25.8829 1.46299 0.731495 0.681847i \(-0.238823\pi\)
0.731495 + 0.681847i \(0.238823\pi\)
\(314\) 0 0
\(315\) 0.688892 0.0388147
\(316\) 0 0
\(317\) −25.5353 −1.43420 −0.717102 0.696968i \(-0.754532\pi\)
−0.717102 + 0.696968i \(0.754532\pi\)
\(318\) 0 0
\(319\) −3.69181 −0.206701
\(320\) 0 0
\(321\) −5.39207 −0.300956
\(322\) 0 0
\(323\) 26.8385 1.49334
\(324\) 0 0
\(325\) 0.688892 0.0382129
\(326\) 0 0
\(327\) 12.6178 0.697764
\(328\) 0 0
\(329\) −7.15257 −0.394334
\(330\) 0 0
\(331\) −20.7699 −1.14161 −0.570807 0.821084i \(-0.693370\pi\)
−0.570807 + 0.821084i \(0.693370\pi\)
\(332\) 0 0
\(333\) −5.73975 −0.314536
\(334\) 0 0
\(335\) 0.453829 0.0247953
\(336\) 0 0
\(337\) −2.98418 −0.162559 −0.0812793 0.996691i \(-0.525901\pi\)
−0.0812793 + 0.996691i \(0.525901\pi\)
\(338\) 0 0
\(339\) −11.2859 −0.612967
\(340\) 0 0
\(341\) −3.80642 −0.206129
\(342\) 0 0
\(343\) 9.31756 0.503101
\(344\) 0 0
\(345\) 4.14764 0.223302
\(346\) 0 0
\(347\) −13.0825 −0.702305 −0.351153 0.936318i \(-0.614210\pi\)
−0.351153 + 0.936318i \(0.614210\pi\)
\(348\) 0 0
\(349\) 10.8113 0.578718 0.289359 0.957221i \(-0.406558\pi\)
0.289359 + 0.957221i \(0.406558\pi\)
\(350\) 0 0
\(351\) 0.688892 0.0367703
\(352\) 0 0
\(353\) 27.7418 1.47654 0.738272 0.674503i \(-0.235642\pi\)
0.738272 + 0.674503i \(0.235642\pi\)
\(354\) 0 0
\(355\) 3.45875 0.183571
\(356\) 0 0
\(357\) 4.62222 0.244634
\(358\) 0 0
\(359\) 2.11261 0.111499 0.0557496 0.998445i \(-0.482245\pi\)
0.0557496 + 0.998445i \(0.482245\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 3.48886 0.183118
\(364\) 0 0
\(365\) −13.3526 −0.698907
\(366\) 0 0
\(367\) −34.1847 −1.78443 −0.892213 0.451615i \(-0.850848\pi\)
−0.892213 + 0.451615i \(0.850848\pi\)
\(368\) 0 0
\(369\) −7.05086 −0.367053
\(370\) 0 0
\(371\) −8.53035 −0.442874
\(372\) 0 0
\(373\) −0.797056 −0.0412700 −0.0206350 0.999787i \(-0.506569\pi\)
−0.0206350 + 0.999787i \(0.506569\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −0.668149 −0.0344114
\(378\) 0 0
\(379\) −14.6351 −0.751756 −0.375878 0.926669i \(-0.622659\pi\)
−0.375878 + 0.926669i \(0.622659\pi\)
\(380\) 0 0
\(381\) −15.4795 −0.793039
\(382\) 0 0
\(383\) −18.0370 −0.921650 −0.460825 0.887491i \(-0.652446\pi\)
−0.460825 + 0.887491i \(0.652446\pi\)
\(384\) 0 0
\(385\) 2.62222 0.133640
\(386\) 0 0
\(387\) −6.00000 −0.304997
\(388\) 0 0
\(389\) 36.2558 1.83824 0.919121 0.393975i \(-0.128900\pi\)
0.919121 + 0.393975i \(0.128900\pi\)
\(390\) 0 0
\(391\) 27.8292 1.40738
\(392\) 0 0
\(393\) −2.96989 −0.149811
\(394\) 0 0
\(395\) 8.08742 0.406922
\(396\) 0 0
\(397\) 9.70471 0.487066 0.243533 0.969893i \(-0.421694\pi\)
