Properties

Label 3700.2.a.a.1.1
Level $3700$
Weight $2$
Character 3700.1
Self dual yes
Analytic conductor $29.545$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3700,2,Mod(1,3700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3700.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3700 = 2^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.5446487479\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 740)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3700.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +3.00000 q^{7} +6.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +3.00000 q^{7} +6.00000 q^{9} +5.00000 q^{11} -2.00000 q^{13} -4.00000 q^{17} -4.00000 q^{19} -9.00000 q^{21} -6.00000 q^{23} -9.00000 q^{27} +6.00000 q^{29} -4.00000 q^{31} -15.0000 q^{33} +1.00000 q^{37} +6.00000 q^{39} -9.00000 q^{41} -10.0000 q^{43} +11.0000 q^{47} +2.00000 q^{49} +12.0000 q^{51} +11.0000 q^{53} +12.0000 q^{57} -8.00000 q^{59} -8.00000 q^{61} +18.0000 q^{63} +8.00000 q^{67} +18.0000 q^{69} +3.00000 q^{71} -7.00000 q^{73} +15.0000 q^{77} +8.00000 q^{79} +9.00000 q^{81} +9.00000 q^{83} -18.0000 q^{87} -16.0000 q^{89} -6.00000 q^{91} +12.0000 q^{93} -12.0000 q^{97} +30.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −9.00000 −1.96396
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) −15.0000 −2.61116
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.0000 1.60451 0.802257 0.596978i \(-0.203632\pi\)
0.802257 + 0.596978i \(0.203632\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 0 0
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.0000 1.58944
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 18.0000 2.26779
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 18.0000 2.16695
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.0000 1.70941
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −18.0000 −1.92980
\(88\) 0 0
\(89\) −16.0000 −1.69600 −0.847998 0.529999i \(-0.822192\pi\)
−0.847998 + 0.529999i \(0.822192\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) 0 0
\(93\) 12.0000 1.24434
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 0 0
\(99\) 30.0000 3.01511
\(100\) 0 0
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 0 0
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −12.0000 −1.10940
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 27.0000 2.43451
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 0 0
\(129\) 30.0000 2.64135
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −33.0000 −2.77910
\(142\) 0 0
\(143\) −10.0000 −0.836242
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) −1.00000 −0.0819232 −0.0409616 0.999161i \(-0.513042\pi\)
−0.0409616 + 0.999161i \(0.513042\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −24.0000 −1.94029
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.00000 −0.239426 −0.119713 0.992809i \(-0.538197\pi\)
−0.119713 + 0.992809i \(0.538197\pi\)
\(158\) 0 0
\(159\) −33.0000 −2.61707
\(160\) 0 0
\(161\) −18.0000 −1.41860
\(162\) 0 0
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −24.0000 −1.83533
\(172\) 0 0
\(173\) 11.0000 0.836315 0.418157 0.908375i \(-0.362676\pi\)
0.418157 + 0.908375i \(0.362676\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 24.0000 1.80395
\(178\) 0 0
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) 24.0000 1.77413
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −20.0000 −1.46254
\(188\) 0 0
\(189\) −27.0000 −1.96396
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −26.0000 −1.87152 −0.935760 0.352636i \(-0.885285\pi\)
−0.935760 + 0.352636i \(0.885285\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.0000 −1.63868 −0.819341 0.573306i \(-0.805660\pi\)
