Properties

Label 3720.2.a.i.1.2
Level $3720$
Weight $2$
Character 3720.1
Self dual yes
Analytic conductor $29.704$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3720,2,Mod(1,3720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3720.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3720.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7043495519\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 3720.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} +3.23607 q^{7} +1.00000 q^{9} +1.23607 q^{13} +1.00000 q^{15} -4.47214 q^{17} -2.47214 q^{19} -3.23607 q^{21} -4.00000 q^{23} +1.00000 q^{25} -1.00000 q^{27} -2.76393 q^{29} -1.00000 q^{31} -3.23607 q^{35} +9.23607 q^{37} -1.23607 q^{39} -6.00000 q^{41} -2.47214 q^{43} -1.00000 q^{45} -8.94427 q^{47} +3.47214 q^{49} +4.47214 q^{51} -0.472136 q^{53} +2.47214 q^{57} +11.2361 q^{59} -3.52786 q^{61} +3.23607 q^{63} -1.23607 q^{65} -9.70820 q^{67} +4.00000 q^{69} -4.76393 q^{71} -10.1803 q^{73} -1.00000 q^{75} +8.94427 q^{79} +1.00000 q^{81} +12.9443 q^{83} +4.47214 q^{85} +2.76393 q^{87} -2.76393 q^{89} +4.00000 q^{91} +1.00000 q^{93} +2.47214 q^{95} +0.472136 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} + 2 q^{7} + 2 q^{9} - 2 q^{13} + 2 q^{15} + 4 q^{19} - 2 q^{21} - 8 q^{23} + 2 q^{25} - 2 q^{27} - 10 q^{29} - 2 q^{31} - 2 q^{35} + 14 q^{37} + 2 q^{39} - 12 q^{41} + 4 q^{43} - 2 q^{45}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.23607 1.22312 0.611559 0.791199i \(-0.290543\pi\)
0.611559 + 0.791199i \(0.290543\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 1.23607 0.342824 0.171412 0.985199i \(-0.445167\pi\)
0.171412 + 0.985199i \(0.445167\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −4.47214 −1.08465 −0.542326 0.840168i \(-0.682456\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(18\) 0 0
\(19\) −2.47214 −0.567147 −0.283573 0.958951i \(-0.591520\pi\)
−0.283573 + 0.958951i \(0.591520\pi\)
\(20\) 0 0
\(21\) −3.23607 −0.706168
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.76393 −0.513249 −0.256625 0.966511i \(-0.582610\pi\)
−0.256625 + 0.966511i \(0.582610\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.23607 −0.546995
\(36\) 0 0
\(37\) 9.23607 1.51840 0.759200 0.650857i \(-0.225590\pi\)
0.759200 + 0.650857i \(0.225590\pi\)
\(38\) 0 0
\(39\) −1.23607 −0.197929
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −2.47214 −0.376997 −0.188499 0.982073i \(-0.560362\pi\)
−0.188499 + 0.982073i \(0.560362\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −8.94427 −1.30466 −0.652328 0.757937i \(-0.726208\pi\)
−0.652328 + 0.757937i \(0.726208\pi\)
\(48\) 0 0
\(49\) 3.47214 0.496019
\(50\) 0 0
\(51\) 4.47214 0.626224
\(52\) 0 0
\(53\) −0.472136 −0.0648529 −0.0324264 0.999474i \(-0.510323\pi\)
−0.0324264 + 0.999474i \(0.510323\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.47214 0.327442
\(58\) 0 0
\(59\) 11.2361 1.46281 0.731406 0.681943i \(-0.238865\pi\)
0.731406 + 0.681943i \(0.238865\pi\)
\(60\) 0 0
\(61\) −3.52786 −0.451697 −0.225848 0.974162i \(-0.572515\pi\)
−0.225848 + 0.974162i \(0.572515\pi\)
\(62\) 0 0
\(63\) 3.23607 0.407706
\(64\) 0 0
\(65\) −1.23607 −0.153315
\(66\) 0 0
\(67\) −9.70820 −1.18605 −0.593023 0.805186i \(-0.702066\pi\)
−0.593023 + 0.805186i \(0.702066\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −4.76393 −0.565375 −0.282687 0.959212i \(-0.591226\pi\)
−0.282687 + 0.959212i \(0.591226\pi\)
\(72\) 0 0
\(73\) −10.1803 −1.19152 −0.595759 0.803163i \(-0.703149\pi\)
−0.595759 + 0.803163i \(0.703149\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.94427 1.00631 0.503155 0.864196i \(-0.332173\pi\)
0.503155 + 0.864196i \(0.332173\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.9443 1.42082 0.710409 0.703789i \(-0.248510\pi\)
