Properties

Label 3700.2.d.a.149.2
Level $3700$
Weight $2$
Character 3700.149
Analytic conductor $29.545$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3700,2,Mod(149,3700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3700.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3700 = 2^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3700.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.5446487479\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 740)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3700.149
Dual form 3700.2.d.a.149.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +3.00000i q^{7} -6.00000 q^{9} +O(q^{10})\) \(q+3.00000i q^{3} +3.00000i q^{7} -6.00000 q^{9} +5.00000 q^{11} +2.00000i q^{13} -4.00000i q^{17} +4.00000 q^{19} -9.00000 q^{21} +6.00000i q^{23} -9.00000i q^{27} -6.00000 q^{29} -4.00000 q^{31} +15.0000i q^{33} +1.00000i q^{37} -6.00000 q^{39} -9.00000 q^{41} +10.0000i q^{43} +11.0000i q^{47} -2.00000 q^{49} +12.0000 q^{51} -11.0000i q^{53} +12.0000i q^{57} +8.00000 q^{59} -8.00000 q^{61} -18.0000i q^{63} +8.00000i q^{67} -18.0000 q^{69} +3.00000 q^{71} +7.00000i q^{73} +15.0000i q^{77} -8.00000 q^{79} +9.00000 q^{81} -9.00000i q^{83} -18.0000i q^{87} +16.0000 q^{89} -6.00000 q^{91} -12.0000i q^{93} -12.0000i q^{97} -30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 12 q^{9} + 10 q^{11} + 8 q^{19} - 18 q^{21} - 12 q^{29} - 8 q^{31} - 12 q^{39} - 18 q^{41} - 4 q^{49} + 24 q^{51} + 16 q^{59} - 16 q^{61} - 36 q^{69} + 6 q^{71} - 16 q^{79} + 18 q^{81} + 32 q^{89} - 12 q^{91} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1777\) \(1851\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) 0 0
\(9\) −6.00000 −2.00000
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 4.00000i − 0.970143i −0.874475 0.485071i \(-0.838794\pi\)
0.874475 0.485071i \(-0.161206\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −9.00000 −1.96396
\(22\) 0 0
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 9.00000i − 1.73205i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 15.0000i 2.61116i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) 10.0000i 1.52499i 0.646997 + 0.762493i \(0.276025\pi\)
−0.646997 + 0.762493i \(0.723975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.0000i 1.60451i 0.596978 + 0.802257i \(0.296368\pi\)
−0.596978 + 0.802257i \(0.703632\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 0 0
\(53\) − 11.0000i − 1.51097i −0.655168 0.755483i \(-0.727402\pi\)
0.655168 0.755483i \(-0.272598\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.0000i 1.58944i
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) − 18.0000i − 2.26779i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 0 0
\(69\) −18.0000 −2.16695
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) 7.00000i 0.819288i 0.912245 + 0.409644i \(0.134347\pi\)
−0.912245 + 0.409644i \(0.865653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.0000i 1.70941i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 9.00000i − 0.987878i −0.869496 0.493939i \(-0.835557\pi\)
0.869496 0.493939i \(-0.164443\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 18.0000i − 1.92980i
\(88\) 0 0
\(89\) 16.0000 1.69600 0.847998 0.529999i \(-0.177808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) 0 0
\(93\) − 12.0000i − 1.24434i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 12.0000i − 1.21842i −0.793011 0.609208i \(-0.791488\pi\)