−0.819341 + 0.573306i \(0.805660\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) −24.0000 −1.69283
\(202\) 0 0
\(203\) 18.0000 1.26335
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −36.0000 −2.50217
\(208\) 0 0
\(209\) −20.0000 −1.38343
\(210\) 0 0
\(211\) −11.0000 −0.757271 −0.378636 0.925546i \(-0.623607\pi\)
−0.378636 + 0.925546i \(0.623607\pi\)
\(212\) 0 0
\(213\) −9.00000 −0.616670
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −12.0000 −0.814613
\(218\) 0 0
\(219\) 21.0000 1.41905
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) −5.00000 −0.334825 −0.167412 0.985887i \(-0.553541\pi\)
−0.167412 + 0.985887i \(0.553541\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.0000 1.06196 0.530979 0.847385i \(-0.321824\pi\)
0.530979 + 0.847385i \(0.321824\pi\)
\(228\) 0 0
\(229\) −21.0000 −1.38772 −0.693860 0.720110i \(-0.744091\pi\)
−0.693860 + 0.720110i \(0.744091\pi\)
\(230\) 0 0
\(231\) −45.0000 −2.96078
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −24.0000 −1.55897
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) −27.0000 −1.71106
\(250\) 0 0
\(251\) −10.0000 −0.631194 −0.315597 0.948893i \(-0.602205\pi\)
−0.315597 + 0.948893i \(0.602205\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.0000 0.998053 0.499026 0.866587i \(-0.333691\pi\)
0.499026 + 0.866587i \(0.333691\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) 36.0000 2.22834
\(262\) 0 0
\(263\) 23.0000 1.41824 0.709120 0.705087i \(-0.249092\pi\)
0.709120 + 0.705087i \(0.249092\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 48.0000 2.93755
\(268\) 0 0
\(269\) −22.0000 −1.34136 −0.670682 0.741745i \(-0.733998\pi\)
−0.670682 + 0.741745i \(0.733998\pi\)
\(270\) 0 0
\(271\) −5.00000 −0.303728 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(272\) 0 0
\(273\) 18.0000 1.08941
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.00000 0.240337 0.120168 0.992754i \(-0.461657\pi\)
0.120168 + 0.992754i \(0.461657\pi\)
\(278\) 0 0
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) −4.00000 −0.238620 −0.119310 0.992857i \(-0.538068\pi\)
−0.119310 + 0.992857i \(0.538068\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −27.0000 −1.59376
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 36.0000 2.11036
\(292\) 0 0
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −45.0000 −2.61116
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) −30.0000 −1.72917
\(302\) 0 0
\(303\) 27.0000 1.55111
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.0000 1.31268 0.656340 0.754466i \(-0.272104\pi\)
0.656340 + 0.754466i \(0.272104\pi\)
\(308\) 0 0
\(309\) −18.0000 −1.02398
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 0 0
\(319\) 30.0000 1.67968
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −36.0000 −1.99080
\(328\) 0 0
\(329\) 33.0000 1.81935
\(330\) 0 0
\(331\) −22.0000 −1.20923 −0.604615 0.796518i \(-0.706673\pi\)
−0.604615 + 0.796518i \(0.706673\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) 42.0000 2.28113
\(340\) 0 0
\(341\) −20.0000 −1.08306
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.0000 −0.536828 −0.268414 0.963304i \(-0.586500\pi\)
−0.268414 + 0.963304i \(0.586500\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) 18.0000 0.960769
\(352\) 0 0
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 36.0000 1.90532
\(358\) 0 0
\(359\) −21.0000 −1.10834 −0.554169 0.832404i \(-0.686964\pi\)
−0.554169 + 0.832404i \(0.686964\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −42.0000 −2.20443
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) −54.0000 −2.81113
\(370\) 0 0
\(371\) 33.0000 1.71327
\(372\) 0 0
\(373\) −1.00000 −0.0517780 −0.0258890 0.999665i \(-0.508242\pi\)
−0.0258890 + 0.999665i \(0.508242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 17.0000 0.873231 0.436616 0.899648i \(-0.356177\pi\)