0.710409 + 0.703789i \(0.248510\pi\)
\(84\) 0 0
\(85\) 4.47214 0.485071
\(86\) 0 0
\(87\) 2.76393 0.296325
\(88\) 0 0
\(89\) −2.76393 −0.292976 −0.146488 0.989212i \(-0.546797\pi\)
−0.146488 + 0.989212i \(0.546797\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) 2.47214 0.253636
\(96\) 0 0
\(97\) 0.472136 0.0479381 0.0239691 0.999713i \(-0.492370\pi\)
0.0239691 + 0.999713i \(0.492370\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.94427 0.690981 0.345490 0.938422i \(-0.387713\pi\)
0.345490 + 0.938422i \(0.387713\pi\)
\(102\) 0 0
\(103\) 14.6525 1.44375 0.721876 0.692023i \(-0.243280\pi\)
0.721876 + 0.692023i \(0.243280\pi\)
\(104\) 0 0
\(105\) 3.23607 0.315808
\(106\) 0 0
\(107\) −4.94427 −0.477981 −0.238990 0.971022i \(-0.576816\pi\)
−0.238990 + 0.971022i \(0.576816\pi\)
\(108\) 0 0
\(109\) −12.4721 −1.19461 −0.597307 0.802013i \(-0.703763\pi\)
−0.597307 + 0.802013i \(0.703763\pi\)
\(110\) 0 0
\(111\) −9.23607 −0.876649
\(112\) 0 0
\(113\) −14.9443 −1.40584 −0.702919 0.711269i \(-0.748121\pi\)
−0.702919 + 0.711269i \(0.748121\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 1.23607 0.114275
\(118\) 0 0
\(119\) −14.4721 −1.32666
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 15.4164 1.36798 0.683992 0.729489i \(-0.260242\pi\)
0.683992 + 0.729489i \(0.260242\pi\)
\(128\) 0 0
\(129\) 2.47214 0.217659
\(130\) 0 0
\(131\) −4.76393 −0.416227 −0.208113 0.978105i \(-0.566732\pi\)
−0.208113 + 0.978105i \(0.566732\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 8.94427 0.753244
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.76393 0.229532
\(146\) 0 0
\(147\) −3.47214 −0.286377
\(148\) 0 0
\(149\) −1.05573 −0.0864886 −0.0432443 0.999065i \(-0.513769\pi\)
−0.0432443 + 0.999065i \(0.513769\pi\)
\(150\) 0 0
\(151\) −21.8885 −1.78126 −0.890632 0.454724i \(-0.849738\pi\)
−0.890632 + 0.454724i \(0.849738\pi\)
\(152\) 0 0
\(153\) −4.47214 −0.361551
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) 21.4164 1.70922 0.854608 0.519274i \(-0.173798\pi\)
0.854608 + 0.519274i \(0.173798\pi\)
\(158\) 0 0
\(159\) 0.472136 0.0374428
\(160\) 0 0
\(161\) −12.9443 −1.02015
\(162\) 0 0
\(163\) 11.2361 0.880077 0.440038 0.897979i \(-0.354965\pi\)
0.440038 + 0.897979i \(0.354965\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −11.4721 −0.882472
\(170\) 0 0
\(171\) −2.47214 −0.189049
\(172\) 0 0
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 3.23607 0.244624
\(176\) 0 0
\(177\) −11.2361 −0.844555
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −5.41641 −0.402598 −0.201299 0.979530i \(-0.564516\pi\)
−0.201299 + 0.979530i \(0.564516\pi\)
\(182\) 0 0
\(183\) 3.52786 0.260787
\(184\) 0 0
\(185\) −9.23607 −0.679049
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.23607 −0.235389
\(190\) 0 0
\(191\) −19.2361 −1.39187 −0.695937 0.718103i \(-0.745011\pi\)
−0.695937 + 0.718103i \(0.745011\pi\)
\(192\) 0 0
\(193\) −17.4164 −1.25366 −0.626830 0.779156i \(-0.715648\pi\)
−0.626830 + 0.779156i \(0.715648\pi\)
\(194\) 0 0
\(195\) 1.23607 0.0885167
\(196\) 0 0
\(197\) −14.9443 −1.06474 −0.532368 0.846513i \(-0.678698\pi\)
−0.532368 + 0.846513i \(0.678698\pi\)
\(198\) 0 0
\(199\) −21.8885 −1.55164 −0.775819 0.630956i \(-0.782663\pi\)
−0.775819 + 0.630956i \(0.782663\pi\)
\(200\) 0 0
\(201\) 9.70820 0.684764
\(202\) 0 0
\(203\) −8.94427 −0.627765
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −20.3607 −1.40169 −0.700844 0.713315i \(-0.747193\pi\)
−0.700844 + 0.713315i \(0.747193\pi\)
\(212\) 0 0
\(213\) 4.76393 0.326419
\(214\) 0 0
\(215\) 2.47214 0.168598
\(216\) 0 0
\(217\) −3.23607 −0.219679
\(218\) 0 0
\(219\) 10.1803 0.687924
\(220\) 0 0
\(221\) −5.52786 −0.371844
