Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [370,2,Mod(23,370)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(370, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([9, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("370.23");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.r (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.95446487479\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −0.866025 | − | 0.500000i | −3.26621 | − | 0.875179i | 0.500000 | + | 0.866025i | −1.03435 | + | 1.98245i | 2.39103 | + | 2.39103i | 1.38761 | + | 0.371808i | − | 1.00000i | 7.30413 | + | 4.21704i | 1.88700 | − | 1.19968i | |
23.2 | −0.866025 | − | 0.500000i | −2.52625 | − | 0.676906i | 0.500000 | + | 0.866025i | 0.128227 | − | 2.23239i | 1.84934 | + | 1.84934i | −3.97392 | − | 1.06481i | − | 1.00000i | 3.32566 | + | 1.92007i | −1.22724 | + | 1.86919i | |
23.3 | −0.866025 | − | 0.500000i | −1.69391 | − | 0.453882i | 0.500000 | + | 0.866025i | −1.12773 | − | 1.93086i | 1.24003 | + | 1.24003i | 4.67400 | + | 1.25240i | − | 1.00000i | 0.0652541 | + | 0.0376745i | 0.0112097 | + | 2.23604i | |
23.4 | −0.866025 | − | 0.500000i | −1.56225 | − | 0.418603i | 0.500000 | + | 0.866025i | 2.20578 | + | 0.366816i | 1.14364 | + | 1.14364i | 1.11476 | + | 0.298699i | − | 1.00000i | −0.332689 | − | 0.192078i | −1.72685 | − | 1.42056i | |
23.5 | −0.866025 | − | 0.500000i | −0.0997208 | − | 0.0267201i | 0.500000 | + | 0.866025i | −1.29208 | + | 1.82498i | 0.0730007 | + | 0.0730007i | 2.13411 | + | 0.571833i | − | 1.00000i | −2.58885 | − | 1.49467i | 2.03146 | − | 0.934438i | |
23.6 | −0.866025 | − | 0.500000i | 0.349522 | + | 0.0936541i | 0.500000 | + | 0.866025i | 1.66321 | − | 1.49457i | −0.255868 | − | 0.255868i | −0.0374200 | − | 0.0100267i | − | 1.00000i | −2.48468 | − | 1.43453i | −2.18767 | + | 0.462729i | |
23.7 | −0.866025 | − | 0.500000i | 1.13745 | + | 0.304778i | 0.500000 | + | 0.866025i | −1.74628 | − | 1.39661i | −0.832670 | − | 0.832670i | −3.70879 | − | 0.993767i | − | 1.00000i | −1.39718 | − | 0.806661i | 0.814017 | + | 2.08264i | |
23.8 | −0.866025 | − | 0.500000i | 2.56329 | + | 0.686833i | 0.500000 | + | 0.866025i | 0.971170 | + | 2.01416i | −1.87646 | − | 1.87646i | −1.95638 | − | 0.524210i | − | 1.00000i | 3.50066 | + | 2.02111i | 0.166021 | − | 2.22990i | |
177.1 | −0.866025 | + | 0.500000i | −3.26621 | + | 0.875179i | 0.500000 | − | 0.866025i | −1.03435 | − | 1.98245i | 2.39103 | − | 2.39103i | 1.38761 | − | 0.371808i | 1.00000i | 7.30413 | − | 4.21704i | 1.88700 | + | 1.19968i | ||
177.2 | −0.866025 | + | 0.500000i | −2.52625 | + | 0.676906i | 0.500000 | − | 0.866025i | 0.128227 | + | 2.23239i | 1.84934 | − | 1.84934i | −3.97392 | + | 1.06481i | 1.00000i | 3.32566 | − | 1.92007i | −1.22724 | − | 1.86919i | ||
177.3 | −0.866025 | + | 0.500000i | −1.69391 | + | 0.453882i | 0.500000 | − | 0.866025i | −1.12773 | + | 1.93086i | 1.24003 | − | 1.24003i | 4.67400 | − | 1.25240i | 1.00000i | 0.0652541 | − | 0.0376745i | 0.0112097 | − | 2.23604i | ||