0.436616 + 0.899648i \(0.356177\pi\)
\(380\) 0 0
\(381\) −39.0000 −1.99803
\(382\) 0 0
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −60.0000 −3.04997
\(388\) 0 0
\(389\) 4.00000 0.202808 0.101404 0.994845i \(-0.467667\pi\)
0.101404 + 0.994845i \(0.467667\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) 0 0
\(399\) 36.0000 1.80225
\(400\) 0 0
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.00000 0.247841
\(408\) 0 0
\(409\) −4.00000 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) 0 0
\(411\) 54.0000 2.66362
\(412\) 0 0
\(413\) −24.0000 −1.18096
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) 1.00000 0.0488532 0.0244266 0.999702i \(-0.492224\pi\)
0.0244266 + 0.999702i \(0.492224\pi\)
\(420\) 0 0
\(421\) 36.0000 1.75453 0.877266 0.480004i \(-0.159365\pi\)
0.877266 + 0.480004i \(0.159365\pi\)
\(422\) 0 0
\(423\) 66.0000 3.20903
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −24.0000 −1.16144
\(428\) 0 0
\(429\) 30.0000 1.44841
\(430\) 0 0
\(431\) −14.0000 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(432\) 0 0
\(433\) 23.0000 1.10531 0.552655 0.833410i \(-0.313615\pi\)
0.552655 + 0.833410i \(0.313615\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 9.00000 0.427603 0.213801 0.976877i \(-0.431415\pi\)
0.213801 + 0.976877i \(0.431415\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.00000 0.141895
\(448\) 0 0
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) −45.0000 −2.11897
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.00000 −0.280668 −0.140334 0.990104i \(-0.544818\pi\)
−0.140334 + 0.990104i \(0.544818\pi\)
\(458\) 0 0
\(459\) 36.0000 1.68034
\(460\) 0 0
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.0000 −0.462745 −0.231372 0.972865i \(-0.574322\pi\)
−0.231372 + 0.972865i \(0.574322\pi\)
\(468\) 0 0
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) 9.00000 0.414698
\(472\) 0 0
\(473\) −50.0000 −2.29900
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 66.0000 3.02193
\(478\) 0 0
\(479\) −14.0000 −0.639676 −0.319838 0.947472i \(-0.603629\pi\)
−0.319838 + 0.947472i \(0.603629\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 54.0000 2.45709
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.00000 0.181257 0.0906287 0.995885i \(-0.471112\pi\)
0.0906287 + 0.995885i \(0.471112\pi\)
\(488\) 0 0
\(489\) −30.0000 −1.35665
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.00000 0.403705
\(498\) 0 0
\(499\) −44.0000 −1.96971 −0.984855 0.173379i \(-0.944532\pi\)
−0.984855 + 0.173379i \(0.944532\pi\)
\(500\) 0 0
\(501\) 24.0000 1.07224
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 27.0000 1.19911
\(508\) 0 0
\(509\) 21.0000 0.930809 0.465404 0.885098i \(-0.345909\pi\)
0.465404 + 0.885098i \(0.345909\pi\)
\(510\) 0 0
\(511\) −21.0000 −0.928985
\(512\) 0 0
\(513\) 36.0000 1.58944
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 55.0000 2.41890
\(518\) 0 0
\(519\) −33.0000 −1.44854
\(520\) 0 0
\(521\) −41.0000 −1.79624 −0.898121 0.439748i \(-0.855068\pi\)
−0.898121 + 0.439748i \(0.855068\pi\)
\(522\) 0 0
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −48.0000 −2.08302
\(532\) 0 0
\(533\) 18.0000 0.779667
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.00000 0.258919
\(538\) 0 0
\(539\) 10.0000 0.430730
\(540\) 0 0
\(541\) −36.0000 −1.54776 −0.773880 0.633332i \(-0.781687\pi\)
−0.773880 + 0.633332i \(0.781687\pi\)
\(542\) 0 0
\(543\) −75.0000 −3.21856
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 0 0
\(549\) −48.0000 −2.04859
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 24.0000 1.02058
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.0000 0.423714 0.211857 0.977301i \(-0.432049\pi\)
0.211857 + 0.977301i \(0.432049\pi\)