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 11.4164 0.757734 0.378867 0.925451i \(-0.376314\pi\)
0.378867 + 0.925451i \(0.376314\pi\)
\(228\) 0 0
\(229\) 1.05573 0.0697645 0.0348822 0.999391i \(-0.488894\pi\)
0.0348822 + 0.999391i \(0.488894\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.58359 −0.169257 −0.0846284 0.996413i \(-0.526970\pi\)
−0.0846284 + 0.996413i \(0.526970\pi\)
\(234\) 0 0
\(235\) 8.94427 0.583460
\(236\) 0 0
\(237\) −8.94427 −0.580993
\(238\) 0 0
\(239\) 19.4164 1.25594 0.627972 0.778236i \(-0.283885\pi\)
0.627972 + 0.778236i \(0.283885\pi\)
\(240\) 0 0
\(241\) −18.9443 −1.22031 −0.610154 0.792283i \(-0.708892\pi\)
−0.610154 + 0.792283i \(0.708892\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −3.47214 −0.221827
\(246\) 0 0
\(247\) −3.05573 −0.194431
\(248\) 0 0
\(249\) −12.9443 −0.820310
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −4.47214 −0.280056
\(256\) 0 0
\(257\) 5.41641 0.337866 0.168933 0.985628i \(-0.445968\pi\)
0.168933 + 0.985628i \(0.445968\pi\)
\(258\) 0 0
\(259\) 29.8885 1.85718
\(260\) 0 0
\(261\) −2.76393 −0.171083
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0.472136 0.0290031
\(266\) 0 0
\(267\) 2.76393 0.169150
\(268\) 0 0
\(269\) 28.0689 1.71139 0.855695 0.517480i \(-0.173130\pi\)
0.855695 + 0.517480i \(0.173130\pi\)
\(270\) 0 0
\(271\) 9.88854 0.600686 0.300343 0.953831i \(-0.402899\pi\)
0.300343 + 0.953831i \(0.402899\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −26.1803 −1.57302 −0.786512 0.617575i \(-0.788115\pi\)
−0.786512 + 0.617575i \(0.788115\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −7.52786 −0.449075 −0.224537 0.974465i \(-0.572087\pi\)
−0.224537 + 0.974465i \(0.572087\pi\)
\(282\) 0 0
\(283\) 8.18034 0.486271 0.243135 0.969992i \(-0.421824\pi\)
0.243135 + 0.969992i \(0.421824\pi\)
\(284\) 0 0
\(285\) −2.47214 −0.146437
\(286\) 0 0
\(287\) −19.4164 −1.14611
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) −0.472136 −0.0276771
\(292\) 0 0
\(293\) −13.4164 −0.783795 −0.391897 0.920009i \(-0.628181\pi\)
−0.391897 + 0.920009i \(0.628181\pi\)
\(294\) 0 0
\(295\) −11.2361 −0.654189
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.94427 −0.285935
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) −6.94427 −0.398938
\(304\) 0 0
\(305\) 3.52786 0.202005
\(306\) 0 0
\(307\) −11.2361 −0.641276 −0.320638 0.947202i \(-0.603897\pi\)
−0.320638 + 0.947202i \(0.603897\pi\)
\(308\) 0 0
\(309\) −14.6525 −0.833550
\(310\) 0 0
\(311\) −19.2361 −1.09078 −0.545389 0.838183i \(-0.683618\pi\)
−0.545389 + 0.838183i \(0.683618\pi\)
\(312\) 0 0
\(313\) 20.6525 1.16735 0.583673 0.811988i \(-0.301615\pi\)
0.583673 + 0.811988i \(0.301615\pi\)
\(314\) 0 0
\(315\) −3.23607 −0.182332
\(316\) 0 0
\(317\) −19.5279 −1.09679 −0.548397 0.836218i \(-0.684762\pi\)
−0.548397 + 0.836218i \(0.684762\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 4.94427 0.275962
\(322\) 0 0
\(323\) 11.0557 0.615157
\(324\) 0 0
\(325\) 1.23607 0.0685647
\(326\) 0 0
\(327\) 12.4721 0.689711
\(328\) 0 0
\(329\) −28.9443 −1.59575
\(330\) 0 0
\(331\) −11.0557 −0.607678 −0.303839 0.952723i \(-0.598268\pi\)
−0.303839 + 0.952723i \(0.598268\pi\)
\(332\) 0 0
\(333\) 9.23607 0.506133
\(334\) 0 0
\(335\) 9.70820 0.530416
\(336\) 0 0
\(337\) −9.81966 −0.534911 −0.267455 0.963570i \(-0.586183\pi\)
−0.267455 + 0.963570i \(0.586183\pi\)
\(338\) 0 0
\(339\) 14.9443 0.811661
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −11.4164 −0.616428
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) 21.8885 1.17504 0.587519 0.809210i \(-0.300105\pi\)
0.587519 + 0.809210i \(0.300105\pi\)
\(348\) 0 0
\(349\) 11.5279 0.617072 0.308536 0.951213i \(-0.400161\pi\)
0.308536 + 0.951213i \(0.400161\pi\)
