Properties

Label 370.2.r.e
Level $370$
Weight $2$
Character orbit 370.r
Analytic conductor $2.954$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(23,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.r (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{13} + \beta_{5}) q^{2} + (\beta_{15} + \beta_{13} - \beta_{5} - 1) q^{3} + (\beta_{14} + 1) q^{4} + ( - \beta_{14} - \beta_{13} + \cdots - \beta_1) q^{5}+ \cdots + ( - 2 \beta_{15} + \beta_{14} + \cdots + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{13} + \beta_{5}) q^{2} + (\beta_{15} + \beta_{13} - \beta_{5} - 1) q^{3} + (\beta_{14} + 1) q^{4} + ( - \beta_{14} - \beta_{13} + \cdots - \beta_1) q^{5}+ \cdots + ( - 2 \beta_{15} + 4 \beta_{14} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{3} + 8 q^{4} - 8 q^{6} + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 16 q^{3} + 8 q^{4} - 8 q^{6} + 24 q^{9} - 4 q^{10} - 8 q^{12} + 12 q^{13} - 8 q^{16} - 16 q^{17} + 24 q^{19} + 12 q^{20} - 12 q^{21} + 8 q^{22} + 8 q^{24} + 16 q^{25} + 8 q^{26} - 16 q^{27} - 16 q^{29} - 8 q^{30} + 24 q^{31} + 12 q^{33} - 8 q^{35} - 8 q^{40} - 36 q^{41} + 4 q^{42} + 20 q^{45} + 4 q^{46} + 32 q^{47} + 8 q^{48} - 24 q^{49} - 4 q^{50} - 16 q^{51} + 12 q^{52} + 24 q^{53} + 8 q^{54} - 12 q^{55} - 60 q^{57} + 8 q^{58} + 8 q^{59} - 12 q^{60} + 8 q^{61} + 12 q^{62} + 16 q^{63} - 16 q^{64} + 12 q^{65} - 24 q^{66} + 8 q^{67} - 32 q^{68} + 8 q^{69} - 20 q^{70} + 4 q^{71} - 48 q^{73} - 36 q^{75} + 24 q^{76} - 12 q^{77} - 20 q^{79} + 12 q^{80} + 16 q^{81} - 24 q^{82} - 48 q^{83} - 8 q^{85} + 8 q^{86} - 12 q^{87} + 16 q^{88} + 8 q^{89} + 4 q^{90} - 8 q^{91} + 12 q^{92} - 36 q^{93} + 28 q^{94} + 8 q^{95} + 16 q^{96} + 16 q^{97} - 8 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 1434138866353 \nu^{15} - 74224360591111 \nu^{14} + 217326371958939 \nu^{13} + \cdots + 46\!\cdots\!94 ) / 51\!\cdots\!90 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 123434729989149 \nu^{15} + 492304781090243 \nu^{14} + \cdots + 195044141171618 ) / 51\!\cdots\!90 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 137809854283897 \nu^{15} + 666808683532056 \nu^{14} + \cdots + 69\!\cdots\!44 ) / 10\!\cdots\!78 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3909951128714 \nu^{15} - 13126607646508 \nu^{14} + 38145193554947 \nu^{13} + \cdots - 16575048540328 ) / 28585593772190 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 4143762135082 \nu^{15} + 12665097411614 \nu^{14} - 36598537974476 \nu^{13} + \cdots + 3631882693804 ) / 28585593772190 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 14\!\cdots\!27 \nu^{15} + \cdots + 35\!\cdots\!44 ) / 51\!\cdots\!90 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 6100180981 \nu^{15} - 22259671750 \nu^{14} + 65510725326 \nu^{13} - 270219726184 \nu^{12} + \cdots - 77929949288 ) / 18265555126 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 6072104849199 \nu^{15} + 21780610045393 \nu^{14} - 63731636791632 \nu^{13} + \cdots + 65633529574178 ) / 16530327389030 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 20\!\cdots\!87 \nu^{15} + \cdots - 28\!\cdots\!14 ) / 51\!\cdots\!90 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 30320067 \nu^{15} - 111020724 \nu^{14} + 326080511 \nu^{13} - 1344589864 \nu^{12} + \cdots - 330526984 ) / 63923990 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 567889621787826 \nu^{15} + \cdots - 77\!\cdots\!96 ) / 10\!\cdots\!78 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 52\!\cdots\!58 \nu^{15} + \cdots - 60\!\cdots\!06 ) / 51\!\cdots\!90 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 19482487322 \nu^{15} + 71829768307 \nu^{14} - 211530176114 \nu^{13} + 869648666130 \nu^{12} + \cdots + 258618081490 ) / 18265555126 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 82631746 \nu^{15} + 300206917 \nu^{14} - 880560228 \nu^{13} + 3640243297 \nu^{12} + \cdots + 791533522 ) / 63923990 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 69\!