Defining parameters
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.r (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 185 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 244 | 76 | 168 |
Cusp forms | 212 | 76 | 136 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
370.2.r.a | $4$ | $2.954$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(2\) | \(2\) | \(4\) | \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(\zeta_{12}^{2}+\zeta_{12}^{3})q^{3}+\cdots\) |
370.2.r.b | $4$ | $2.954$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(6\) | \(4\) | \(-2\) | \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(1-\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{3}+\cdots\) |
370.2.r.c | $8$ | $2.954$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(8\) | \(-8\) | \(0\) | \(q+(-\zeta_{24}^{2}+\zeta_{24}^{6})q^{2}+(1+\zeta_{24}^{2}+\cdots)q^{3}+\cdots\) |
370.2.r.d | $12$ | $2.954$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(6\) | \(-8\) | \(-4\) | \(q+\beta _{8}q^{2}+(1-\beta _{1}-\beta _{3}+\beta _{4}+\beta _{8}+\cdots)q^{3}+\cdots\) |
370.2.r.e | $16$ | $2.954$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-16\) | \(0\) | \(0\) | \(q+(\beta _{5}-\beta _{13})q^{2}+(-1-\beta _{5}+\beta _{13}+\cdots)q^{3}+\cdots\) |
370.2.r.f | $32$ | $2.954$ | None | \(0\) | \(-10\) | \(6\) | \(2\) |
Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)