\(558\) 0 0
\(559\) 20.0000 0.845910
\(560\) 0 0
\(561\) 60.0000 2.53320
\(562\) 0 0
\(563\) −42.0000 −1.77009 −0.885044 0.465506i \(-0.845872\pi\)
−0.885044 + 0.465506i \(0.845872\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 27.0000 1.13389
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 33.0000 1.38101 0.690504 0.723329i \(-0.257389\pi\)
0.690504 + 0.723329i \(0.257389\pi\)
\(572\) 0 0
\(573\) 36.0000 1.50392
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −28.0000 −1.16566 −0.582828 0.812596i \(-0.698054\pi\)
−0.582828 + 0.812596i \(0.698054\pi\)
\(578\) 0 0
\(579\) 78.0000 3.24157
\(580\) 0 0
\(581\) 27.0000 1.12015
\(582\) 0 0
\(583\) 55.0000 2.27787
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 69.0000 2.83828
\(592\) 0 0
\(593\) −43.0000 −1.76580 −0.882899 0.469563i \(-0.844412\pi\)
−0.882899 + 0.469563i \(0.844412\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.00000 0.245564
\(598\) 0 0
\(599\) −45.0000 −1.83865 −0.919325 0.393499i \(-0.871265\pi\)
−0.919325 + 0.393499i \(0.871265\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 48.0000 1.95471
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.0000 0.487065 0.243532 0.969893i \(-0.421694\pi\)
0.243532 + 0.969893i \(0.421694\pi\)
\(608\) 0 0
\(609\) −54.0000 −2.18819
\(610\) 0 0
\(611\) −22.0000 −0.890025
\(612\) 0 0
\(613\) −27.0000 −1.09052 −0.545260 0.838267i \(-0.683569\pi\)
−0.545260 + 0.838267i \(0.683569\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.00000 −0.362326 −0.181163 0.983453i \(-0.557986\pi\)
−0.181163 + 0.983453i \(0.557986\pi\)
\(618\) 0 0
\(619\) 25.0000 1.00483 0.502417 0.864625i \(-0.332444\pi\)
0.502417 + 0.864625i \(0.332444\pi\)
\(620\) 0 0
\(621\) 54.0000 2.16695
\(622\) 0 0
\(623\) −48.0000 −1.92308
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 60.0000 2.39617
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 0 0
\(633\) 33.0000 1.31163
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) 18.0000 0.712069
\(640\) 0 0
\(641\) 47.0000 1.85639 0.928194 0.372096i \(-0.121361\pi\)
0.928194 + 0.372096i \(0.121361\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 0 0
\(649\) −40.0000 −1.57014
\(650\) 0 0
\(651\) 36.0000 1.41095
\(652\) 0 0
\(653\) 8.00000 0.313064 0.156532 0.987673i \(-0.449969\pi\)
0.156532 + 0.987673i \(0.449969\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −42.0000 −1.63858
\(658\) 0 0
\(659\) −49.0000 −1.90877 −0.954384 0.298580i \(-0.903487\pi\)
−0.954384 + 0.298580i \(0.903487\pi\)
\(660\) 0 0
\(661\) 8.00000 0.311164 0.155582 0.987823i \(-0.450275\pi\)
0.155582 + 0.987823i \(0.450275\pi\)
\(662\) 0 0
\(663\) −24.0000 −0.932083
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −36.0000 −1.39393
\(668\) 0 0
\(669\) 15.0000 0.579934
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.00000 0.269032 0.134516 0.990911i \(-0.457052\pi\)
0.134516 + 0.990911i \(0.457052\pi\)
\(678\) 0 0
\(679\) −36.0000 −1.38155
\(680\) 0 0
\(681\) −48.0000 −1.83936
\(682\) 0 0
\(683\) −18.0000 −0.688751 −0.344375 0.938832i \(-0.611909\pi\)
−0.344375 + 0.938832i \(0.611909\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 63.0000 2.40360
\(688\) 0 0
\(689\) −22.0000 −0.838133
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) 90.0000 3.41882
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) 0 0
\(699\) 42.0000 1.58859
\(700\) 0 0
\(701\) 20.0000 0.755390 0.377695 0.925930i \(-0.376717\pi\)
0.377695 + 0.925930i \(0.376717\pi\)
\(702\) 0 0
\(703\) −4.00000 −0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −27.0000 −1.01544
\(708\) 0 0
\(709\) 36.0000 1.35201 0.676004 0.736898i \(-0.263710\pi\)
0.676004 + 0.736898i \(0.263710\pi\)
\(710\) 0 0
\(711\) 48.0000 1.80014
\(712\) 0 0
