Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [370,2,Mod(9,370)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(370, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("370.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.x (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.95446487479\) |
Analytic rank: | \(0\) |
Dimension: | \(108\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | −0.984808 | + | 0.173648i | −2.81720 | − | 0.496749i | 0.939693 | − | 0.342020i | 1.07854 | − | 1.95876i | 2.86066 | 0.735165 | − | 0.876136i | −0.866025 | + | 0.500000i | 4.87081 | + | 1.77283i | −0.722019 | + | 2.11629i | ||
9.2 | −0.984808 | + | 0.173648i | −2.29177 | − | 0.404101i | 0.939693 | − | 0.342020i | −2.21358 | + | 0.316298i | 2.32713 | 1.49272 | − | 1.77895i | −0.866025 | + | 0.500000i | 2.26984 | + | 0.826155i | 2.12503 | − | 0.695878i | ||
9.3 | −0.984808 | + | 0.173648i | −1.38745 | − | 0.244645i | 0.939693 | − | 0.342020i | 1.61905 | + | 1.54229i | 1.40886 | 1.64033 | − | 1.95487i | −0.866025 | + | 0.500000i | −0.953902 | − | 0.347192i | −1.86227 | − | 1.23771i | ||
9.4 | −0.984808 | + | 0.173648i | −0.771593 | − | 0.136053i | 0.939693 | − | 0.342020i | −0.425568 | + | 2.19520i | 0.783496 | −0.680207 | + | 0.810639i | −0.866025 | + | 0.500000i | −2.24223 | − | 0.816106i | 0.0379105 | − | 2.23575i | ||
9.5 | −0.984808 | + | 0.173648i | −0.397192 | − | 0.0700357i | 0.939693 | − | 0.342020i | 2.17168 | − | 0.532725i | 0.403320 | −3.23589 | + | 3.85639i | −0.866025 | + | 0.500000i | −2.66622 | − | 0.970425i | −2.04618 | + | 0.901741i | ||
9.6 | −0.984808 | + | 0.173648i | 0.906979 | + | 0.159925i | 0.939693 | − | 0.342020i | −1.36673 | − | 1.76976i | −0.920970 | −1.33907 | + | 1.59584i | −0.866025 | + | 0.500000i | −2.02204 | − | 0.735964i | 1.65328 | + | 1.50555i | ||
9.7 | −0.984808 | + | 0.173648i | 1.76238 | + | 0.310755i | 0.939693 | − | 0.342020i | −1.56893 | + | 1.59325i | −1.78956 | −0.326840 | + | 0.389513i | −0.866025 | + | 0.500000i | 0.190327 | + | 0.0692735i | 1.26843 | − | 1.84149i | ||
9.8 | −0.984808 | + | 0.173648i | 2.38342 | + | 0.420261i | 0.939693 | − | 0.342020i | −0.137432 | − | 2.23184i | −2.42018 | 0.265330 | − | 0.316208i | −0.866025 | + | 0.500000i | 2.68498 | + | 0.977252i | 0.522899 | + | 2.17407i | ||
9.9 | −0.984808 | + | 0.173648i | 2.61244 | + | 0.460644i | 0.939693 | − | 0.342020i | 1.38577 | + | 1.75489i | −2.65274 | 2.09125 | − | 2.49226i | −0.866025 | + | 0.500000i | 3.79359 | + | 1.38075i | −1.66945 | − | 1.48759i | ||
9.10 | 0.984808 | − | 0.173648i | −2.61244 | − | 0.460644i | 0.939693 | − | 0.342020i | 1.96886 | + | 1.05999i | −2.65274 | −2.09125 | + | 2.49226i | 0.866025 | − | 0.500000i | 3.79359 | + | 1.38075i | 2.12302 | + | 0.701996i | ||
9.11 | 0.984808 | − | 0.173648i | −2.38342 | − | 0.420261i | 0.939693 | − | 0.342020i | −2.22180 | + | 0.252211i | −2.42018 | −0.265330 | + | 0.316208i | 0.866025 | − | 0.500000i | 2.68498 | + | 0.977252i | −2.14425 | + | 0.634191i | ||
