Properties

Label 370.2.r.d
Level $370$
Weight $2$
Character orbit 370.r
Analytic conductor $2.954$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(23,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.r (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} - 4x^{10} + 6x^{8} + 44x^{7} + 56x^{6} + 32x^{5} + 92x^{4} - 16x^{3} + 36x^{2} - 24x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{8} q^{2} + (\beta_{9} + \beta_{8} + \beta_{4} + \cdots + 1) q^{3}+ \cdots + ( - \beta_{10} + \beta_{9} + 3 \beta_{8} + \cdots - 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{8} q^{2} + (\beta_{9} + \beta_{8} + \beta_{4} + \cdots + 1) q^{3}+ \cdots + ( - 2 \beta_{11} - \beta_{10} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} + 6 q^{4} - 8 q^{5} + 6 q^{6} - 4 q^{7} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{3} + 6 q^{4} - 8 q^{5} + 6 q^{6} - 4 q^{7} - 18 q^{9} - 4 q^{10} - 6 q^{13} - 8 q^{14} - 14 q^{15} - 6 q^{16} + 12 q^{17} + 10 q^{18} + 8 q^{19} - 4 q^{20} + 54 q^{21} - 10 q^{22} - 10 q^{25} - 18 q^{27} + 4 q^{28} - 4 q^{29} + 10 q^{30} - 2 q^{31} - 28 q^{33} - 12 q^{34} + 14 q^{35} + 12 q^{37} + 16 q^{38} + 30 q^{39} - 2 q^{40} + 12 q^{41} - 22 q^{42} - 6 q^{44} + 24 q^{45} + 2 q^{46} - 28 q^{47} - 6 q^{48} - 24 q^{49} + 16 q^{50} - 8 q^{51} - 6 q^{52} + 14 q^{53} + 18 q^{54} - 32 q^{55} - 4 q^{56} - 72 q^{57} - 10 q^{58} + 14 q^{60} + 24 q^{61} - 16 q^{62} + 8 q^{63} - 12 q^{64} - 26 q^{65} + 8 q^{66} + 18 q^{67} + 24 q^{68} + 40 q^{69} + 6 q^{70} - 10 q^{72} + 28 q^{73} - 38 q^{74} - 30 q^{75} - 8 q^{76} + 26 q^{77} + 30 q^{78} + 56 q^{79} + 4 q^{80} + 4 q^{81} - 28 q^{82} + 14 q^{83} + 28 q^{85} - 22 q^{86} - 10 q^{87} - 20 q^{88} + 2 q^{89} + 42 q^{90} + 38 q^{91} - 18 q^{92} + 18 q^{93} + 16 q^{94} - 56 q^{95} - 6 q^{96} - 44 q^{97} + 22 q^{98} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 2x^{11} - 4x^{10} + 6x^{8} + 44x^{7} + 56x^{6} + 32x^{5} + 92x^{4} - 16x^{3} + 36x^{2} - 24x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 48023 \nu^{11} - 173427 \nu^{10} + 812758 \nu^{9} + 795518 \nu^{8} - 312576 \nu^{7} + \cdots - 16072116 ) / 8800836 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2660983 \nu^{11} - 7621528 \nu^{10} - 6209960 \nu^{9} + 9898720 \nu^{8} + 18275158 \nu^{7} + \cdots - 77578192 ) / 132012540 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 1499 \nu^{11} - 1684 \nu^{10} - 8260 \nu^{9} - 6690 \nu^{8} + 8734 \nu^{7} + 77220 \nu^{6} + \cdots - 22456 ) / 40260 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 5362957 \nu^{11} + 9940372 \nu^{10} + 23030390 \nu^{9} + 1380680 \nu^{8} - 29137702 \nu^{7} + \cdots + 32870848 ) / 132012540 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 8217712 \nu^{11} + 11072467 \nu^{10} + 42811220 \nu^{9} + 23030390 \nu^{8} - 47925592 \nu^{7} + \cdots + 35972008 ) / 132012540 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 5614 \nu^{11} + 9729 \nu^{10} + 24140 \nu^{9} + 8260 \nu^{8} - 26994 \nu^{7} - 255750 \nu^{6} + \cdots + 68676 ) / 40260 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 19394548 \nu^{11} + 36128113 \nu^{10} + 85199720 \nu^{9} + 6209960 \nu^{8} - 126266008 \nu^{7} + \cdots + 277303252 ) / 132012540 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 12537719 \nu^{11} - 22791104 \nu^{10} - 56749885 \nu^{9} - 5276635 \nu^{8} + 85217429 \nu^{7} + \cdots - 249596696 ) / 66006270 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 15731201 \nu^{11} + 24513101 \nu^{10} + 73188085 \nu^{9} + 35555635 \nu^{8} - 80700356 \nu^{7} + \cdots + 164311814 ) / 66006270 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 16622963 \nu^{11} + 31633798 \nu^{10} + 68509300 \nu^{9} + 8136630 \nu^{8} - 92738998 \nu^{7} + \cdots + 249278272 ) / 44004180 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{10} - \beta_{7} - 2\beta_{6} - \beta_{3} + \beta_{2} + \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{11} + \beta_{10} - \beta_{8} - 2\beta_{7} - \beta_{6} - 3\beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6 \beta_{11} + 7 \beta_{10} - \beta_{9} - 8 \beta_{8} - 16 \beta_{7} - 9 \beta_{6} - 3 \beta_{5} + \cdots + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 13 \beta_{11} + 18 \beta_{10} - 9 \beta_{9} - 24 \beta_{8} - 34 \beta_{7} - 21 \beta_{6} - 16 \beta_{5} + \cdots + 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 54 \beta_{11} + 54 \beta_{10} - 42 \beta_{9} - 112 \beta_{8} - 124 \beta_{7} - 70 \beta_{6} - 34 \beta_{5} + \cdots - 8 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 152 \beta_{11} + 124 \beta_{10} - 124 \beta_{9} - 310 \beta_{8} - 310 \beta_{7} - 148 \beta_{6} + \cdots - 72 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 436 \beta_{11} + 326 \beta_{10} - 436 \beta_{9} - 996 \beta_{8} - 874 \beta_{7} - 388 \beta_{6} + \cdots - 438 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 1080 \beta_{11} + 636 \beta_{10} - 1272 \beta_{9} - 2662 \beta_{8} - 1940 \beta_{7} - 722 \beta_{6} + \cdots - 1582 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 2644 \beta_{11} + 942 \beta_{10} - 3586 \beta_{9} - 7104 \beta_{8} - 4084 \beta_{7} - 942 \beta_{6} + \cdots - 5524 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 5306 \beta_{11} - 9130 \beta_{9} - 16376 \beta_{8} - 6028 \beta_{7} + 722 \beta_{6} + 4084 \beta_{4} + \cdots - 17098 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(\beta_{6}\) \(-\beta_{6} - \beta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
23.1
0.270517 0.0724848i
2.78638 0.746609i
−1.69087 + 0.453068i
0.270517 + 0.0724848i
2.78638 + 0.746609i
−1.69087 0.453068i
−0.208144 + 0.776804i
−0.431120 + 1.60896i
0.273238 1.01974i
−0.208144 0.776804i
−0.431120 1.60896i
0.273238 + 1.01974i
0.866025 + 0.500000i −0.658815 0.176529i 0.500000 + 0.866025i −1.32150 + 1.80379i −0.482286 0.482286i −4.10264 1.09930i 1.00000i −2.19520 1.26740i −2.04634 + 0.901374i
23.2 0.866025 + 0.500000i 1.62090 + 0.434319i 0.500000 + 0.866025i −2.05890 + 0.872317i 1.18658 + 1.18658i 2.36181 + 0.632846i 1.00000i −0.159392 0.0920251i −2.21922 0.274000i
23.3 0.866025 + 0.500000i 2.26997 + 0.608236i 0.500000 + 0.866025i 0.514372 2.17610i 1.66173 + 1.66173i −0.991227 0.265598i 1.00000i 2.18472 + 1.26135i 1.53351 1.62737i
177.1 0.866025 0.500000i −0.658815 + 0.176529i 0.500000 0.866025i −1.32150 1.80379i −0.482286 + 0.482286i −4.10264 + 1.09930i 1.00000i −2.19520 + 1.26740i −2.04634 0.901374i
177.2 0.866025 0.500000i 1.62090 0.434319i 0.500000 0.866025i −2.05890 0.872317i 1.18658 1.18658i 2.36181 0.632846i 1.00000i −0.159392 + 0.0920251i −2.21922 + 0.274000i
177.3 0.866025 0.500000i 2.26997 0.608236i 0.500000 0.866025i 0.514372 + 2.17610i 1.66173 1.66173i −0.991227 + 0.265598i 1.00000i 2.18472 1.26135i 1.53351 + 1.62737i