0.243533 + 0.969893i \(0.421694\pi\)
\(398\) 0 0
\(399\) 2.75557 0.137951
\(400\) 0 0
\(401\) 21.7540 1.08634 0.543172 0.839621i \(-0.317223\pi\)
0.543172 + 0.839621i \(0.317223\pi\)
\(402\) 0 0
\(403\) −0.688892 −0.0343162
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −21.8479 −1.08296
\(408\) 0 0
\(409\) −9.90813 −0.489926 −0.244963 0.969532i \(-0.578776\pi\)
−0.244963 + 0.969532i \(0.578776\pi\)
\(410\) 0 0
\(411\) −3.65878 −0.180474
\(412\) 0 0
\(413\) 3.29036 0.161908
\(414\) 0 0
\(415\) −11.7605 −0.577300
\(416\) 0 0
\(417\) −14.6222 −0.716053
\(418\) 0 0
\(419\) −17.2237 −0.841432 −0.420716 0.907192i \(-0.638221\pi\)
−0.420716 + 0.907192i \(0.638221\pi\)
\(420\) 0 0
\(421\) 5.43356 0.264816 0.132408 0.991195i \(-0.457729\pi\)
0.132408 + 0.991195i \(0.457729\pi\)
\(422\) 0 0
\(423\) 10.3827 0.504824
\(424\) 0 0
\(425\) −6.70964 −0.325465
\(426\) 0 0
\(427\) 4.33677 0.209871
\(428\) 0 0
\(429\) 2.62222 0.126602
\(430\) 0 0
\(431\) 7.16346 0.345052 0.172526 0.985005i \(-0.444807\pi\)
0.172526 + 0.985005i \(0.444807\pi\)
\(432\) 0 0
\(433\) 26.8637 1.29099 0.645494 0.763765i \(-0.276651\pi\)
0.645494 + 0.763765i \(0.276651\pi\)
\(434\) 0 0
\(435\) 0.969888 0.0465026
\(436\) 0 0
\(437\) 16.5906 0.793635
\(438\) 0 0
\(439\) 3.34614 0.159703 0.0798513 0.996807i \(-0.474555\pi\)
0.0798513 + 0.996807i \(0.474555\pi\)
\(440\) 0 0
\(441\) −6.52543 −0.310735
\(442\) 0 0
\(443\) −11.3733 −0.540364 −0.270182 0.962809i \(-0.587084\pi\)
−0.270182 + 0.962809i \(0.587084\pi\)
\(444\) 0 0
\(445\) 14.0207 0.664647
\(446\) 0 0
\(447\) −4.56199 −0.215775
\(448\) 0 0
\(449\) 20.1225 0.949637 0.474819 0.880084i \(-0.342514\pi\)
0.474819 + 0.880084i \(0.342514\pi\)
\(450\) 0 0
\(451\) −26.8385 −1.26378
\(452\) 0 0
\(453\) 4.63651 0.217842
\(454\) 0 0
\(455\) 0.474572 0.0222483
\(456\) 0 0
\(457\) 2.42219 0.113305 0.0566525 0.998394i \(-0.481957\pi\)
0.0566525 + 0.998394i \(0.481957\pi\)
\(458\) 0 0
\(459\) −6.70964 −0.313179
\(460\) 0 0
\(461\) −3.41726 −0.159158 −0.0795789 0.996829i \(-0.525358\pi\)
−0.0795789 + 0.996829i \(0.525358\pi\)
\(462\) 0 0
\(463\) −6.56199 −0.304962 −0.152481 0.988306i \(-0.548726\pi\)
−0.152481 + 0.988306i \(0.548726\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) −1.52543 −0.0705884 −0.0352942 0.999377i \(-0.511237\pi\)
−0.0352942 + 0.999377i \(0.511237\pi\)
\(468\) 0 0
\(469\) 0.312639 0.0144363
\(470\) 0 0
\(471\) −3.61285 −0.166471
\(472\) 0 0
\(473\) −22.8385 −1.05012
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 12.3827 0.566965
\(478\) 0 0
\(479\) 28.4494 1.29989 0.649943 0.759983i \(-0.274793\pi\)
0.649943 + 0.759983i \(0.274793\pi\)