177.4 | −0.866025 | + | 0.500000i | −1.56225 | + | 0.418603i | 0.500000 | − | 0.866025i | 2.20578 | − | 0.366816i | 1.14364 | − | 1.14364i | 1.11476 | − | 0.298699i | 1.00000i | −0.332689 | + | 0.192078i | −1.72685 | + | 1.42056i | ||
177.5 | −0.866025 | + | 0.500000i | −0.0997208 | + | 0.0267201i | 0.500000 | − | 0.866025i | −1.29208 | − | 1.82498i | 0.0730007 | − | 0.0730007i | 2.13411 | − | 0.571833i | 1.00000i | −2.58885 | + | 1.49467i | 2.03146 | + | 0.934438i | ||
177.6 | −0.866025 | + | 0.500000i | 0.349522 | − | 0.0936541i | 0.500000 | − | 0.866025i | 1.66321 | + | 1.49457i | −0.255868 | + | 0.255868i | −0.0374200 | + | 0.0100267i | 1.00000i | −2.48468 | + | 1.43453i | −2.18767 | − | 0.462729i | ||
177.7 | −0.866025 | + | 0.500000i | 1.13745 | − | 0.304778i | 0.500000 | − | 0.866025i | −1.74628 | + | 1.39661i | −0.832670 | + | 0.832670i | −3.70879 | + | 0.993767i | 1.00000i | −1.39718 | + | 0.806661i | 0.814017 | − | 2.08264i | ||
177.8 | −0.866025 | + | 0.500000i | 2.56329 | − | 0.686833i | 0.500000 | − | 0.866025i | 0.971170 | − | 2.01416i | −1.87646 | + | 1.87646i | −1.95638 | + | 0.524210i | 1.00000i | 3.50066 | − | 2.02111i | 0.166021 | + | 2.22990i | ||
193.1 | 0.866025 | − | 0.500000i | −0.765901 | − | 2.85838i | 0.500000 | − | 0.866025i | 2.10603 | − | 0.751410i | −2.09248 | − | 2.09248i | −0.920746 | − | 3.43627i | − | 1.00000i | −4.98565 | + | 2.87847i | 1.44817 | − | 1.70376i | |
193.2 | 0.866025 | − | 0.500000i | −0.630551 | − | 2.35325i | 0.500000 | − | 0.866025i | −1.13658 | − | 1.92567i | −1.72270 | − | 1.72270i | 0.460281 | + | 1.71779i | − | 1.00000i | −2.54210 | + | 1.46768i | −1.94714 | − | 1.09939i | |
193.3 | 0.866025 | − | 0.500000i | −0.474141 | − | 1.76952i | 0.500000 | − | 0.866025i | 0.469352 | + | 2.18625i | −1.29538 | − | 1.29538i | −0.422005 | − | 1.57494i | − | 1.00000i | −0.308315 | + | 0.178006i | 1.49960 | + | 1.65868i | |
193.4 | 0.866025 | − | 0.500000i | −0.0652525 | − | 0.243526i | 0.500000 | − | 0.866025i | 1.44742 | − | 1.70440i | −0.178273 | − | 0.178273i | 1.03204 | + | 3.85162i | − | 1.00000i | 2.54303 | − | 1.46822i | 0.401306 | − | 2.19976i | |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.u | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 370.2.r.f | yes | 32 |
5.c | odd | 4 | 1 | 370.2.q.f | ✓ | 32 | |
37.g | odd | 12 | 1 | 370.2.q.f | ✓ | 32 | |
185.u | even | 12 | 1 | inner | 370.2.r.f | yes | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
370.2.q.f | ✓ | 32 | 5.c | odd | 4 | 1 | |
370.2.q.f | ✓ | 32 | 37.g | odd | 12 | 1 | |
370.2.r.f | yes | 32 | 1.a | even | 1 | 1 | trivial |
370.2.r.f | yes | 32 | 185.u | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{32} + 10 T_{3}^{31} + 56 T_{3}^{30} + 256 T_{3}^{29} + 888 T_{3}^{28} + 2204 T_{3}^{27} + \cdots + 1024 \) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\).