0.793011 0.609208i \(-0.208512\pi\)
\(98\) 0 0
\(99\) −30.0000 −3.01511
\(100\) 0 0
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 0 0
\(103\) − 6.00000i − 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.00000i − 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 12.0000i − 1.10940i
\(118\) 0 0
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) − 27.0000i − 2.43451i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 13.0000i 1.15356i 0.816898 + 0.576782i \(0.195692\pi\)
−0.816898 + 0.576782i \(0.804308\pi\)
\(128\) 0 0
\(129\) −30.0000 −2.64135
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 12.0000i 1.04053i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 18.0000i − 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −33.0000 −2.77910
\(142\) 0 0
\(143\) 10.0000i 0.836242i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 6.00000i − 0.494872i
\(148\) 0 0
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 24.0000i 1.94029i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3.00000i − 0.239426i −0.992809 0.119713i \(-0.961803\pi\)
0.992809 0.119713i \(-0.0381975\pi\)
\(158\) 0 0
\(159\) 33.0000 2.61707
\(160\) 0 0
\(161\) −18.0000 −1.41860
\(162\) 0 0
\(163\) − 10.0000i − 0.783260i −0.920123 0.391630i \(-0.871911\pi\)
0.920123 0.391630i \(-0.128089\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 8.00000i − 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −24.0000 −1.83533
\(172\) 0 0
\(173\) − 11.0000i − 0.836315i −0.908375 0.418157i \(-0.862676\pi\)
0.908375 0.418157i \(-0.137324\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 24.0000i 1.80395i
\(178\) 0 0
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) − 24.0000i − 1.77413i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 20.0000i − 1.46254i
\(188\) 0 0
\(189\) 27.0000 1.96396
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 26.0000i 1.87152i 0.352636 + 0.935760i \(0.385285\pi\)
−0.352636 + 0.935760i \(0.614715\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 23.0000i − 1.63868i −0.573306 0.819341i \(-0.694340\pi\)
0.573306 0.819341i \(-0.305660\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 0 0
\(201\) −24.0000 −1.69283
\(202\) 0 0
\(203\) − 18.0000i − 1.26335i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 36.0000i − 2.50217i
\(208\) 0 0
\(209\) 20.0000 1.38343
\(210\) 0 0
\(211\) −11.0000 −0.757271 −0.378636 0.925546i \(-0.623607\pi\)
−0.378636 + 0.925546i \(0.623607\pi\)
\(212\) 0 0
\(213\) 9.00000i 0.616670i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 12.0000i − 0.814613i
\(218\) 0 0
\(219\) −21.0000 −1.41905
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) 5.00000i 0.334825i 0.985887 + 0.167412i \(0.0535411\pi\)
−0.985887 + 0.167412i \(0.946459\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.0000i 1.06196i 0.847385 + 0.530979i \(0.178176\pi\)
−0.847385 + 0.530979i \(0.821824\pi\)
\(228\) 0 0
\(229\) 21.0000 1.38772 0.693860 0.720110i \(-0.255909\pi\)
0.693860 + 0.720110i \(0.255909\pi\)
\(230\) 0 0
\(231\) −45.0000 −2.96078
\(232\) 0 0
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 24.0000i − 1.55897i
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) 0 0
\(249\) 27.0000 1.71106
\(250\) 0 0
\(251\) −10.0000 −0.631194 −0.315597 0.948893i \(-0.602205\pi\)
−0.315597 + 0.948893i \(0.602205\pi\)
\(252\) 0 0