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −18.0000 −0.672222
\(718\) 0 0
\(719\) −19.0000 −0.708580 −0.354290 0.935136i \(-0.615277\pi\)
−0.354290 + 0.935136i \(0.615277\pi\)
\(720\) 0 0
\(721\) 18.0000 0.670355
\(722\) 0 0
\(723\) −42.0000 −1.56200
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4.00000 −0.148352 −0.0741759 0.997245i \(-0.523633\pi\)
−0.0741759 + 0.997245i \(0.523633\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 40.0000 1.47945
\(732\) 0 0
\(733\) −43.0000 −1.58824 −0.794121 0.607760i \(-0.792068\pi\)
−0.794121 + 0.607760i \(0.792068\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 40.0000 1.47342
\(738\) 0 0
\(739\) −15.0000 −0.551784 −0.275892 0.961189i \(-0.588973\pi\)
−0.275892 + 0.961189i \(0.588973\pi\)
\(740\) 0 0
\(741\) −24.0000 −0.881662
\(742\) 0 0
\(743\) 9.00000 0.330178 0.165089 0.986279i \(-0.447209\pi\)
0.165089 + 0.986279i \(0.447209\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 54.0000 1.97576
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 11.0000 0.401396 0.200698 0.979653i \(-0.435679\pi\)
0.200698 + 0.979653i \(0.435679\pi\)
\(752\) 0 0
\(753\) 30.0000 1.09326
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 90.0000 3.26679
\(760\) 0 0
\(761\) −3.00000 −0.108750 −0.0543750 0.998521i \(-0.517317\pi\)
−0.0543750 + 0.998521i \(0.517317\pi\)
\(762\) 0 0
\(763\) 36.0000 1.30329
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.0000 0.577727
\(768\) 0 0
\(769\) 42.0000 1.51456 0.757279 0.653091i \(-0.226528\pi\)
0.757279 + 0.653091i \(0.226528\pi\)
\(770\) 0 0
\(771\) −48.0000 −1.72868
\(772\) 0 0
\(773\) −35.0000 −1.25886 −0.629431 0.777056i \(-0.716712\pi\)
−0.629431 + 0.777056i \(0.716712\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −9.00000 −0.322873
\(778\) 0 0
\(779\) 36.0000 1.28983
\(780\) 0 0
\(781\) 15.0000 0.536742
\(782\) 0 0
\(783\) −54.0000 −1.92980
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −21.0000 −0.748569 −0.374285 0.927314i \(-0.622112\pi\)
−0.374285 + 0.927314i \(0.622112\pi\)
\(788\) 0 0
\(789\) −69.0000 −2.45647
\(790\) 0 0
\(791\) −42.0000 −1.49335
\(792\) 0 0
\(793\) 16.0000 0.568177
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.0000 −0.425062 −0.212531 0.977154i \(-0.568171\pi\)
−0.212531 + 0.977154i \(0.568171\pi\)
\(798\) 0 0
\(799\) −44.0000 −1.55661
\(800\) 0 0
\(801\) −96.0000 −3.39199
\(802\) 0 0
\(803\) −35.0000 −1.23512
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 66.0000 2.32331
\(808\) 0 0
\(809\) −46.0000 −1.61727 −0.808637 0.588308i \(-0.799794\pi\)
−0.808637 + 0.588308i \(0.799794\pi\)
\(810\) 0 0
\(811\) 49.0000 1.72062 0.860311 0.509769i \(-0.170269\pi\)
0.860311 + 0.509769i \(0.170269\pi\)
\(812\) 0 0
\(813\) 15.0000 0.526073
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 40.0000 1.39942
\(818\) 0 0
\(819\) −36.0000 −1.25794
\(820\) 0 0
\(821\) 21.0000 0.732905 0.366453 0.930437i \(-0.380572\pi\)
0.366453 + 0.930437i \(0.380572\pi\)
\(822\) 0 0
\(823\) −8.00000 −0.278862 −0.139431 0.990232i \(-0.544527\pi\)
−0.139431 + 0.990232i \(0.544527\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.0000 1.04320 0.521601 0.853189i \(-0.325335\pi\)
0.521601 + 0.853189i \(0.325335\pi\)
\(828\) 0 0
\(829\) 52.0000 1.80603 0.903017 0.429604i \(-0.141347\pi\)
0.903017 + 0.429604i \(0.141347\pi\)
\(830\) 0 0
\(831\) −12.0000 −0.416275
\(832\) 0 0
\(833\) −8.00000 −0.277184
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 36.0000 1.24434
\(838\) 0 0
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 12.0000 0.413302
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 42.0000 1.44314
\(848\) 0 0
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.0000 0.409912 0.204956 0.978771i \(-0.434295\pi\)
0.204956 + 0.978771i \(0.434295\pi\)