9.12 | 0.984808 | − | 0.173648i | −1.76238 | − | 0.310755i | 0.939693 | − | 0.342020i | 1.29660 | − | 1.82176i | −1.78956 | 0.326840 | − | 0.389513i | 0.866025 | − | 0.500000i | 0.190327 | + | 0.0692735i | 0.960558 | − | 2.01924i | ||
9.13 | 0.984808 | − | 0.173648i | −0.906979 | − | 0.159925i | 0.939693 | − | 0.342020i | −1.98021 | − | 1.03865i | −0.920970 | 1.33907 | − | 1.59584i | 0.866025 | − | 0.500000i | −2.02204 | − | 0.735964i | −2.13048 | − | 0.679008i | ||
9.14 | 0.984808 | − | 0.173648i | 0.397192 | + | 0.0700357i | 0.939693 | − | 0.342020i | −0.147523 | + | 2.23120i | 0.403320 | 3.23589 | − | 3.85639i | 0.866025 | − | 0.500000i | −2.66622 | − | 0.970425i | 0.242161 | + | 2.22292i | ||
9.15 | 0.984808 | − | 0.173648i | 0.771593 | + | 0.136053i | 0.939693 | − | 0.342020i | 2.08795 | − | 0.800295i | 0.783496 | 0.680207 | − | 0.810639i | 0.866025 | − | 0.500000i | −2.24223 | − | 0.816106i | 1.91726 | − | 1.15070i | ||
9.16 | 0.984808 | − | 0.173648i | 1.38745 | + | 0.244645i | 0.939693 | − | 0.342020i | 1.80001 | + | 1.32664i | 1.40886 | −1.64033 | + | 1.95487i | 0.866025 | − | 0.500000i | −0.953902 | − | 0.347192i | 2.00303 | + | 0.993919i | ||
9.17 | 0.984808 | − | 0.173648i | 2.29177 | + | 0.404101i | 0.939693 | − | 0.342020i | −0.0728921 | − | 2.23488i | 2.32713 | −1.49272 | + | 1.77895i | 0.866025 | − | 0.500000i | 2.26984 | + | 0.826155i | −0.459868 | − | 2.18827i | ||
9.18 | 0.984808 | − | 0.173648i | 2.81720 | + | 0.496749i | 0.939693 | − | 0.342020i | −1.74172 | + | 1.40229i | 2.86066 | −0.735165 | + | 0.876136i | 0.866025 | − | 0.500000i | 4.87081 | + | 1.77283i | −1.47175 | + | 1.68343i | ||
49.1 | −0.642788 | − | 0.766044i | −1.67544 | + | 1.99671i | −0.173648 | + | 0.984808i | −0.552122 | − | 2.16683i | 2.60652 | 0.903886 | + | 2.48341i | 0.866025 | − | 0.500000i | −0.658811 | − | 3.73630i | −1.30499 | + | 1.81576i | ||
49.2 | −0.642788 | − | 0.766044i | −1.48887 | + | 1.77437i | −0.173648 | + | 0.984808i | 2.17115 | − | 0.534875i | 2.31627 | −0.983118 | − | 2.70110i | 0.866025 | − | 0.500000i | −0.410698 | − | 2.32918i | −1.80533 | − | 1.31939i | ||
See next 80 embeddings (of 108 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
37.f | even | 9 | 1 | inner |
185.x | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 370.2.x.a | ✓ | 108 |
5.b | even | 2 | 1 | inner | 370.2.x.a | ✓ | 108 |
37.f | even | 9 | 1 | inner | 370.2.x.a | ✓ | 108 |
185.x | even | 18 | 1 | inner | 370.2.x.a | ✓ | 108 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
370.2.x.a | ✓ | 108 | 1.a | even | 1 | 1 | trivial |
370.2.x.a | ✓ | 108 | 5.b | even | 2 | 1 | inner |
370.2.x.a | ✓ | 108 | 37.f | even | 9 | 1 | inner |
370.2.x.a | ✓ | 108 | 185.x | even | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(370, [\chi])\).