\(253\) 30.0000i 1.88608i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.0000i 0.998053i 0.866587 + 0.499026i \(0.166309\pi\)
−0.866587 + 0.499026i \(0.833691\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 0 0
\(261\) 36.0000 2.22834
\(262\) 0 0
\(263\) − 23.0000i − 1.41824i −0.705087 0.709120i \(-0.749092\pi\)
0.705087 0.709120i \(-0.250908\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 48.0000i 2.93755i
\(268\) 0 0
\(269\) 22.0000 1.34136 0.670682 0.741745i \(-0.266002\pi\)
0.670682 + 0.741745i \(0.266002\pi\)
\(270\) 0 0
\(271\) −5.00000 −0.303728 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(272\) 0 0
\(273\) − 18.0000i − 1.08941i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.00000i 0.240337i 0.992754 + 0.120168i \(0.0383434\pi\)
−0.992754 + 0.120168i \(0.961657\pi\)
\(278\) 0 0
\(279\) 24.0000 1.43684
\(280\) 0 0
\(281\) −4.00000 −0.238620 −0.119310 0.992857i \(-0.538068\pi\)
−0.119310 + 0.992857i \(0.538068\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 27.0000i − 1.59376i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 36.0000 2.11036
\(292\) 0 0
\(293\) 30.0000i 1.75262i 0.481749 + 0.876309i \(0.340002\pi\)
−0.481749 + 0.876309i \(0.659998\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 45.0000i − 2.61116i
\(298\) 0 0
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) −30.0000 −1.72917
\(302\) 0 0
\(303\) − 27.0000i − 1.55111i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.0000i 1.31268i 0.754466 + 0.656340i \(0.227896\pi\)
−0.754466 + 0.656340i \(0.772104\pi\)
\(308\) 0 0
\(309\) 18.0000 1.02398
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) − 22.0000i − 1.24351i −0.783210 0.621757i \(-0.786419\pi\)
0.783210 0.621757i \(-0.213581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 14.0000i − 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) 0 0
\(319\) −30.0000 −1.67968
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) − 16.0000i − 0.890264i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 36.0000i − 1.99080i
\(328\) 0 0
\(329\) −33.0000 −1.81935
\(330\) 0 0
\(331\) −22.0000 −1.20923 −0.604615 0.796518i \(-0.706673\pi\)
−0.604615 + 0.796518i \(0.706673\pi\)
\(332\) 0 0
\(333\) − 6.00000i − 0.328798i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 7.00000i − 0.381314i −0.981657 0.190657i \(-0.938938\pi\)
0.981657 0.190657i \(-0.0610619\pi\)
\(338\) 0 0
\(339\) −42.0000 −2.28113
\(340\) 0 0
\(341\) −20.0000 −1.08306
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 10.0000i − 0.536828i −0.963304 0.268414i \(-0.913500\pi\)
0.963304 0.268414i \(-0.0864995\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 18.0000 0.960769
\(352\) 0 0
\(353\) − 12.0000i − 0.638696i −0.947638 0.319348i \(-0.896536\pi\)
0.947638 0.319348i \(-0.103464\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 36.0000i 1.90532i
\(358\) 0 0
\(359\) 21.0000 1.10834 0.554169 0.832404i \(-0.313036\pi\)
0.554169 + 0.832404i \(0.313036\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 42.0000i 2.20443i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 8.00000i − 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 0 0
\(369\) 54.0000 2.81113
\(370\) 0 0
\(371\) 33.0000 1.71327
\(372\) 0 0
\(373\) 1.00000i 0.0517780i 0.999665 + 0.0258890i \(0.00824165\pi\)
−0.999665 + 0.0258890i \(0.991758\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 12.0000i − 0.618031i
\(378\) 0 0
\(379\) −17.0000 −0.873231 −0.436616 0.899648i \(-0.643823\pi\)