\(350\) 0 0
\(351\) −1.23607 −0.0659764
\(352\) 0 0
\(353\) −7.52786 −0.400668 −0.200334 0.979728i \(-0.564203\pi\)
−0.200334 + 0.979728i \(0.564203\pi\)
\(354\) 0 0
\(355\) 4.76393 0.252843
\(356\) 0 0
\(357\) 14.4721 0.765947
\(358\) 0 0
\(359\) −13.1246 −0.692691 −0.346345 0.938107i \(-0.612577\pi\)
−0.346345 + 0.938107i \(0.612577\pi\)
\(360\) 0 0
\(361\) −12.8885 −0.678344
\(362\) 0 0
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) 10.1803 0.532863
\(366\) 0 0
\(367\) 24.9443 1.30208 0.651040 0.759043i \(-0.274333\pi\)
0.651040 + 0.759043i \(0.274333\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −1.52786 −0.0793227
\(372\) 0 0
\(373\) −14.3607 −0.743568 −0.371784 0.928319i \(-0.621254\pi\)
−0.371784 + 0.928319i \(0.621254\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −3.41641 −0.175954
\(378\) 0 0
\(379\) 7.41641 0.380955 0.190478 0.981692i \(-0.438996\pi\)
0.190478 + 0.981692i \(0.438996\pi\)
\(380\) 0 0
\(381\) −15.4164 −0.789807
\(382\) 0 0
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.47214 −0.125666
\(388\) 0 0
\(389\) −23.7082 −1.20205 −0.601027 0.799229i \(-0.705242\pi\)
−0.601027 + 0.799229i \(0.705242\pi\)
\(390\) 0 0
\(391\) 17.8885 0.904663
\(392\) 0 0
\(393\) 4.76393 0.240309
\(394\) 0 0
\(395\) −8.94427 −0.450035
\(396\) 0 0
\(397\) 21.0557 1.05676 0.528378 0.849009i \(-0.322800\pi\)
0.528378 + 0.849009i \(0.322800\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −9.23607 −0.461227 −0.230614 0.973045i \(-0.574073\pi\)
−0.230614 + 0.973045i \(0.574073\pi\)
\(402\) 0 0
\(403\) −1.23607 −0.0615729
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 37.4164 1.85012 0.925061 0.379818i \(-0.124013\pi\)
0.925061 + 0.379818i \(0.124013\pi\)
\(410\) 0 0
\(411\) 14.0000 0.690569
\(412\) 0 0
\(413\) 36.3607 1.78919
\(414\) 0 0
\(415\) −12.9443 −0.635409
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 6.65248 0.324995 0.162497 0.986709i \(-0.448045\pi\)
0.162497 + 0.986709i \(0.448045\pi\)
\(420\) 0 0
\(421\) 10.3607 0.504949 0.252474 0.967604i \(-0.418756\pi\)
0.252474 + 0.967604i \(0.418756\pi\)
\(422\) 0 0
\(423\) −8.94427 −0.434885
\(424\) 0 0
\(425\) −4.47214 −0.216930
\(426\) 0 0
\(427\) −11.4164 −0.552479
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.12461 −0.246844 −0.123422 0.992354i \(-0.539387\pi\)
−0.123422 + 0.992354i \(0.539387\pi\)
\(432\) 0 0
\(433\) 18.7639 0.901737 0.450869 0.892590i \(-0.351114\pi\)
0.450869 + 0.892590i \(0.351114\pi\)
\(434\) 0 0
\(435\) −2.76393 −0.132520
\(436\) 0 0
\(437\) 9.88854 0.473033
\(438\) 0 0
\(439\) −22.8328 −1.08975 −0.544875 0.838517i \(-0.683423\pi\)
−0.544875 + 0.838517i \(0.683423\pi\)
\(440\) 0 0
\(441\) 3.47214 0.165340
\(442\) 0 0
\(443\) 30.4721 1.44777 0.723887 0.689918i \(-0.242353\pi\)
0.723887 + 0.689918i \(0.242353\pi\)
\(444\) 0 0
\(445\) 2.76393 0.131023
\(446\) 0 0
\(447\) 1.05573 0.0499342
\(448\) 0 0
\(449\) −12.2918 −0.580086 −0.290043 0.957014i \(-0.593670\pi\)
−0.290043 + 0.957014i \(0.593670\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 21.8885 1.02841
\(454\) 0 0
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) 10.7639 0.503516 0.251758 0.967790i \(-0.418991\pi\)
0.251758 + 0.967790i \(0.418991\pi\)
\(458\) 0 0
\(459\) 4.47214 0.208741
\(460\) 0 0
\(461\) −16.0689 −0.748403 −0.374201 0.927348i \(-0.622083\pi\)
−0.374201 + 0.927348i \(0.622083\pi\)
\(462\) 0 0
\(463\) 15.4164 0.716461 0.358231 0.933633i \(-0.383380\pi\)
0.358231 + 0.933633i \(0.383380\pi\)
\(464\) 0 0
\(465\) −1.00000 −0.0463739
\(466\) 0 0
\(467\) −12.9443 −0.598989 −0.299495 0.954098i \(-0.596818\pi\)
−0.299495 + 0.954098i \(0.596818\pi\)
\(468\) 0 0
\(469\) −31.4164 −1.45067
\(470\) 0 0
\(471\) −21.4164 −0.986816