\cdots\!34 \nu^{15} + \cdots - 83\!\cdots\!68 ) / 51\!\cdots\!90 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{6} - \beta_{5} - \beta_{3} \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{14} + \beta_{12} + \beta_{11} + \beta_{10} - \beta_{9} + \beta_{6} + \beta_{5} + \beta_{4} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{15} + 4\beta_{14} + 2\beta_{13} + 3\beta_{12} + 2\beta_{11} - 2\beta_{8} + \beta_{6} - 5\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 2 \beta_{15} - 6 \beta_{14} - 11 \beta_{12} - 4 \beta_{11} - 4 \beta_{10} + 9 \beta_{9} - 10 \beta_{8} + \cdots + 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 23 \beta_{15} - 16 \beta_{14} - 22 \beta_{13} - 21 \beta_{12} - 2 \beta_{11} + 21 \beta_{10} + \cdots - 37 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 28 \beta_{15} + 154 \beta_{14} + 23 \beta_{13} + 140 \beta_{12} + 89 \beta_{11} + 95 \beta_{10} + \cdots + 93 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 163 \beta_{15} + 184 \beta_{14} + 240 \beta_{13} + 50 \beta_{12} - 94 \beta_{10} + 200 \beta_{9} + \cdots + 985 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 645 \beta_{15} - 1488 \beta_{14} - 329 \beta_{13} - 1794 \beta_{12} - 914 \beta_{11} - 242 \beta_{10} + \cdots + 9 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 1828 \beta_{15} - 186 \beta_{14} - 1819 \beta_{13} - 195 \beta_{12} + 477 \beta_{11} + 3325 \beta_{10} + \cdots - 5566 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 6400 \beta_{15} + 16412 \beta_{14} + 6539 \beta_{13} + 14863 \beta_{12} + 7481 \beta_{11} + 6042 \beta_{10} + \cdots + 17408 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 8014 \beta_{15} - 12665 \beta_{14} + 18481 \beta_{13} - 24749 \beta_{12} - 18707 \beta_{11} + \cdots + 77085 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 91679 \beta_{15} - 170862 \beta_{14} - 70257 \beta_{13} - 181429 \beta_{12} - 89750 \beta_{11} + \cdots - 166538 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 55995 \beta_{15} + 241852 \beta_{14} - 92227 \beta_{13} + 278084 \beta_{12} + 185857 \beta_{11} + \cdots - 469625 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 880388 \beta_{15} + 1459906 \beta_{14} + 949204 \beta_{13} + 1273161 \beta_{12} + 510702 \beta_{11} + \cdots + 2650257 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 533645 \beta_{15} - 4295841 \beta_{14} + 533645 \beta_{13} - 5220149 \beta_{12} - 3264759 \beta_{11} + \cdots + 3840272 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(-\beta_{5}\) \(\beta_{13}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
23.1
0.792206 1.03242i
−0.709944 + 0.925217i
−1.09227 0.838128i
0.277956 + 0.213283i
0.792206 + 1.03242i
−0.709944 0.925217i
−1.09227 + 0.838128i
0.277956 0.213283i
0.117630 0.893490i
−0.424637 + 3.22544i
2.69978 + 0.355433i
0.339278 + 0.0446668i
0.117630 + 0.893490i
−0.424637 3.22544i
2.69978 0.355433i
0.339278 0.0446668i
0.866025 + 0.500000i −2.83195 0.758819i 0.500000 + 0.866025i −1.91159 1.16009i −2.07313 2.07313i 2.40553 + 0.644560i 1.00000i 4.84607 + 2.79788i −1.07544 1.96047i
23.2 0.866025 + 0.500000i −2.83195 0.758819i 0.500000 + 0.866025i 2.17041 0.537883i −2.07313 2.07313i −1.69842 0.455091i 1.00000i 4.84607 + 2.79788i 2.14857 + 0.619385i
23.3 0.866025 + 0.500000i −0.900100 0.241181i 0.500000 + 0.866025i −1.62401 1.53707i −0.658919 0.658919i −2.22532 0.596272i 1.00000i −1.84607 1.06583i −0.637899 2.14315i
23.4 0.866025 + 0.500000i −0.900100 0.241181i 0.500000 + 0.866025i 1.36519 + 1.77095i −0.658919 0.658919i 1.51821 + 0.406803i 1.00000i −1.84607 1.06583i 0.296818 + 2.21628i
177.1 0.866025 0.500000i −2.83195 + 0.758819i 0.500000 0.866025i −1.91159 + 1.16009i −2.07313 + 2.07313i 2.40553 0.644560i 1.00000i 4.84607 2.79788i −1.07544 + 1.96047i
177.2 0.866025 0.500000i −2.83195 + 0.758819i 0.500000 0.866025i 2.17041 + 0.537883i −2.07313 + 2.07313i −1.69842 + 0.455091i 1.00000i 4.84607 2.79788i 2.14857 0.619385i