−0.436616 + 0.899648i \(0.643823\pi\)
\(380\) 0 0
\(381\) −39.0000 −1.99803
\(382\) 0 0
\(383\) 36.0000i 1.83951i 0.392488 + 0.919757i \(0.371614\pi\)
−0.392488 + 0.919757i \(0.628386\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 60.0000i − 3.04997i
\(388\) 0 0
\(389\) −4.00000 −0.202808 −0.101404 0.994845i \(-0.532333\pi\)
−0.101404 + 0.994845i \(0.532333\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 7.00000i − 0.351320i −0.984451 0.175660i \(-0.943794\pi\)
0.984451 0.175660i \(-0.0562059\pi\)
\(398\) 0 0
\(399\) −36.0000 −1.80225
\(400\) 0 0
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) − 8.00000i − 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.00000i 0.247841i
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) 54.0000 2.66362
\(412\) 0 0
\(413\) 24.0000i 1.18096i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.0000i 0.587643i
\(418\) 0 0
\(419\) −1.00000 −0.0488532 −0.0244266 0.999702i \(-0.507776\pi\)
−0.0244266 + 0.999702i \(0.507776\pi\)
\(420\) 0 0
\(421\) 36.0000 1.75453 0.877266 0.480004i \(-0.159365\pi\)
0.877266 + 0.480004i \(0.159365\pi\)
\(422\) 0 0
\(423\) − 66.0000i − 3.20903i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 24.0000i − 1.16144i
\(428\) 0 0
\(429\) −30.0000 −1.44841
\(430\) 0 0
\(431\) −14.0000 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(432\) 0 0
\(433\) − 23.0000i − 1.10531i −0.833410 0.552655i \(-0.813615\pi\)
0.833410 0.552655i \(-0.186385\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0000i 1.14808i
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) − 9.00000i − 0.427603i −0.976877 0.213801i \(-0.931415\pi\)
0.976877 0.213801i \(-0.0685846\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.00000i 0.141895i
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) −45.0000 −2.11897
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 6.00000i − 0.280668i −0.990104 0.140334i \(-0.955182\pi\)
0.990104 0.140334i \(-0.0448177\pi\)
\(458\) 0 0
\(459\) −36.0000 −1.68034
\(460\) 0 0
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) 14.0000i 0.650635i 0.945605 + 0.325318i \(0.105471\pi\)
−0.945605 + 0.325318i \(0.894529\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 10.0000i − 0.462745i −0.972865 0.231372i \(-0.925678\pi\)
0.972865 0.231372i \(-0.0743216\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) 0 0
\(471\) 9.00000 0.414698
\(472\) 0 0
\(473\) 50.0000i 2.29900i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 66.0000i 3.02193i
\(478\) 0 0
\(479\) 14.0000 0.639676 0.319838 0.947472i \(-0.396371\pi\)
0.319838 + 0.947472i \(0.396371\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) − 54.0000i − 2.45709i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.00000i 0.181257i 0.995885 + 0.0906287i \(0.0288876\pi\)
−0.995885 + 0.0906287i \(0.971112\pi\)
\(488\) 0 0
\(489\) 30.0000 1.35665
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) 24.0000i 1.08091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.00000i 0.403705i
\(498\) 0 0
\(499\) 44.0000 1.96971 0.984855 0.173379i \(-0.0554684\pi\)
0.984855 + 0.173379i \(0.0554684\pi\)
\(500\) 0 0
\(501\) 24.0000 1.07224
\(502\) 0 0
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 27.0000i 1.19911i
\(508\) 0 0
\(509\) −21.0000 −0.930809 −0.465404 0.885098i \(-0.654091\pi\)
−0.465404 + 0.885098i \(0.654091\pi\)
\(510\) 0 0
\(511\) −21.0000 −0.928985