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −2.47214 −0.113429
\(476\) 0 0
\(477\) −0.472136 −0.0216176
\(478\) 0 0
\(479\) −25.7082 −1.17464 −0.587319 0.809356i \(-0.699817\pi\)
−0.587319 + 0.809356i \(0.699817\pi\)
\(480\) 0 0
\(481\) 11.4164 0.520543
\(482\) 0 0
\(483\) 12.9443 0.588985
\(484\) 0 0
\(485\) −0.472136 −0.0214386
\(486\) 0 0
\(487\) 18.4721 0.837052 0.418526 0.908205i \(-0.362547\pi\)
0.418526 + 0.908205i \(0.362547\pi\)
\(488\) 0 0
\(489\) −11.2361 −0.508113
\(490\) 0 0
\(491\) 27.4164 1.23729 0.618643 0.785673i \(-0.287683\pi\)
0.618643 + 0.785673i \(0.287683\pi\)
\(492\) 0 0
\(493\) 12.3607 0.556697
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.4164 −0.691520
\(498\) 0 0
\(499\) 15.0557 0.673987 0.336993 0.941507i \(-0.390590\pi\)
0.336993 + 0.941507i \(0.390590\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 34.8328 1.55312 0.776559 0.630044i \(-0.216963\pi\)
0.776559 + 0.630044i \(0.216963\pi\)
\(504\) 0 0
\(505\) −6.94427 −0.309016
\(506\) 0 0
\(507\) 11.4721 0.509495
\(508\) 0 0
\(509\) −3.12461 −0.138496 −0.0692480 0.997599i \(-0.522060\pi\)
−0.0692480 + 0.997599i \(0.522060\pi\)
\(510\) 0 0
\(511\) −32.9443 −1.45737
\(512\) 0 0
\(513\) 2.47214 0.109147
\(514\) 0 0
\(515\) −14.6525 −0.645665
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −9.05573 −0.396739 −0.198369 0.980127i \(-0.563565\pi\)
−0.198369 + 0.980127i \(0.563565\pi\)
\(522\) 0 0
\(523\) −4.36068 −0.190679 −0.0953396 0.995445i \(-0.530394\pi\)
−0.0953396 + 0.995445i \(0.530394\pi\)
\(524\) 0 0
\(525\) −3.23607 −0.141234
\(526\) 0 0
\(527\) 4.47214 0.194809
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 11.2361 0.487604
\(532\) 0 0
\(533\) −7.41641 −0.321240
\(534\) 0 0
\(535\) 4.94427 0.213760
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 23.3050 1.00196 0.500979 0.865459i \(-0.332973\pi\)
0.500979 + 0.865459i \(0.332973\pi\)
\(542\) 0 0
\(543\) 5.41641 0.232440
\(544\) 0 0
\(545\) 12.4721 0.534248
\(546\) 0 0
\(547\) −14.6525 −0.626495 −0.313247 0.949672i \(-0.601417\pi\)
−0.313247 + 0.949672i \(0.601417\pi\)
\(548\) 0 0
\(549\) −3.52786 −0.150566
\(550\) 0 0
\(551\) 6.83282 0.291088
\(552\) 0 0
\(553\) 28.9443 1.23084
\(554\) 0 0
\(555\) 9.23607 0.392049
\(556\) 0 0
\(557\) 9.41641 0.398986 0.199493 0.979899i \(-0.436070\pi\)
0.199493 + 0.979899i \(0.436070\pi\)
\(558\) 0 0
\(559\) −3.05573 −0.129244
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 32.0000 1.34864 0.674320 0.738440i \(-0.264437\pi\)
0.674320 + 0.738440i \(0.264437\pi\)
\(564\) 0 0
\(565\) 14.9443 0.628710
\(566\) 0 0
\(567\) 3.23607 0.135902
\(568\) 0 0
\(569\) 24.6525 1.03349 0.516743 0.856141i \(-0.327144\pi\)
0.516743 + 0.856141i \(0.327144\pi\)
\(570\) 0 0
\(571\) −7.05573 −0.295273 −0.147637 0.989042i \(-0.547167\pi\)
−0.147637 + 0.989042i \(0.547167\pi\)
\(572\) 0 0
\(573\) 19.2361 0.803598
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −26.9443 −1.12170 −0.560852 0.827916i \(-0.689526\pi\)
−0.560852 + 0.827916i \(0.689526\pi\)
\(578\) 0 0
\(579\) 17.4164 0.723801
\(580\) 0 0
\(581\) 41.8885 1.73783
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.23607 −0.0511051
\(586\) 0 0
\(587\) −7.05573 −0.291221 −0.145611 0.989342i \(-0.546515\pi\)
−0.145611 + 0.989342i \(0.546515\pi\)
\(588\) 0 0
\(589\) 2.47214 0.101863
\(590\) 0 0
\(591\) 14.9443 0.614725
\(592\) 0 0
\(593\) 44.8328 1.84106 0.920532 0.390668i \(-0.127756\pi\)
0.920532 + 0.390668i \(0.127756\pi\)
\(594\) 0 0
\(595\) 14.4721 0.593300
\(596\) 0 0
\(597\) 21.8885 0.895838
\(598\) 0 0
\(599\) −21.1246 −0.863128 −0.431564 0.902082i \(-0.642038\pi\)
−0.431564 + 0.902082i \(0.642038\pi\)
\(600\) 0 0
\(601\) 27.5279 1.12288 0.561442 0.827516i \(-0.310247\pi\)