\(480\) 0 0
\(481\) −3.95407 −0.180290
\(482\) 0 0
\(483\) 2.85728 0.130011
\(484\) 0 0
\(485\) 0.949145 0.0430984
\(486\) 0 0
\(487\) −31.5714 −1.43063 −0.715317 0.698800i \(-0.753718\pi\)
−0.715317 + 0.698800i \(0.753718\pi\)
\(488\) 0 0
\(489\) −19.9748 −0.903292
\(490\) 0 0
\(491\) 1.40636 0.0634683 0.0317342 0.999496i \(-0.489897\pi\)
0.0317342 + 0.999496i \(0.489897\pi\)
\(492\) 0 0
\(493\) 6.50760 0.293087
\(494\) 0 0
\(495\) −3.80642 −0.171086
\(496\) 0 0
\(497\) 2.38271 0.106879
\(498\) 0 0
\(499\) −31.6128 −1.41519 −0.707593 0.706621i \(-0.750219\pi\)
−0.707593 + 0.706621i \(0.750219\pi\)
\(500\) 0 0
\(501\) −20.0415 −0.895388
\(502\) 0 0
\(503\) 29.9956 1.33744 0.668718 0.743516i \(-0.266843\pi\)
0.668718 + 0.743516i \(0.266843\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −12.5254 −0.556274
\(508\) 0 0
\(509\) −5.76694 −0.255615 −0.127808 0.991799i \(-0.540794\pi\)
−0.127808 + 0.991799i \(0.540794\pi\)
\(510\) 0 0
\(511\) −9.19850 −0.406918
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) −5.87310 −0.258800
\(516\) 0 0
\(517\) 39.5210 1.73813
\(518\) 0 0
\(519\) 15.2859 0.670977
\(520\) 0 0
\(521\) 29.1526 1.27720 0.638599 0.769540i \(-0.279514\pi\)
0.638599 + 0.769540i \(0.279514\pi\)
\(522\) 0 0
\(523\) 19.1842 0.838867 0.419433 0.907786i \(-0.362229\pi\)
0.419433 + 0.907786i \(0.362229\pi\)
\(524\) 0 0
\(525\) −0.688892 −0.0300657
\(526\) 0 0
\(527\) 6.70964 0.292276
\(528\) 0 0
\(529\) −5.79706 −0.252046
\(530\) 0 0
\(531\) −4.77631 −0.207274
\(532\) 0 0
\(533\) −4.85728 −0.210392
\(534\) 0 0
\(535\) 5.39207 0.233120
\(536\) 0 0
\(537\) −6.19358 −0.267273
\(538\) 0 0
\(539\) −24.8385 −1.06987
\(540\) 0 0
\(541\) −36.7511 −1.58005 −0.790027 0.613072i \(-0.789934\pi\)
−0.790027 + 0.613072i \(0.789934\pi\)
\(542\) 0 0
\(543\) −9.05086 −0.388409
\(544\) 0 0
\(545\) −12.6178 −0.540486
\(546\) 0 0
\(547\) −31.7081 −1.35574 −0.677870 0.735181i \(-0.737097\pi\)
−0.677870 + 0.735181i \(0.737097\pi\)
\(548\) 0 0
\(549\) −6.29529 −0.268676
\(550\) 0 0
\(551\) 3.87955 0.165275
\(552\) 0 0
\(553\) 5.57136 0.236918
\(554\) 0 0
\(555\) 5.73975 0.243639
\(556\) 0 0
\(557\) 33.0781 1.40156 0.700781 0.713376i \(-0.252835\pi\)
0.700781 + 0.713376i \(0.252835\pi\)
\(558\) 0 0
\(559\) −4.13335 −0.174822
\(560\) 0 0
\(561\) −25.5397 −1.07829
\(562\) 0 0
\(563\) −27.4019 −1.15485 −0.577427 0.816443i \(-0.695943\pi\)
−0.577427 + 0.816443i \(0.695943\pi\)
\(564\) 0 0
\(565\) 11.2859 0.474802
\(566\) 0 0
\(567\) −0.688892 −0.0289308
\(568\) 0 0
\(569\) 37.2652 1.56224 0.781119 0.624383i \(-0.214649\pi\)
0.781119 + 0.624383i \(0.214649\pi\)