\(512\) 0 0
\(513\) − 36.0000i − 1.58944i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 55.0000i 2.41890i
\(518\) 0 0
\(519\) 33.0000 1.44854
\(520\) 0 0
\(521\) −41.0000 −1.79624 −0.898121 0.439748i \(-0.855068\pi\)
−0.898121 + 0.439748i \(0.855068\pi\)
\(522\) 0 0
\(523\) − 6.00000i − 0.262362i −0.991358 0.131181i \(-0.958123\pi\)
0.991358 0.131181i \(-0.0418769\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) −48.0000 −2.08302
\(532\) 0 0
\(533\) − 18.0000i − 0.779667i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.00000i 0.258919i
\(538\) 0 0
\(539\) −10.0000 −0.430730
\(540\) 0 0
\(541\) −36.0000 −1.54776 −0.773880 0.633332i \(-0.781687\pi\)
−0.773880 + 0.633332i \(0.781687\pi\)
\(542\) 0 0
\(543\) 75.0000i 3.21856i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 16.0000i − 0.684111i −0.939680 0.342055i \(-0.888877\pi\)
0.939680 0.342055i \(-0.111123\pi\)
\(548\) 0 0
\(549\) 48.0000 2.04859
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) − 24.0000i − 1.02058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.0000i 0.423714i 0.977301 + 0.211857i \(0.0679510\pi\)
−0.977301 + 0.211857i \(0.932049\pi\)
\(558\) 0 0
\(559\) −20.0000 −0.845910
\(560\) 0 0
\(561\) 60.0000 2.53320
\(562\) 0 0
\(563\) 42.0000i 1.77009i 0.465506 + 0.885044i \(0.345872\pi\)
−0.465506 + 0.885044i \(0.654128\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 27.0000i 1.13389i
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 33.0000 1.38101 0.690504 0.723329i \(-0.257389\pi\)
0.690504 + 0.723329i \(0.257389\pi\)
\(572\) 0 0
\(573\) − 36.0000i − 1.50392i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 28.0000i − 1.16566i −0.812596 0.582828i \(-0.801946\pi\)
0.812596 0.582828i \(-0.198054\pi\)
\(578\) 0 0
\(579\) −78.0000 −3.24157
\(580\) 0 0
\(581\) 27.0000 1.12015
\(582\) 0 0
\(583\) − 55.0000i − 2.27787i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 36.0000i 1.48588i 0.669359 + 0.742940i \(0.266569\pi\)
−0.669359 + 0.742940i \(0.733431\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 69.0000 2.83828
\(592\) 0 0
\(593\) 43.0000i 1.76580i 0.469563 + 0.882899i \(0.344412\pi\)
−0.469563 + 0.882899i \(0.655588\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.00000i 0.245564i
\(598\) 0 0
\(599\) 45.0000 1.83865 0.919325 0.393499i \(-0.128735\pi\)
0.919325 + 0.393499i \(0.128735\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) − 48.0000i − 1.95471i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.0000i 0.487065i 0.969893 + 0.243532i \(0.0783062\pi\)
−0.969893 + 0.243532i \(0.921694\pi\)
\(608\) 0 0
\(609\) 54.0000 2.18819
\(610\) 0 0
\(611\) −22.0000 −0.890025
\(612\) 0 0
\(613\) 27.0000i 1.09052i 0.838267 + 0.545260i \(0.183569\pi\)
−0.838267 + 0.545260i \(0.816431\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 9.00000i − 0.362326i −0.983453 0.181163i \(-0.942014\pi\)
0.983453 0.181163i \(-0.0579862\pi\)
\(618\) 0 0
\(619\) −25.0000 −1.00483 −0.502417 0.864625i \(-0.667556\pi\)
−0.502417 + 0.864625i \(0.667556\pi\)
\(620\) 0 0
\(621\) 54.0000 2.16695
\(622\) 0 0
\(623\) 48.0000i 1.92308i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 60.0000i 2.39617i
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 0 0
\(633\) − 33.0000i − 1.31163i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 4.00000i − 0.158486i
\(638\) 0 0
\(639\) −18.0000 −0.712069
\(640\) 0 0