193.1 −0.866025 + 0.500000i −0.745286 2.78144i 0.500000 0.866025i −2.22784 + 0.191679i 2.03616 + 2.03616i 1.31478 + 4.90683i 1.00000i −4.58291 + 2.64594i 1.83352 1.27992i
193.2 −0.866025 + 0.500000i −0.290531 1.08428i 0.500000 0.866025i 1.13365 1.92739i 0.793745 + 0.793745i 0.304145 + 1.13508i 1.00000i 1.50683 0.869970i −0.0180717 + 2.23599i
193.3 −0.866025 + 0.500000i 0.803766 + 2.99969i 0.500000 0.866025i −0.0397852 + 2.23571i −2.19593 2.19593i −0.886874 3.30986i 1.00000i −5.75405 + 3.32210i −1.08340 1.95608i
347.1 −0.866025 0.500000i −0.745286 + 2.78144i 0.500000 + 0.866025i −2.22784 0.191679i 2.03616 2.03616i 1.31478 4.90683i 1.00000i −4.58291 2.64594i 1.83352 + 1.27992i
347.2 −0.866025 0.500000i −0.290531 + 1.08428i 0.500000 + 0.866025i 1.13365 + 1.92739i 0.793745 0.793745i 0.304145 1.13508i 1.00000i 1.50683 + 0.869970i −0.0180717 2.23599i
347.3 −0.866025 0.500000i 0.803766 2.99969i 0.500000 + 0.866025i −0.0397852 2.23571i −2.19593 + 2.19593i −0.886874 + 3.30986i 1.00000i −5.75405 3.32210i −1.08340 + 1.95608i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
185.u even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.2.r.d yes 12
5.c odd 4 1 370.2.q.d 12
37.g odd 12 1 370.2.q.d 12
185.u even 12 1 inner 370.2.r.d yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.q.d 12 5.c odd 4 1
370.2.q.d 12 37.g odd 12 1
370.2.r.d yes 12 1.a even 1 1 trivial
370.2.r.d yes 12 185.u even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 6 T_{3}^{11} + 27 T_{3}^{10} - 96 T_{3}^{9} + 242 T_{3}^{8} - 534 T_{3}^{7} + 855 T_{3}^{6} + \cdots + 729 \) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{12} - 6 T^{11} + \cdots + 729 \) Copy content Toggle raw display
$5$ \( T^{12} + 8 T^{11} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( T^{12} + 4 T^{11} + \cdots + 47524 \) Copy content Toggle raw display
$11$ \( T^{12} + 36 T^{10} + \cdots + 324 \) Copy content Toggle raw display
$13$ \( T^{12} + 6 T^{11} + \cdots + 97969 \) Copy content Toggle raw display
$17$ \( T^{12} - 12 T^{11} + \cdots + 47524 \) Copy content Toggle raw display
$19$ \( T^{12} - 8 T^{11} + \cdots + 30976 \) Copy content Toggle raw display
$23$ \( T^{12} + 56 T^{10} + \cdots + 5476 \) Copy content Toggle raw display
$29$ \( T^{12} + 4 T^{11} + \cdots + 238144 \) Copy content Toggle raw display
$31$ \( T^{12} + 2 T^{11} + \cdots + 529 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 2565726409 \) Copy content Toggle raw display
$41$ \( T^{12} - 12 T^{11} + \cdots + 1390041 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 134361101809 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 16333351204 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 24894212841 \) Copy content Toggle raw display
$59$ \( T^{12} + 18 T^{10} + \cdots + 1747684 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 898081024 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 47924215056 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 165408143616 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 573985764 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 4859205264 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 6754209856 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 2304384016 \) Copy content Toggle raw display
$97$ \( (T^{6} + 22 T^{5} + \cdots + 484152)^{2} \) Copy content Toggle raw display
show more
show less