\(570\) 0 0
\(571\) 8.99063 0.376246 0.188123 0.982145i \(-0.439760\pi\)
0.188123 + 0.982145i \(0.439760\pi\)
\(572\) 0 0
\(573\) −18.0622 −0.754561
\(574\) 0 0
\(575\) −4.14764 −0.172969
\(576\) 0 0
\(577\) −5.01921 −0.208953 −0.104476 0.994527i \(-0.533317\pi\)
−0.104476 + 0.994527i \(0.533317\pi\)
\(578\) 0 0
\(579\) −15.2257 −0.632758
\(580\) 0 0
\(581\) −8.10171 −0.336116
\(582\) 0 0
\(583\) 47.1338 1.95208
\(584\) 0 0
\(585\) −0.688892 −0.0284822
\(586\) 0 0
\(587\) −39.8292 −1.64393 −0.821963 0.569541i \(-0.807121\pi\)
−0.821963 + 0.569541i \(0.807121\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 26.8845 1.10588
\(592\) 0 0
\(593\) 9.74620 0.400228 0.200114 0.979773i \(-0.435869\pi\)
0.200114 + 0.979773i \(0.435869\pi\)
\(594\) 0 0
\(595\) −4.62222 −0.189492
\(596\) 0 0
\(597\) −4.34122 −0.177674
\(598\) 0 0
\(599\) 6.98862 0.285547 0.142774 0.989755i \(-0.454398\pi\)
0.142774 + 0.989755i \(0.454398\pi\)
\(600\) 0 0
\(601\) 20.8256 0.849495 0.424748 0.905312i \(-0.360363\pi\)
0.424748 + 0.905312i \(0.360363\pi\)
\(602\) 0 0
\(603\) −0.453829 −0.0184813
\(604\) 0 0
\(605\) −3.48886 −0.141842
\(606\) 0 0
\(607\) 37.3022 1.51405 0.757025 0.653386i \(-0.226652\pi\)
0.757025 + 0.653386i \(0.226652\pi\)
\(608\) 0 0
\(609\) 0.668149 0.0270747
\(610\) 0 0
\(611\) 7.15257 0.289362
\(612\) 0 0
\(613\) 19.9017 0.803821 0.401911 0.915679i \(-0.368346\pi\)
0.401911 + 0.915679i \(0.368346\pi\)
\(614\) 0 0
\(615\) 7.05086 0.284318
\(616\) 0 0
\(617\) −34.7940 −1.40075 −0.700377 0.713773i \(-0.746985\pi\)
−0.700377 + 0.713773i \(0.746985\pi\)
\(618\) 0 0
\(619\) 11.2587 0.452526 0.226263 0.974066i \(-0.427349\pi\)
0.226263 + 0.974066i \(0.427349\pi\)
\(620\) 0 0
\(621\) −4.14764 −0.166439
\(622\) 0 0
\(623\) 9.65878 0.386971
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −15.2257 −0.608056
\(628\) 0 0
\(629\) 38.5116 1.53556
\(630\) 0 0
\(631\) 2.75557 0.109697 0.0548487 0.998495i \(-0.482532\pi\)
0.0548487 + 0.998495i \(0.482532\pi\)
\(632\) 0 0
\(633\) −9.67307 −0.384470
\(634\) 0 0
\(635\) 15.4795 0.614285
\(636\) 0 0
\(637\) −4.49532 −0.178111
\(638\) 0 0
\(639\) −3.45875 −0.136826
\(640\) 0 0
\(641\) −40.6528 −1.60569 −0.802845 0.596188i \(-0.796681\pi\)
−0.802845 + 0.596188i \(0.796681\pi\)
\(642\) 0 0
\(643\) 19.1842 0.756551 0.378276 0.925693i \(-0.376517\pi\)
0.378276 + 0.925693i \(0.376517\pi\)
\(644\) 0 0
\(645\) 6.00000 0.236250
\(646\) 0 0
\(647\) −23.5210 −0.924705 −0.462353 0.886696i \(-0.652995\pi\)
−0.462353 + 0.886696i \(0.652995\pi\)
\(648\) 0 0
\(649\) −18.1807 −0.713654
\(650\) 0 0
\(651\) 0.688892 0.0269998
\(652\) 0 0