\(641\) 47.0000 1.85639 0.928194 0.372096i \(-0.121361\pi\)
0.928194 + 0.372096i \(0.121361\pi\)
\(642\) 0 0
\(643\) 34.0000i 1.34083i 0.741987 + 0.670415i \(0.233884\pi\)
−0.741987 + 0.670415i \(0.766116\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0000i 1.10079i 0.834903 + 0.550397i \(0.185524\pi\)
−0.834903 + 0.550397i \(0.814476\pi\)
\(648\) 0 0
\(649\) 40.0000 1.57014
\(650\) 0 0
\(651\) 36.0000 1.41095
\(652\) 0 0
\(653\) − 8.00000i − 0.313064i −0.987673 0.156532i \(-0.949969\pi\)
0.987673 0.156532i \(-0.0500315\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 42.0000i − 1.63858i
\(658\) 0 0
\(659\) 49.0000 1.90877 0.954384 0.298580i \(-0.0965131\pi\)
0.954384 + 0.298580i \(0.0965131\pi\)
\(660\) 0 0
\(661\) 8.00000 0.311164 0.155582 0.987823i \(-0.450275\pi\)
0.155582 + 0.987823i \(0.450275\pi\)
\(662\) 0 0
\(663\) 24.0000i 0.932083i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 36.0000i − 1.39393i
\(668\) 0 0
\(669\) −15.0000 −0.579934
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) 19.0000i 0.732396i 0.930537 + 0.366198i \(0.119341\pi\)
−0.930537 + 0.366198i \(0.880659\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.00000i 0.269032i 0.990911 + 0.134516i \(0.0429479\pi\)
−0.990911 + 0.134516i \(0.957052\pi\)
\(678\) 0 0
\(679\) 36.0000 1.38155
\(680\) 0 0
\(681\) −48.0000 −1.83936
\(682\) 0 0
\(683\) 18.0000i 0.688751i 0.938832 + 0.344375i \(0.111909\pi\)
−0.938832 + 0.344375i \(0.888091\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 63.0000i 2.40360i
\(688\) 0 0
\(689\) 22.0000 0.838133
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) − 90.0000i − 3.41882i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000i 1.36360i
\(698\) 0 0
\(699\) −42.0000 −1.58859
\(700\) 0 0
\(701\) 20.0000 0.755390 0.377695 0.925930i \(-0.376717\pi\)
0.377695 + 0.925930i \(0.376717\pi\)
\(702\) 0 0
\(703\) 4.00000i 0.150863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 27.0000i − 1.01544i
\(708\) 0 0
\(709\) −36.0000 −1.35201 −0.676004 0.736898i \(-0.736290\pi\)
−0.676004 + 0.736898i \(0.736290\pi\)
\(710\) 0 0
\(711\) 48.0000 1.80014
\(712\) 0 0
\(713\) − 24.0000i − 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 18.0000i − 0.672222i
\(718\) 0 0
\(719\) 19.0000 0.708580 0.354290 0.935136i \(-0.384723\pi\)
0.354290 + 0.935136i \(0.384723\pi\)
\(720\) 0 0
\(721\) 18.0000 0.670355
\(722\) 0 0
\(723\) 42.0000i 1.56200i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 4.00000i − 0.148352i −0.997245 0.0741759i \(-0.976367\pi\)
0.997245 0.0741759i \(-0.0236326\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 40.0000 1.47945
\(732\) 0 0
\(733\) 43.0000i 1.58824i 0.607760 + 0.794121i \(0.292068\pi\)
−0.607760 + 0.794121i \(0.707932\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 40.0000i 1.47342i
\(738\) 0 0
\(739\) 15.0000 0.551784 0.275892 0.961189i \(-0.411027\pi\)
0.275892 + 0.961189i \(0.411027\pi\)
\(740\) 0 0
\(741\) −24.0000 −0.881662
\(742\) 0 0
\(743\) − 9.00000i − 0.330178i −0.986279 0.165089i \(-0.947209\pi\)
0.986279 0.165089i \(-0.0527911\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 54.0000i 1.97576i
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 11.0000 0.401396 0.200698 0.979653i \(-0.435679\pi\)
0.200698 + 0.979653i \(0.435679\pi\)
\(752\) 0 0
\(753\) − 30.0000i − 1.09326i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) 0 0
\(759\) −90.0000 −3.26679
\(760\) 0 0