0.561442 + 0.827516i \(0.310247\pi\)
\(602\) 0 0
\(603\) −9.70820 −0.395349
\(604\) 0 0
\(605\) 11.0000 0.447214
\(606\) 0 0
\(607\) 43.5967 1.76954 0.884769 0.466030i \(-0.154316\pi\)
0.884769 + 0.466030i \(0.154316\pi\)
\(608\) 0 0
\(609\) 8.94427 0.362440
\(610\) 0 0
\(611\) −11.0557 −0.447267
\(612\) 0 0
\(613\) 7.70820 0.311331 0.155666 0.987810i \(-0.450248\pi\)
0.155666 + 0.987810i \(0.450248\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) −16.8328 −0.677664 −0.338832 0.940847i \(-0.610032\pi\)
−0.338832 + 0.940847i \(0.610032\pi\)
\(618\) 0 0
\(619\) −27.7771 −1.11646 −0.558228 0.829688i \(-0.688518\pi\)
−0.558228 + 0.829688i \(0.688518\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 0 0
\(623\) −8.94427 −0.358345
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −41.3050 −1.64694
\(630\) 0 0
\(631\) −20.9443 −0.833778 −0.416889 0.908957i \(-0.636880\pi\)
−0.416889 + 0.908957i \(0.636880\pi\)
\(632\) 0 0
\(633\) 20.3607 0.809264
\(634\) 0 0
\(635\) −15.4164 −0.611781
\(636\) 0 0
\(637\) 4.29180 0.170047
\(638\) 0 0
\(639\) −4.76393 −0.188458
\(640\) 0 0
\(641\) −22.1803 −0.876071 −0.438035 0.898958i \(-0.644326\pi\)
−0.438035 + 0.898958i \(0.644326\pi\)
\(642\) 0 0
\(643\) −0.583592 −0.0230146 −0.0115073 0.999934i \(-0.503663\pi\)
−0.0115073 + 0.999934i \(0.503663\pi\)
\(644\) 0 0
\(645\) −2.47214 −0.0973403
\(646\) 0 0
\(647\) −36.9443 −1.45243 −0.726215 0.687468i \(-0.758722\pi\)
−0.726215 + 0.687468i \(0.758722\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 3.23607 0.126832
\(652\) 0 0
\(653\) 2.58359 0.101104 0.0505519 0.998721i \(-0.483902\pi\)
0.0505519 + 0.998721i \(0.483902\pi\)
\(654\) 0 0
\(655\) 4.76393 0.186142
\(656\) 0 0
\(657\) −10.1803 −0.397173
\(658\) 0 0
\(659\) 20.7639 0.808848 0.404424 0.914572i \(-0.367472\pi\)
0.404424 + 0.914572i \(0.367472\pi\)
\(660\) 0 0
\(661\) 10.9443 0.425683 0.212841 0.977087i \(-0.431728\pi\)
0.212841 + 0.977087i \(0.431728\pi\)
\(662\) 0 0
\(663\) 5.52786 0.214684
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) 11.0557 0.428080
\(668\) 0 0
\(669\) 4.00000 0.154649
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 17.2361 0.664402 0.332201 0.943209i \(-0.392209\pi\)
0.332201 + 0.943209i \(0.392209\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −6.58359 −0.253028 −0.126514 0.991965i \(-0.540379\pi\)
−0.126514 + 0.991965i \(0.540379\pi\)
\(678\) 0 0
\(679\) 1.52786 0.0586340
\(680\) 0 0
\(681\) −11.4164 −0.437478
\(682\) 0 0
\(683\) 19.4164 0.742948 0.371474 0.928443i \(-0.378852\pi\)
0.371474 + 0.928443i \(0.378852\pi\)
\(684\) 0 0
\(685\) 14.0000 0.534913
\(686\) 0 0
\(687\) −1.05573 −0.0402785
\(688\) 0 0
\(689\) −0.583592 −0.0222331
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) 26.8328 1.01637
\(698\) 0 0
\(699\) 2.58359 0.0977204
\(700\) 0 0
\(701\) −44.4721 −1.67969 −0.839845 0.542827i \(-0.817354\pi\)
−0.839845 + 0.542827i \(0.817354\pi\)
\(702\) 0 0
\(703\) −22.8328 −0.861156
\(704\) 0 0
\(705\) −8.94427 −0.336861
\(706\) 0 0
\(707\) 22.4721 0.845152
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) 8.94427 0.335436
\(712\) 0 0
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −19.4164 −0.725119
\(718\) 0 0
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) 47.4164 1.76588
\(722\) 0 0
\(723\) 18.9443 0.704545
\(724\) 0 0
\(725\) −2.76393 −0.102650
\(726\) 0 0
\(727\) −51.5967 −1.91362 −0.956809 0.290718i \(-0.906106\pi\)
−0.956809 + 0.290718i \(0.906106\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 11.0557 0.408911
\(732\) 0 0
\(733\) 45.7771 1.69082 0.845408 0.534122i \(-0.179358\pi\)
0.845408 + 0.534122i \(0.179358\pi\)
\(734\) 0 0
\(735\) 3.47214 0.128072
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 3.05573 0.112407 0.0562034 0.998419i \(-0.482100\pi\)