\(653\) 42.0973 1.64739 0.823697 0.567031i \(-0.191908\pi\)
0.823697 + 0.567031i \(0.191908\pi\)
\(654\) 0 0
\(655\) 2.96989 0.116043
\(656\) 0 0
\(657\) 13.3526 0.520934
\(658\) 0 0
\(659\) 21.7067 0.845574 0.422787 0.906229i \(-0.361052\pi\)
0.422787 + 0.906229i \(0.361052\pi\)
\(660\) 0 0
\(661\) 22.1245 0.860542 0.430271 0.902700i \(-0.358418\pi\)
0.430271 + 0.902700i \(0.358418\pi\)
\(662\) 0 0
\(663\) −4.62222 −0.179512
\(664\) 0 0
\(665\) −2.75557 −0.106856
\(666\) 0 0
\(667\) 4.02275 0.155762
\(668\) 0 0
\(669\) 3.96836 0.153426
\(670\) 0 0
\(671\) −23.9625 −0.925063
\(672\) 0 0
\(673\) 34.8450 1.34318 0.671588 0.740925i \(-0.265613\pi\)
0.671588 + 0.740925i \(0.265613\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −8.94470 −0.343773 −0.171886 0.985117i \(-0.554986\pi\)
−0.171886 + 0.985117i \(0.554986\pi\)
\(678\) 0 0
\(679\) 0.653858 0.0250928
\(680\) 0 0
\(681\) 19.3733 0.742388
\(682\) 0 0
\(683\) 25.7703 0.986074 0.493037 0.870008i \(-0.335887\pi\)
0.493037 + 0.870008i \(0.335887\pi\)
\(684\) 0 0
\(685\) 3.65878 0.139795
\(686\) 0 0
\(687\) −7.67307 −0.292746
\(688\) 0 0
\(689\) 8.53035 0.324980
\(690\) 0 0
\(691\) −30.9175 −1.17616 −0.588079 0.808804i \(-0.700115\pi\)
−0.588079 + 0.808804i \(0.700115\pi\)
\(692\) 0 0
\(693\) −2.62222 −0.0996097
\(694\) 0 0
\(695\) 14.6222 0.554652
\(696\) 0 0
\(697\) 47.3087 1.79194
\(698\) 0 0
\(699\) −16.6780 −0.630820
\(700\) 0 0
\(701\) −3.45091 −0.130339 −0.0651696 0.997874i \(-0.520759\pi\)
−0.0651696 + 0.997874i \(0.520759\pi\)
\(702\) 0 0
\(703\) 22.9590 0.865915
\(704\) 0 0
\(705\) −10.3827 −0.391035
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −27.7146 −1.04084 −0.520421 0.853910i \(-0.674225\pi\)
−0.520421 + 0.853910i \(0.674225\pi\)
\(710\) 0 0
\(711\) −8.08742 −0.303302
\(712\) 0 0
\(713\) 4.14764 0.155330
\(714\) 0 0
\(715\) −2.62222 −0.0980653
\(716\) 0 0
\(717\) 2.13335 0.0796715
\(718\) 0 0
\(719\) 36.0098 1.34294 0.671470 0.741031i \(-0.265663\pi\)
0.671470 + 0.741031i \(0.265663\pi\)
\(720\) 0 0
\(721\) −4.04593 −0.150678
\(722\) 0 0
\(723\) −14.3368 −0.533190
\(724\) 0 0
\(725\) −0.969888 −0.0360208
\(726\) 0 0
\(727\) −43.7625 −1.62306 −0.811531 0.584310i \(-0.801365\pi\)
−0.811531 + 0.584310i \(0.801365\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 40.2578 1.48899
\(732\) 0 0
\(733\) 19.5111 0.720660 0.360330 0.932825i \(-0.382664\pi\)
0.360330 + 0.932825i \(0.382664\pi\)
\(734\) 0 0
\(735\) 6.52543 0.240694
\(736\) 0 0
\(737\) −1.72746 −0.0636320
\(738\) 0 0
\(739\) −42.0558 −1.54705 −0.773523 0.633768i \(-0.781507\pi\)
−0.773523 + 0.633768i \(0.781507\pi\)
\(740\) 0 0
\(741\) −2.75557 −0.101228