\(858\) 0 0
\(859\) 56.0000 1.91070 0.955348 0.295484i \(-0.0954809\pi\)
0.955348 + 0.295484i \(0.0954809\pi\)
\(860\) 0 0
\(861\) 81.0000 2.76047
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.00000 0.101885
\(868\) 0 0
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 0 0
\(873\) −72.0000 −2.43683
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 54.0000 1.82345 0.911725 0.410801i \(-0.134751\pi\)
0.911725 + 0.410801i \(0.134751\pi\)
\(878\) 0 0
\(879\) 90.0000 3.03562
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37.0000 1.24234 0.621169 0.783676i \(-0.286658\pi\)
0.621169 + 0.783676i \(0.286658\pi\)
\(888\) 0 0
\(889\) 39.0000 1.30802
\(890\) 0 0
\(891\) 45.0000 1.50756
\(892\) 0 0
\(893\) −44.0000 −1.47240
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −36.0000 −1.20201
\(898\) 0 0
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) −44.0000 −1.46585
\(902\) 0 0
\(903\) 90.0000 2.99501
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) 0 0
\(909\) −54.0000 −1.79107
\(910\) 0 0
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 0 0
\(913\) 45.0000 1.48928
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 14.0000 0.461817 0.230909 0.972975i \(-0.425830\pi\)
0.230909 + 0.972975i \(0.425830\pi\)
\(920\) 0 0
\(921\) −69.0000 −2.27363
\(922\) 0 0
\(923\) −6.00000 −0.197492
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 36.0000 1.18240
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) −8.00000 −0.262189
\(932\) 0 0
\(933\) −36.0000 −1.17859
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −13.0000 −0.424691 −0.212346 0.977195i \(-0.568110\pi\)
−0.212346 + 0.977195i \(0.568110\pi\)
\(938\) 0 0
\(939\) −66.0000 −2.15383
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 54.0000 1.75848
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.00000 −0.259965 −0.129983 0.991516i \(-0.541492\pi\)
−0.129983 + 0.991516i \(0.541492\pi\)
\(948\) 0 0
\(949\) 14.0000 0.454459
\(950\) 0 0
\(951\) 42.0000 1.36194
\(952\) 0 0
\(953\) 51.0000 1.65205 0.826026 0.563632i \(-0.190596\pi\)
0.826026 + 0.563632i \(0.190596\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −90.0000 −2.90929
\(958\) 0 0
\(959\) −54.0000 −1.74375
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −24.0000 −0.773389
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000 0.0643157 0.0321578 0.999483i \(-0.489762\pi\)
0.0321578 + 0.999483i \(0.489762\pi\)
\(968\) 0 0
\(969\) −48.0000 −1.54198
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) −12.0000 −0.384702
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28.0000 −0.895799 −0.447900 0.894084i \(-0.647828\pi\)
−0.447900 + 0.894084i \(0.647828\pi\)
\(978\) 0 0
\(979\) −80.0000 −2.55681
\(980\) 0 0
\(981\) 72.0000 2.29878
\(982\) 0 0
\(983\) −27.0000 −0.861166 −0.430583 0.902551i \(-0.641692\pi\)
−0.430583 + 0.902551i \(0.641692\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −99.0000 −3.15120
\(988\) 0 0
\(989\) 60.0000 1.90789
\(990\) 0 0
\(991\) −34.0000 −1.08005 −0.540023 0.841650i \(-0.681584\pi\)
−0.540023 + 0.841650i \(0.681584\pi\)
\(992\) 0 0
\(993\) 66.0000 2.09445
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −46.0000 −1.45683 −0.728417 0.685134i \(-0.759744\pi\)
−0.728417 + 0.685134i \(0.759744\pi\)
\(998\) 0 0
\(999\) −9.00000 −0.284747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3700.2.a.a.1.1 1
5.2 odd 4 3700.2.d.a.149.2 2
5.3 odd 4 3700.2.d.a.149.1 2
5.4 even 2 740.2.a.c.1.1 1
15.14 odd 2 6660.2.a.b.1.1 1
20.19 odd 2 2960.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.a.c.1.1 1 5.4 even 2
2960.2.a.a.1.1 1 20.19 odd 2
3700.2.a.a.1.1 1 1.1 even 1 trivial
3700.2.d.a.149.1 2 5.3 odd 4
3700.2.d.a.149.2 2 5.2 odd 4
6660.2.a.b.1.1 1 15.14 odd 2