\(761\) −3.00000 −0.108750 −0.0543750 0.998521i \(-0.517317\pi\)
−0.0543750 + 0.998521i \(0.517317\pi\)
\(762\) 0 0
\(763\) − 36.0000i − 1.30329i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.0000i 0.577727i
\(768\) 0 0
\(769\) −42.0000 −1.51456 −0.757279 0.653091i \(-0.773472\pi\)
−0.757279 + 0.653091i \(0.773472\pi\)
\(770\) 0 0
\(771\) −48.0000 −1.72868
\(772\) 0 0
\(773\) 35.0000i 1.25886i 0.777056 + 0.629431i \(0.216712\pi\)
−0.777056 + 0.629431i \(0.783288\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 9.00000i − 0.322873i
\(778\) 0 0
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) 15.0000 0.536742
\(782\) 0 0
\(783\) 54.0000i 1.92980i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 21.0000i − 0.748569i −0.927314 0.374285i \(-0.877888\pi\)
0.927314 0.374285i \(-0.122112\pi\)
\(788\) 0 0
\(789\) 69.0000 2.45647
\(790\) 0 0
\(791\) −42.0000 −1.49335
\(792\) 0 0
\(793\) − 16.0000i − 0.568177i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 12.0000i − 0.425062i −0.977154 0.212531i \(-0.931829\pi\)
0.977154 0.212531i \(-0.0681706\pi\)
\(798\) 0 0
\(799\) 44.0000 1.55661
\(800\) 0 0
\(801\) −96.0000 −3.39199
\(802\) 0 0
\(803\) 35.0000i 1.23512i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 66.0000i 2.32331i
\(808\) 0 0
\(809\) 46.0000 1.61727 0.808637 0.588308i \(-0.200206\pi\)
0.808637 + 0.588308i \(0.200206\pi\)
\(810\) 0 0
\(811\) 49.0000 1.72062 0.860311 0.509769i \(-0.170269\pi\)
0.860311 + 0.509769i \(0.170269\pi\)
\(812\) 0 0
\(813\) − 15.0000i − 0.526073i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 40.0000i 1.39942i
\(818\) 0 0
\(819\) 36.0000 1.25794
\(820\) 0 0
\(821\) 21.0000 0.732905 0.366453 0.930437i \(-0.380572\pi\)
0.366453 + 0.930437i \(0.380572\pi\)
\(822\) 0 0
\(823\) 8.00000i 0.278862i 0.990232 + 0.139431i \(0.0445274\pi\)
−0.990232 + 0.139431i \(0.955473\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.0000i 1.04320i 0.853189 + 0.521601i \(0.174665\pi\)
−0.853189 + 0.521601i \(0.825335\pi\)
\(828\) 0 0
\(829\) −52.0000 −1.80603 −0.903017 0.429604i \(-0.858653\pi\)
−0.903017 + 0.429604i \(0.858653\pi\)
\(830\) 0 0
\(831\) −12.0000 −0.416275
\(832\) 0 0
\(833\) 8.00000i 0.277184i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 36.0000i 1.24434i
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) − 12.0000i − 0.413302i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 42.0000i 1.44314i
\(848\) 0 0
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) 10.0000i 0.342393i 0.985237 + 0.171197i \(0.0547634\pi\)
−0.985237 + 0.171197i \(0.945237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.0000i 0.409912i 0.978771 + 0.204956i \(0.0657052\pi\)
−0.978771 + 0.204956i \(0.934295\pi\)
\(858\) 0 0
\(859\) −56.0000 −1.91070 −0.955348 0.295484i \(-0.904519\pi\)
−0.955348 + 0.295484i \(0.904519\pi\)
\(860\) 0 0
\(861\) 81.0000 2.76047
\(862\) 0 0
\(863\) − 24.0000i − 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.00000i 0.101885i
\(868\) 0 0
\(869\) −40.0000 −1.35691
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 0 0
\(873\) 72.0000i 2.43683i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 54.0000i 1.82345i 0.410801 + 0.911725i \(0.365249\pi\)
−0.410801 + 0.911725i \(0.634751\pi\)
\(878\) 0 0
\(879\) −90.0000 −3.03562
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) − 16.0000i − 0.538443i −0.963078 0.269221i \(-0.913234\pi\)