\(742\) 0 0
\(743\) 34.4385 1.26343 0.631713 0.775203i \(-0.282352\pi\)
0.631713 + 0.775203i \(0.282352\pi\)
\(744\) 0 0
\(745\) 4.56199 0.167138
\(746\) 0 0
\(747\) 11.7605 0.430294
\(748\) 0 0
\(749\) 3.71456 0.135727
\(750\) 0 0
\(751\) 1.29481 0.0472483 0.0236241 0.999721i \(-0.492480\pi\)
0.0236241 + 0.999721i \(0.492480\pi\)
\(752\) 0 0
\(753\) 0.295286 0.0107608
\(754\) 0 0
\(755\) −4.63651 −0.168740
\(756\) 0 0
\(757\) 16.5970 0.603229 0.301615 0.953430i \(-0.402474\pi\)
0.301615 + 0.953430i \(0.402474\pi\)
\(758\) 0 0
\(759\) −15.7877 −0.573057
\(760\) 0 0
\(761\) 1.44002 0.0522005 0.0261003 0.999659i \(-0.491691\pi\)
0.0261003 + 0.999659i \(0.491691\pi\)
\(762\) 0 0
\(763\) −8.69228 −0.314682
\(764\) 0 0
\(765\) 6.70964 0.242587
\(766\) 0 0
\(767\) −3.29036 −0.118808
\(768\) 0 0
\(769\) 13.1887 0.475595 0.237798 0.971315i \(-0.423575\pi\)
0.237798 + 0.971315i \(0.423575\pi\)
\(770\) 0 0
\(771\) 27.4336 0.987996
\(772\) 0 0
\(773\) −46.4055 −1.66909 −0.834544 0.550941i \(-0.814269\pi\)
−0.834544 + 0.550941i \(0.814269\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) 3.95407 0.141851
\(778\) 0 0
\(779\) 28.2034 1.01049
\(780\) 0 0
\(781\) −13.1655 −0.471098
\(782\) 0 0
\(783\) −0.969888 −0.0346610
\(784\) 0 0
\(785\) 3.61285 0.128948
\(786\) 0 0
\(787\) 45.2672 1.61360 0.806800 0.590824i \(-0.201197\pi\)
0.806800 + 0.590824i \(0.201197\pi\)
\(788\) 0 0
\(789\) 16.7239 0.595388
\(790\) 0 0
\(791\) 7.77478 0.276439
\(792\) 0 0
\(793\) −4.33677 −0.154003
\(794\) 0 0
\(795\) −12.3827 −0.439169
\(796\) 0 0
\(797\) −20.3956 −0.722450 −0.361225 0.932479i \(-0.617641\pi\)
−0.361225 + 0.932479i \(0.617641\pi\)
\(798\) 0 0
\(799\) −69.6642 −2.46454
\(800\) 0 0
\(801\) −14.0207 −0.495399
\(802\) 0 0
\(803\) 50.8256 1.79360
\(804\) 0 0
\(805\) −2.85728 −0.100706
\(806\) 0 0
\(807\) 2.05239 0.0722474
\(808\) 0 0
\(809\) −38.4780 −1.35281 −0.676407 0.736528i \(-0.736464\pi\)
−0.676407 + 0.736528i \(0.736464\pi\)
\(810\) 0 0
\(811\) −11.0094 −0.386591 −0.193296 0.981141i \(-0.561918\pi\)
−0.193296 + 0.981141i \(0.561918\pi\)
\(812\) 0 0
\(813\) 24.3368 0.853528
\(814\) 0 0
\(815\) 19.9748 0.699687
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 0 0
\(819\) −0.474572 −0.0165829
\(820\) 0 0
\(821\) −52.2973 −1.82519 −0.912594 0.408867i \(-0.865924\pi\)
−0.912594 + 0.408867i \(0.865924\pi\)
\(822\) 0 0
\(823\) −52.3595 −1.82514 −0.912569 0.408922i \(-0.865905\pi\)
−0.912569 + 0.408922i \(0.865905\pi\)
\(824\) 0 0
\(825\) 3.80642 0.132523
\(826\) 0 0
\(827\) −30.9576 −1.07650 −0.538251 0.842785i \(-0.680915\pi\)
−0.538251 + 0.842785i \(0.680915\pi\)