177.3 0.866025 0.500000i −0.900100 + 0.241181i 0.500000 0.866025i −1.62401 + 1.53707i −0.658919 + 0.658919i −2.22532 + 0.596272i 1.00000i −1.84607 + 1.06583i −0.637899 + 2.14315i
177.4 0.866025 0.500000i −0.900100 + 0.241181i 0.500000 0.866025i 1.36519 1.77095i −0.658919 + 0.658919i 1.51821 0.406803i 1.00000i −1.84607 + 1.06583i 0.296818 2.21628i
193.1 −0.866025 + 0.500000i −0.392794 1.46593i 0.500000 0.866025i −1.19306 + 1.89119i 1.07313 + 1.07313i −0.552037 2.06023i 1.00000i 0.603425 0.348387i 0.0876265 2.23435i
193.2 −0.866025 + 0.500000i −0.392794 1.46593i 0.500000 0.866025i 2.15899 + 0.582041i 1.07313 + 1.07313i −0.155070 0.578728i 1.00000i 0.603425 0.348387i −2.16076 + 0.575432i
193.3 −0.866025 + 0.500000i 0.124844 + 0.465926i 0.500000 0.866025i −1.99671 + 1.00656i −0.341081 0.341081i −0.510450 1.90503i 1.00000i 2.39658 1.38366i 1.22592 1.87006i
193.4 −0.866025 + 0.500000i 0.124844 + 0.465926i 0.500000 0.866025i 1.03078 + 1.98431i −0.341081 0.341081i 1.21756 + 4.54399i 1.00000i 2.39658 1.38366i −1.88484 1.20307i
347.1 −0.866025 0.500000i −0.392794 + 1.46593i 0.500000 + 0.866025i −1.19306 1.89119i 1.07313 1.07313i −0.552037 + 2.06023i 1.00000i 0.603425 + 0.348387i 0.0876265 + 2.23435i
347.2 −0.866025 0.500000i −0.392794 + 1.46593i 0.500000 + 0.866025i 2.15899 0.582041i 1.07313 1.07313i −0.155070 + 0.578728i 1.00000i 0.603425 + 0.348387i −2.16076 0.575432i
347.3 −0.866025 0.500000i 0.124844 0.465926i 0.500000 + 0.866025i −1.99671 1.00656i −0.341081 + 0.341081i −0.510450 + 1.90503i 1.00000i 2.39658 + 1.38366i 1.22592 + 1.87006i
347.4 −0.866025 0.500000i 0.124844 0.465926i 0.500000 + 0.866025i 1.03078 1.98431i −0.341081 + 0.341081i 1.21756 4.54399i 1.00000i 2.39658 + 1.38366i −1.88484 + 1.20307i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
185.u even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.2.r.e yes 16
5.c odd 4 1 370.2.q.e 16
37.g odd 12 1 370.2.q.e 16
185.u even 12 1 inner 370.2.r.e yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.q.e 16 5.c odd 4 1
370.2.q.e 16 37.g odd 12 1
370.2.r.e yes 16 1.a even 1 1 trivial
370.2.r.e yes 16 185.u even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 8T_{3}^{7} + 26T_{3}^{6} + 48T_{3}^{5} + 62T_{3}^{4} + 48T_{3}^{3} + 20T_{3}^{2} + 8T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{8} + 8 T^{7} + 26 T^{6} + \cdots + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} - 8 T^{14} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( T^{16} + 12 T^{14} + \cdots + 35344 \) Copy content Toggle raw display
$11$ \( T^{16} + 104 T^{14} + \cdots + 28558336 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 154157056 \) Copy content Toggle raw display
$17$ \( T^{16} + 16 T^{15} + \cdots + 591361 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 1413760000 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 3175998736 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 217903173601 \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 2606287360000 \) Copy content Toggle raw display
$37$ \( (T^{8} + 24 T^{6} + \cdots + 1874161)^{2} \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 6483309361 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 429815824 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 34744328602624 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 29243736064 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 178794124017664 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 693034605169 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 133593174016 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 31\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 32262400000000 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 2852045440000 \) Copy content Toggle raw display
$83$ \( T^{16} + 48 T^{15} + \cdots + 234256 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 10645493329 \) Copy content Toggle raw display
$97$ \( (T^{8} - 8 T^{7} + \cdots + 50233)^{2} \) Copy content Toggle raw display
show more
show less