0.0562034 + 0.998419i \(0.482100\pi\)
\(740\) 0 0
\(741\) 3.05573 0.112255
\(742\) 0 0
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) 1.05573 0.0386789
\(746\) 0 0
\(747\) 12.9443 0.473606
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) −33.8885 −1.23661 −0.618305 0.785938i \(-0.712180\pi\)
−0.618305 + 0.785938i \(0.712180\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) 21.8885 0.796606
\(756\) 0 0
\(757\) 27.1246 0.985861 0.492930 0.870069i \(-0.335926\pi\)
0.492930 + 0.870069i \(0.335926\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.8197 0.645962 0.322981 0.946405i \(-0.395315\pi\)
0.322981 + 0.946405i \(0.395315\pi\)
\(762\) 0 0
\(763\) −40.3607 −1.46115
\(764\) 0 0
\(765\) 4.47214 0.161690
\(766\) 0 0
\(767\) 13.8885 0.501486
\(768\) 0 0
\(769\) −0.472136 −0.0170257 −0.00851283 0.999964i \(-0.502710\pi\)
−0.00851283 + 0.999964i \(0.502710\pi\)
\(770\) 0 0
\(771\) −5.41641 −0.195067
\(772\) 0 0
\(773\) −39.3050 −1.41370 −0.706850 0.707363i \(-0.749885\pi\)
−0.706850 + 0.707363i \(0.749885\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) −29.8885 −1.07225
\(778\) 0 0
\(779\) 14.8328 0.531441
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.76393 0.0987749
\(784\) 0 0
\(785\) −21.4164 −0.764384
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) −48.3607 −1.71951
\(792\) 0 0
\(793\) −4.36068 −0.154852
\(794\) 0 0
\(795\) −0.472136 −0.0167449
\(796\) 0 0
\(797\) −24.8328 −0.879623 −0.439812 0.898090i \(-0.644955\pi\)
−0.439812 + 0.898090i \(0.644955\pi\)
\(798\) 0 0
\(799\) 40.0000 1.41510
\(800\) 0 0
\(801\) −2.76393 −0.0976587
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 12.9443 0.456226
\(806\) 0 0
\(807\) −28.0689 −0.988072
\(808\) 0 0
\(809\) 11.7082 0.411639 0.205819 0.978590i \(-0.434014\pi\)
0.205819 + 0.978590i \(0.434014\pi\)
\(810\) 0 0
\(811\) 12.3607 0.434042 0.217021 0.976167i \(-0.430366\pi\)
0.217021 + 0.976167i \(0.430366\pi\)
\(812\) 0 0
\(813\) −9.88854 −0.346806
\(814\) 0 0
\(815\) −11.2361 −0.393582
\(816\) 0 0
\(817\) 6.11146 0.213813
\(818\) 0 0
\(819\) 4.00000 0.139771
\(820\) 0 0
\(821\) 18.1803 0.634498 0.317249 0.948342i \(-0.397241\pi\)
0.317249 + 0.948342i \(0.397241\pi\)
\(822\) 0 0
\(823\) 36.3607 1.26745 0.633727 0.773557i \(-0.281524\pi\)
0.633727 + 0.773557i \(0.281524\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.0000 0.556375 0.278187 0.960527i \(-0.410266\pi\)
0.278187 + 0.960527i \(0.410266\pi\)
\(828\) 0 0
\(829\) −31.3050 −1.08727 −0.543633 0.839323i \(-0.682952\pi\)
−0.543633 + 0.839323i \(0.682952\pi\)
\(830\) 0 0
\(831\) 26.1803 0.908186
\(832\) 0 0
\(833\) −15.5279 −0.538009
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) −3.23607 −0.111721 −0.0558607 0.998439i \(-0.517790\pi\)
−0.0558607 + 0.998439i \(0.517790\pi\)
\(840\) 0 0
\(841\) −21.3607 −0.736575
\(842\) 0 0
\(843\) 7.52786 0.259273
\(844\) 0 0
\(845\) 11.4721 0.394653
\(846\) 0 0
\(847\) −35.5967 −1.22312
\(848\) 0 0
\(849\) −8.18034 −0.280749
\(850\) 0 0
\(851\) −36.9443 −1.26643
\(852\) 0 0
\(853\) −33.7771 −1.15651 −0.578253 0.815858i \(-0.696265\pi\)
−0.578253 + 0.815858i \(0.696265\pi\)
\(854\) 0 0
\(855\) 2.47214 0.0845453
\(856\) 0 0
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) 18.1115 0.617955 0.308977 0.951069i \(-0.400013\pi\)
0.308977 + 0.951069i \(0.400013\pi\)
\(860\) 0 0
\(861\) 19.4164 0.661709
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 0 0
\(867\) −3.00000 −0.101885
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −12.0000 −0.406604
\(872\) 0 0
\(873\) 0.472136 0.0159794
\(874\) 0 0
\(875\) −3.23607 −0.109399
\(876\) 0 0
\(877\) −2.94427 −0.0994210 −0.0497105 0.998764i \(-0.515830\pi\)