0.963078 0.269221i \(-0.0867663\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37.0000i 1.24234i 0.783676 + 0.621169i \(0.213342\pi\)
−0.783676 + 0.621169i \(0.786658\pi\)
\(888\) 0 0
\(889\) −39.0000 −1.30802
\(890\) 0 0
\(891\) 45.0000 1.50756
\(892\) 0 0
\(893\) 44.0000i 1.47240i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 36.0000i − 1.20201i
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −44.0000 −1.46585
\(902\) 0 0
\(903\) − 90.0000i − 2.99501i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 4.00000i − 0.132818i −0.997792 0.0664089i \(-0.978846\pi\)
0.997792 0.0664089i \(-0.0211542\pi\)
\(908\) 0 0
\(909\) 54.0000 1.79107
\(910\) 0 0
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 0 0
\(913\) − 45.0000i − 1.48928i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −14.0000 −0.461817 −0.230909 0.972975i \(-0.574170\pi\)
−0.230909 + 0.972975i \(0.574170\pi\)
\(920\) 0 0
\(921\) −69.0000 −2.27363
\(922\) 0 0
\(923\) 6.00000i 0.197492i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 36.0000i 1.18240i
\(928\) 0 0
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) −8.00000 −0.262189
\(932\) 0 0
\(933\) 36.0000i 1.17859i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 13.0000i − 0.424691i −0.977195 0.212346i \(-0.931890\pi\)
0.977195 0.212346i \(-0.0681103\pi\)
\(938\) 0 0
\(939\) 66.0000 2.15383
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) − 54.0000i − 1.75848i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8.00000i − 0.259965i −0.991516 0.129983i \(-0.958508\pi\)
0.991516 0.129983i \(-0.0414921\pi\)
\(948\) 0 0
\(949\) −14.0000 −0.454459
\(950\) 0 0
\(951\) 42.0000 1.36194
\(952\) 0 0
\(953\) − 51.0000i − 1.65205i −0.563632 0.826026i \(-0.690596\pi\)
0.563632 0.826026i \(-0.309404\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 90.0000i − 2.90929i
\(958\) 0 0
\(959\) 54.0000 1.74375
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 24.0000i 0.773389i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000i 0.0643157i 0.999483 + 0.0321578i \(0.0102379\pi\)
−0.999483 + 0.0321578i \(0.989762\pi\)
\(968\) 0 0
\(969\) 48.0000 1.54198
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 12.0000i 0.384702i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 28.0000i − 0.895799i −0.894084 0.447900i \(-0.852172\pi\)
0.894084 0.447900i \(-0.147828\pi\)
\(978\) 0 0
\(979\) 80.0000 2.55681
\(980\) 0 0
\(981\) 72.0000 2.29878
\(982\) 0 0
\(983\) 27.0000i 0.861166i 0.902551 + 0.430583i \(0.141692\pi\)
−0.902551 + 0.430583i \(0.858308\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 99.0000i − 3.15120i
\(988\) 0 0
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) −34.0000 −1.08005 −0.540023 0.841650i \(-0.681584\pi\)
−0.540023 + 0.841650i \(0.681584\pi\)
\(992\) 0 0
\(993\) − 66.0000i − 2.09445i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 46.0000i − 1.45683i −0.685134 0.728417i \(-0.740256\pi\)
0.685134 0.728417i \(-0.259744\pi\)
\(998\) 0 0
\(999\) 9.00000 0.284747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3700.2.d.a.149.2 2
5.2 odd 4 740.2.a.c.1.1 1
5.3 odd 4 3700.2.a.a.1.1 1
5.4 even 2 inner 3700.2.d.a.149.1 2
15.2 even 4 6660.2.a.b.1.1 1
20.7 even 4 2960.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.a.c.1.1 1 5.2 odd 4
2960.2.a.a.1.1 1 20.7 even 4
3700.2.a.a.1.1 1 5.3 odd 4
3700.2.d.a.149.1 2 5.4 even 2 inner
3700.2.d.a.149.2 2 1.1 even 1 trivial
6660.2.a.b.1.1 1 15.2 even 4