Properties

Label 370.4.a.c
Level $370$
Weight $4$
Character orbit 370.a
Self dual yes
Analytic conductor $21.831$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,4,Mod(1,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 370.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8307067021\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 6 q^{3} + 4 q^{4} + 5 q^{5} + 12 q^{6} + 3 q^{7} + 8 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + 6 q^{3} + 4 q^{4} + 5 q^{5} + 12 q^{6} + 3 q^{7} + 8 q^{8} + 9 q^{9} + 10 q^{10} + 5 q^{11} + 24 q^{12} - 16 q^{13} + 6 q^{14} + 30 q^{15} + 16 q^{16} + 115 q^{17} + 18 q^{18} + 110 q^{19} + 20 q^{20} + 18 q^{21} + 10 q^{22} + 6 q^{23} + 48 q^{24} + 25 q^{25} - 32 q^{26} - 108 q^{27} + 12 q^{28} - 111 q^{29} + 60 q^{30} - 79 q^{31} + 32 q^{32} + 30 q^{33} + 230 q^{34} + 15 q^{35} + 36 q^{36} - 37 q^{37} + 220 q^{38} - 96 q^{39} + 40 q^{40} + 171 q^{41} + 36 q^{42} + 361 q^{43} + 20 q^{44} + 45 q^{45} + 12 q^{46} - 428 q^{47} + 96 q^{48} - 334 q^{49} + 50 q^{50} + 690 q^{51} - 64 q^{52} - 527 q^{53} - 216 q^{54} + 25 q^{55} + 24 q^{56} + 660 q^{57} - 222 q^{58} + 112 q^{59} + 120 q^{60} - 323 q^{61} - 158 q^{62} + 27 q^{63} + 64 q^{64} - 80 q^{65} + 60 q^{66} - 464 q^{67} + 460 q^{68} + 36 q^{69} + 30 q^{70} - 366 q^{71} + 72 q^{72} + 712 q^{73} - 74 q^{74} + 150 q^{75} + 440 q^{76} + 15 q^{77} - 192 q^{78} + 176 q^{79} + 80 q^{80} - 891 q^{81} + 342 q^{82} - 180 q^{83} + 72 q^{84} + 575 q^{85} + 722 q^{86} - 666 q^{87} + 40 q^{88} + 446 q^{89} + 90 q^{90} - 48 q^{91} + 24 q^{92} - 474 q^{93} - 856 q^{94} + 550 q^{95} + 192 q^{96} - 1407 q^{97} - 668 q^{98} + 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 6.00000 4.00000 5.00000 12.0000 3.00000 8.00000 9.00000 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.4.a.c 1
5.b even 2 1 1850.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.4.a.c 1 1.a even 1 1 trivial
1850.4.a.a 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 6 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(370))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T - 6 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T - 3 \) Copy content Toggle raw display
$11$ \( T - 5 \) Copy content Toggle raw display
$13$ \( T + 16 \) Copy content Toggle raw display
$17$ \( T - 115 \) Copy content Toggle raw display
$19$ \( T - 110 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T + 111 \) Copy content Toggle raw display
$31$ \( T + 79 \) Copy content Toggle raw display
$37$ \( T + 37 \) Copy content Toggle raw display
$41$ \( T - 171 \) Copy content Toggle raw display
$43$ \( T - 361 \) Copy content Toggle raw display
$47$ \( T + 428 \) Copy content Toggle raw display
$53$ \( T + 527 \) Copy content Toggle raw display
$59$ \( T - 112 \) Copy content Toggle raw display
$61$ \( T + 323 \) Copy content Toggle raw display
$67$ \( T + 464 \) Copy content Toggle raw display
$71$ \( T + 366 \) Copy content Toggle raw display
$73$ \( T - 712 \) Copy content Toggle raw display
$79$ \( T - 176 \) Copy content Toggle raw display
$83$ \( T + 180 \) Copy content Toggle raw display
$89$ \( T - 446 \) Copy content Toggle raw display
$97$ \( T + 1407 \) Copy content Toggle raw display
show more
show less