−0.0497105 + 0.998764i \(0.515830\pi\)
\(878\) 0 0
\(879\) 13.4164 0.452524
\(880\) 0 0
\(881\) 44.0689 1.48472 0.742359 0.670002i \(-0.233707\pi\)
0.742359 + 0.670002i \(0.233707\pi\)
\(882\) 0 0
\(883\) 18.8328 0.633775 0.316887 0.948463i \(-0.397362\pi\)
0.316887 + 0.948463i \(0.397362\pi\)
\(884\) 0 0
\(885\) 11.2361 0.377696
\(886\) 0 0
\(887\) 7.41641 0.249019 0.124509 0.992218i \(-0.460264\pi\)
0.124509 + 0.992218i \(0.460264\pi\)
\(888\) 0 0
\(889\) 49.8885 1.67321
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 22.1115 0.739932
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.94427 0.165084
\(898\) 0 0
\(899\) 2.76393 0.0921823
\(900\) 0 0
\(901\) 2.11146 0.0703428
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) 0 0
\(905\) 5.41641 0.180047
\(906\) 0 0
\(907\) 16.5410 0.549236 0.274618 0.961553i \(-0.411449\pi\)
0.274618 + 0.961553i \(0.411449\pi\)
\(908\) 0 0
\(909\) 6.94427 0.230327
\(910\) 0 0
\(911\) 25.8885 0.857726 0.428863 0.903370i \(-0.358914\pi\)
0.428863 + 0.903370i \(0.358914\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −3.52786 −0.116628
\(916\) 0 0
\(917\) −15.4164 −0.509095
\(918\) 0 0
\(919\) 29.3050 0.966681 0.483341 0.875432i \(-0.339423\pi\)
0.483341 + 0.875432i \(0.339423\pi\)
\(920\) 0 0
\(921\) 11.2361 0.370241
\(922\) 0 0
\(923\) −5.88854 −0.193824
\(924\) 0 0
\(925\) 9.23607 0.303680
\(926\) 0 0
\(927\) 14.6525 0.481250
\(928\) 0 0
\(929\) −25.5967 −0.839802 −0.419901 0.907570i \(-0.637935\pi\)
−0.419901 + 0.907570i \(0.637935\pi\)
\(930\) 0 0
\(931\) −8.58359 −0.281316
\(932\) 0 0
\(933\) 19.2361 0.629761
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 29.4164 0.960992 0.480496 0.876997i \(-0.340457\pi\)
0.480496 + 0.876997i \(0.340457\pi\)
\(938\) 0 0
\(939\) −20.6525 −0.673968
\(940\) 0 0
\(941\) −51.4853 −1.67837 −0.839186 0.543844i \(-0.816968\pi\)
−0.839186 + 0.543844i \(0.816968\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) 0 0
\(945\) 3.23607 0.105269
\(946\) 0 0
\(947\) 12.9443 0.420632 0.210316 0.977633i \(-0.432551\pi\)
0.210316 + 0.977633i \(0.432551\pi\)
\(948\) 0 0
\(949\) −12.5836 −0.408481
\(950\) 0 0
\(951\) 19.5279 0.633234
\(952\) 0 0
\(953\) −9.05573 −0.293344 −0.146672 0.989185i \(-0.546856\pi\)
−0.146672 + 0.989185i \(0.546856\pi\)
\(954\) 0 0
\(955\) 19.2361 0.622465
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −45.3050 −1.46297
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −4.94427 −0.159327
\(964\) 0 0
\(965\) 17.4164 0.560654
\(966\) 0 0
\(967\) −44.0000 −1.41494 −0.707472 0.706741i \(-0.750165\pi\)
−0.707472 + 0.706741i \(0.750165\pi\)
\(968\) 0 0
\(969\) −11.0557 −0.355161
\(970\) 0 0
\(971\) −6.29180 −0.201913 −0.100957 0.994891i \(-0.532190\pi\)
−0.100957 + 0.994891i \(0.532190\pi\)
\(972\) 0 0
\(973\) 12.9443 0.414974
\(974\) 0 0
\(975\) −1.23607 −0.0395859
\(976\) 0 0
\(977\) −14.9443 −0.478110 −0.239055 0.971006i \(-0.576838\pi\)
−0.239055 + 0.971006i \(0.576838\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −12.4721 −0.398205
\(982\) 0 0
\(983\) 59.7771 1.90659 0.953296 0.302036i \(-0.0976663\pi\)
0.953296 + 0.302036i \(0.0976663\pi\)
\(984\) 0 0
\(985\) 14.9443 0.476164
\(986\) 0 0
\(987\) 28.9443 0.921306
\(988\) 0 0
\(989\) 9.88854 0.314437
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 11.0557 0.350843
\(994\) 0 0
\(995\) 21.8885 0.693913
\(996\) 0 0
\(997\) −20.4721 −0.648359 −0.324180 0.945996i \(-0.605088\pi\)
−0.324180 + 0.945996i \(0.605088\pi\)
\(998\) 0 0
\(999\) −9.23607 −0.292216
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3720.2.a.i.1.2 2
4.3 odd 2 7440.2.a.bi.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3720.2.a.i.1.2 2 1.1 even 1 trivial
7440.2.a.bi.1.1 2 4.3 odd 2