\(828\) 0 0
\(829\) −36.6766 −1.27383 −0.636916 0.770933i \(-0.719790\pi\)
−0.636916 + 0.770933i \(0.719790\pi\)
\(830\) 0 0
\(831\) 8.88247 0.308129
\(832\) 0 0
\(833\) 43.7832 1.51700
\(834\) 0 0
\(835\) 20.0415 0.693564
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) 35.7067 1.23273 0.616366 0.787459i \(-0.288604\pi\)
0.616366 + 0.787459i \(0.288604\pi\)
\(840\) 0 0
\(841\) −28.0593 −0.967563
\(842\) 0 0
\(843\) 31.4608 1.08357
\(844\) 0 0
\(845\) 12.5254 0.430888
\(846\) 0 0
\(847\) −2.40345 −0.0825835
\(848\) 0 0
\(849\) −16.2099 −0.556321
\(850\) 0 0
\(851\) 23.8064 0.816074
\(852\) 0 0
\(853\) 43.2386 1.48046 0.740231 0.672353i \(-0.234716\pi\)
0.740231 + 0.672353i \(0.234716\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) 45.6543 1.55952 0.779761 0.626077i \(-0.215340\pi\)
0.779761 + 0.626077i \(0.215340\pi\)
\(858\) 0 0
\(859\) 5.12399 0.174828 0.0874141 0.996172i \(-0.472140\pi\)
0.0874141 + 0.996172i \(0.472140\pi\)
\(860\) 0 0
\(861\) 4.85728 0.165536
\(862\) 0 0
\(863\) −26.6923 −0.908616 −0.454308 0.890845i \(-0.650113\pi\)
−0.454308 + 0.890845i \(0.650113\pi\)
\(864\) 0 0
\(865\) −15.2859 −0.519737
\(866\) 0 0
\(867\) 28.0192 0.951582
\(868\) 0 0
\(869\) −30.7841 −1.04428
\(870\) 0 0
\(871\) −0.312639 −0.0105934
\(872\) 0 0
\(873\) −0.949145 −0.0321237
\(874\) 0 0
\(875\) 0.688892 0.0232888
\(876\) 0 0
\(877\) −15.2672 −0.515536 −0.257768 0.966207i \(-0.582987\pi\)
−0.257768 + 0.966207i \(0.582987\pi\)
\(878\) 0 0
\(879\) 12.4746 0.420757
\(880\) 0 0
\(881\) −23.6434 −0.796568 −0.398284 0.917262i \(-0.630394\pi\)
−0.398284 + 0.917262i \(0.630394\pi\)
\(882\) 0 0
\(883\) 4.26364 0.143483 0.0717415 0.997423i \(-0.477144\pi\)
0.0717415 + 0.997423i \(0.477144\pi\)
\(884\) 0 0
\(885\) 4.77631 0.160554
\(886\) 0 0
\(887\) 21.0464 0.706669 0.353335 0.935497i \(-0.385048\pi\)
0.353335 + 0.935497i \(0.385048\pi\)
\(888\) 0 0
\(889\) 10.6637 0.357649
\(890\) 0 0
\(891\) 3.80642 0.127520
\(892\) 0 0
\(893\) −41.5308 −1.38978
\(894\) 0 0
\(895\) 6.19358 0.207028
\(896\) 0 0
\(897\) −2.85728 −0.0954018
\(898\) 0 0
\(899\) 0.969888 0.0323476
\(900\) 0 0
\(901\) −83.0835 −2.76791
\(902\) 0 0
\(903\) 4.13335 0.137549
\(904\) 0 0
\(905\) 9.05086 0.300861
\(906\) 0 0
\(907\) 9.75848 0.324025 0.162013 0.986789i \(-0.448201\pi\)
0.162013 + 0.986789i \(0.448201\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.9269 0.395155 0.197577 0.980287i \(-0.436693\pi\)
0.197577 + 0.980287i \(0.436693\pi\)
\(912\) 0 0
\(913\) 44.7654 1.48152
\(914\) 0 0
\(915\) 6.29529 0.208116
\(916\) 0 0
\(917\) 2.04593 0.0675627
\(918\) 0 0
\(919\) 14.0731 0.464230 0.232115 0.972688i \(-0.425435\pi\)
