Properties

Label 372.2.a
Level $372$
Weight $2$
Character orbit 372.a
Rep. character $\chi_{372}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $5$
Sturm bound $128$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 372 = 2^{2} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 372.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(128\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(372))\).

Total New Old
Modular forms 70 6 64
Cusp forms 59 6 53
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(31\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(8\)\(0\)\(8\)\(7\)\(0\)\(7\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(9\)\(0\)\(9\)\(7\)\(0\)\(7\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(10\)\(0\)\(10\)\(8\)\(0\)\(8\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(9\)\(0\)\(9\)\(7\)\(0\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(9\)\(2\)\(7\)\(8\)\(2\)\(6\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(8\)\(1\)\(7\)\(7\)\(1\)\(6\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(8\)\(1\)\(7\)\(7\)\(1\)\(6\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(9\)\(2\)\(7\)\(8\)\(2\)\(6\)\(1\)\(0\)\(1\)
Plus space\(+\)\(33\)\(2\)\(31\)\(28\)\(2\)\(26\)\(5\)\(0\)\(5\)
Minus space\(-\)\(37\)\(4\)\(33\)\(31\)\(4\)\(27\)\(6\)\(0\)\(6\)

Trace form

\( 6 q - 4 q^{7} + 6 q^{9} + 4 q^{11} - 4 q^{15} - 4 q^{17} + 4 q^{19} + 4 q^{23} + 6 q^{25} + 8 q^{29} + 12 q^{35} + 8 q^{37} + 16 q^{41} - 12 q^{43} - 20 q^{47} + 10 q^{49} - 4 q^{51} - 4 q^{53} - 20 q^{55}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(372))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 31
372.2.a.a 372.a 1.a $1$ $2.970$ \(\Q\) None 372.2.a.a \(0\) \(-1\) \(-1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}+q^{9}-6q^{13}+q^{15}+\cdots\)
372.2.a.b 372.a 1.a $1$ $2.970$ \(\Q\) None 372.2.a.b \(0\) \(1\) \(-3\) \(-5\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{5}-5q^{7}+q^{9}+2q^{11}+\cdots\)
372.2.a.c 372.a 1.a $1$ $2.970$ \(\Q\) None 372.2.a.c \(0\) \(1\) \(-2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}+4q^{7}+q^{9}+2q^{13}+\cdots\)
372.2.a.d 372.a 1.a $1$ $2.970$ \(\Q\) None 372.2.a.d \(0\) \(1\) \(3\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}-q^{7}+q^{9}+2q^{13}+3q^{15}+\cdots\)
372.2.a.e 372.a 1.a $2$ $2.970$ \(\Q(\sqrt{17}) \) None 372.2.a.e \(0\) \(-2\) \(3\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta )q^{5}+(-1+\beta )q^{7}+q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(372))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(372)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(124))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 2}\)