0.232115 + 0.972688i \(0.425435\pi\)
\(920\) 0 0
\(921\) 14.4035 0.474610
\(922\) 0 0
\(923\) −2.38271 −0.0784277
\(924\) 0 0
\(925\) −5.73975 −0.188722
\(926\) 0 0
\(927\) 5.87310 0.192898
\(928\) 0 0
\(929\) 25.0114 0.820597 0.410298 0.911951i \(-0.365425\pi\)
0.410298 + 0.911951i \(0.365425\pi\)
\(930\) 0 0
\(931\) 26.1017 0.855449
\(932\) 0 0
\(933\) 6.77631 0.221847
\(934\) 0 0
\(935\) 25.5397 0.835238
\(936\) 0 0
\(937\) 20.4987 0.669664 0.334832 0.942278i \(-0.391321\pi\)
0.334832 + 0.942278i \(0.391321\pi\)
\(938\) 0 0
\(939\) 25.8829 0.844658
\(940\) 0 0
\(941\) 9.59210 0.312694 0.156347 0.987702i \(-0.450028\pi\)
0.156347 + 0.987702i \(0.450028\pi\)
\(942\) 0 0
\(943\) 29.2444 0.952330
\(944\) 0 0
\(945\) 0.688892 0.0224097
\(946\) 0 0
\(947\) 10.8113 0.351322 0.175661 0.984451i \(-0.443794\pi\)
0.175661 + 0.984451i \(0.443794\pi\)
\(948\) 0 0
\(949\) 9.19850 0.298596
\(950\) 0 0
\(951\) −25.5353 −0.828038
\(952\) 0 0
\(953\) −1.26178 −0.0408732 −0.0204366 0.999791i \(-0.506506\pi\)
−0.0204366 + 0.999791i \(0.506506\pi\)
\(954\) 0 0
\(955\) 18.0622 0.584480
\(956\) 0 0
\(957\) −3.69181 −0.119339
\(958\) 0 0
\(959\) 2.52051 0.0813914
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −5.39207 −0.173757
\(964\) 0 0
\(965\) 15.2257 0.490132
\(966\) 0 0
\(967\) −58.8899 −1.89377 −0.946885 0.321571i \(-0.895789\pi\)
−0.946885 + 0.321571i \(0.895789\pi\)
\(968\) 0 0
\(969\) 26.8385 0.862178
\(970\) 0 0
\(971\) −30.5797 −0.981348 −0.490674 0.871343i \(-0.663249\pi\)
−0.490674 + 0.871343i \(0.663249\pi\)
\(972\) 0 0
\(973\) 10.0731 0.322930
\(974\) 0 0
\(975\) 0.688892 0.0220622
\(976\) 0 0
\(977\) −12.8385 −0.410741 −0.205371 0.978684i \(-0.565840\pi\)
−0.205371 + 0.978684i \(0.565840\pi\)
\(978\) 0 0
\(979\) −53.3689 −1.70568
\(980\) 0 0
\(981\) 12.6178 0.402854
\(982\) 0 0
\(983\) 0.0918659 0.00293007 0.00146503 0.999999i \(-0.499534\pi\)
0.00146503 + 0.999999i \(0.499534\pi\)
\(984\) 0 0
\(985\) −26.8845 −0.856611
\(986\) 0 0
\(987\) −7.15257 −0.227669
\(988\) 0 0
\(989\) 24.8859 0.791324
\(990\) 0 0
\(991\) −30.4385 −0.966910 −0.483455 0.875369i \(-0.660618\pi\)
−0.483455 + 0.875369i \(0.660618\pi\)
\(992\) 0 0
\(993\) −20.7699 −0.659112
\(994\) 0 0
\(995\) 4.34122 0.137626
\(996\) 0 0
\(997\) −37.2672 −1.18026 −0.590132 0.807307i \(-0.700924\pi\)
−0.590132 + 0.807307i \(0.700924\pi\)
\(998\) 0 0
\(999\) −5.73975 −0.181598
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3720.2.a.o.1.2 3
4.3 odd 2 7440.2.a.bo.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3720.2.a.o.1.2 3 1.1 even 1 trivial
7440.2.a.bo.1.2 3 4.3 odd 2