# Properties

 Label 370.2.q.f.103.8 Level $370$ Weight $2$ Character 370.103 Analytic conductor $2.954$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.q (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$8$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 103.8 Character $$\chi$$ $$=$$ 370.103 Dual form 370.2.q.f.97.8

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(0.686833 + 2.56329i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.84814 - 1.25873i) q^{5} +(-1.87646 + 1.87646i) q^{6} +(0.524210 + 1.95638i) q^{7} -1.00000 q^{8} +(-3.50066 + 2.02111i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(0.686833 + 2.56329i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.84814 - 1.25873i) q^{5} +(-1.87646 + 1.87646i) q^{6} +(0.524210 + 1.95638i) q^{7} -1.00000 q^{8} +(-3.50066 + 2.02111i) q^{9} +(0.166021 - 2.22990i) q^{10} -1.12383i q^{11} +(-2.56329 - 0.686833i) q^{12} +(-2.37951 + 4.12143i) q^{13} +(-1.43217 + 1.43217i) q^{14} +(1.95713 - 5.60185i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.528152 - 0.304929i) q^{17} +(-3.50066 - 2.02111i) q^{18} +(-0.968309 + 0.259458i) q^{19} +(2.01416 - 0.971170i) q^{20} +(-4.65473 + 2.68741i) q^{21} +(0.973266 - 0.561916i) q^{22} +5.88152 q^{23} +(-0.686833 - 2.56329i) q^{24} +(1.83122 + 4.65260i) q^{25} -4.75902 q^{26} +(-1.95568 - 1.95568i) q^{27} +(-1.95638 - 0.524210i) q^{28} +(2.37706 - 2.37706i) q^{29} +(5.82991 - 1.10601i) q^{30} +(-3.83799 - 3.83799i) q^{31} +(0.500000 - 0.866025i) q^{32} +(2.88071 - 0.771884i) q^{33} +(0.528152 + 0.304929i) q^{34} +(1.49373 - 4.27549i) q^{35} -4.04222i q^{36} +(4.85045 + 3.67057i) q^{37} +(-0.708852 - 0.708852i) q^{38} +(-12.1988 - 3.26865i) q^{39} +(1.84814 + 1.25873i) q^{40} +(7.57396 + 4.37283i) q^{41} +(-4.65473 - 2.68741i) q^{42} -2.52967 q^{43} +(0.973266 + 0.561916i) q^{44} +(9.01373 + 0.671093i) q^{45} +(2.94076 + 5.09355i) q^{46} +(4.16660 - 4.16660i) q^{47} +(1.87646 - 1.87646i) q^{48} +(2.50956 - 1.44889i) q^{49} +(-3.11366 + 3.91218i) q^{50} +(1.14437 + 1.14437i) q^{51} +(-2.37951 - 4.12143i) q^{52} +(-0.917679 + 3.42482i) q^{53} +(0.715830 - 2.67152i) q^{54} +(-1.41460 + 2.07699i) q^{55} +(-0.524210 - 1.95638i) q^{56} +(-1.33013 - 2.30386i) q^{57} +(3.24712 + 0.870063i) q^{58} +(-1.81426 + 6.77090i) q^{59} +(3.87278 + 4.49585i) q^{60} +(-13.4578 + 3.60599i) q^{61} +(1.40480 - 5.24279i) q^{62} +(-5.78914 - 5.78914i) q^{63} +1.00000 q^{64} +(9.58541 - 4.62181i) q^{65} +(2.10883 + 2.10883i) q^{66} +(14.0161 - 3.75560i) q^{67} +0.609858i q^{68} +(4.03962 + 15.0761i) q^{69} +(4.44955 - 0.844134i) q^{70} +(-3.54588 + 6.14164i) q^{71} +(3.50066 - 2.02111i) q^{72} +(-8.20562 + 8.20562i) q^{73} +(-0.753581 + 6.03590i) q^{74} +(-10.6682 + 7.88950i) q^{75} +(0.259458 - 0.968309i) q^{76} +(2.19864 - 0.589123i) q^{77} +(-3.26865 - 12.1988i) q^{78} +(4.51070 - 1.20864i) q^{79} +(-0.166021 + 2.22990i) q^{80} +(-2.39356 + 4.14577i) q^{81} +8.74566i q^{82} +(-0.924178 + 3.44908i) q^{83} -5.37482i q^{84} +(-1.35992 - 0.101249i) q^{85} +(-1.26483 - 2.19076i) q^{86} +(7.72573 + 4.46045i) q^{87} +1.12383i q^{88} +(13.2615 + 3.55341i) q^{89} +(3.92568 + 8.14167i) q^{90} +(-9.31044 - 2.49472i) q^{91} +(-2.94076 + 5.09355i) q^{92} +(7.20184 - 12.4740i) q^{93} +(5.69169 + 1.52508i) q^{94} +(2.11615 + 0.739323i) q^{95} +(2.56329 + 0.686833i) q^{96} -10.8045i q^{97} +(2.50956 + 1.44889i) q^{98} +(2.27139 + 3.93416i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32 q + 16 q^{2} - 2 q^{3} - 16 q^{4} + 6 q^{5} + 8 q^{6} - 10 q^{7} - 32 q^{8} + 12 q^{9}+O(q^{10})$$ 32 * q + 16 * q^2 - 2 * q^3 - 16 * q^4 + 6 * q^5 + 8 * q^6 - 10 * q^7 - 32 * q^8 + 12 * q^9 $$32 q + 16 q^{2} - 2 q^{3} - 16 q^{4} + 6 q^{5} + 8 q^{6} - 10 q^{7} - 32 q^{8} + 12 q^{9} + 6 q^{10} + 10 q^{12} + 10 q^{13} - 8 q^{14} - 8 q^{15} - 16 q^{16} - 12 q^{17} + 12 q^{18} + 2 q^{19} - 54 q^{21} + 6 q^{22} + 12 q^{23} + 2 q^{24} - 16 q^{25} + 20 q^{26} + 40 q^{27} + 2 q^{28} + 6 q^{29} + 8 q^{30} - 4 q^{31} + 16 q^{32} + 26 q^{33} - 12 q^{34} - 12 q^{35} + 20 q^{37} - 26 q^{38} - 58 q^{39} - 6 q^{40} + 18 q^{41} - 54 q^{42} - 32 q^{43} + 6 q^{44} + 56 q^{45} + 6 q^{46} + 18 q^{47} - 8 q^{48} - 12 q^{49} - 14 q^{50} - 4 q^{51} + 10 q^{52} - 24 q^{53} + 20 q^{54} - 32 q^{55} + 10 q^{56} + 8 q^{57} + 36 q^{58} + 42 q^{59} + 16 q^{60} - 46 q^{61} - 14 q^{62} + 32 q^{64} - 18 q^{65} + 4 q^{66} + 50 q^{67} - 66 q^{69} + 12 q^{70} - 12 q^{71} - 12 q^{72} - 28 q^{73} + 16 q^{74} - 20 q^{75} - 28 q^{76} + 12 q^{77} - 26 q^{78} + 38 q^{79} - 6 q^{80} + 56 q^{81} - 8 q^{85} - 16 q^{86} + 18 q^{87} + 18 q^{89} + 4 q^{90} + 4 q^{91} - 6 q^{92} + 32 q^{93} + 30 q^{94} + 96 q^{95} - 10 q^{96} - 12 q^{98} - 26 q^{99}+O(q^{100})$$ 32 * q + 16 * q^2 - 2 * q^3 - 16 * q^4 + 6 * q^5 + 8 * q^6 - 10 * q^7 - 32 * q^8 + 12 * q^9 + 6 * q^10 + 10 * q^12 + 10 * q^13 - 8 * q^14 - 8 * q^15 - 16 * q^16 - 12 * q^17 + 12 * q^18 + 2 * q^19 - 54 * q^21 + 6 * q^22 + 12 * q^23 + 2 * q^24 - 16 * q^25 + 20 * q^26 + 40 * q^27 + 2 * q^28 + 6 * q^29 + 8 * q^30 - 4 * q^31 + 16 * q^32 + 26 * q^33 - 12 * q^34 - 12 * q^35 + 20 * q^37 - 26 * q^38 - 58 * q^39 - 6 * q^40 + 18 * q^41 - 54 * q^42 - 32 * q^43 + 6 * q^44 + 56 * q^45 + 6 * q^46 + 18 * q^47 - 8 * q^48 - 12 * q^49 - 14 * q^50 - 4 * q^51 + 10 * q^52 - 24 * q^53 + 20 * q^54 - 32 * q^55 + 10 * q^56 + 8 * q^57 + 36 * q^58 + 42 * q^59 + 16 * q^60 - 46 * q^61 - 14 * q^62 + 32 * q^64 - 18 * q^65 + 4 * q^66 + 50 * q^67 - 66 * q^69 + 12 * q^70 - 12 * q^71 - 12 * q^72 - 28 * q^73 + 16 * q^74 - 20 * q^75 - 28 * q^76 + 12 * q^77 - 26 * q^78 + 38 * q^79 - 6 * q^80 + 56 * q^81 - 8 * q^85 - 16 * q^86 + 18 * q^87 + 18 * q^89 + 4 * q^90 + 4 * q^91 - 6 * q^92 + 32 * q^93 + 30 * q^94 + 96 * q^95 - 10 * q^96 - 12 * q^98 - 26 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ 0.686833 + 2.56329i 0.396543 + 1.47992i 0.819136 + 0.573599i $$0.194453\pi$$
−0.422593 + 0.906320i $$0.638880\pi$$
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −1.84814 1.25873i −0.826512 0.562920i
$$6$$ −1.87646 + 1.87646i −0.766062 + 0.766062i
$$7$$ 0.524210 + 1.95638i 0.198133 + 0.739441i 0.991434 + 0.130612i $$0.0416941\pi$$
−0.793301 + 0.608830i $$0.791639\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ −3.50066 + 2.02111i −1.16689 + 0.673703i
$$10$$ 0.166021 2.22990i 0.0525004 0.705155i
$$11$$ 1.12383i 0.338848i −0.985543 0.169424i $$-0.945809\pi$$
0.985543 0.169424i $$-0.0541907\pi$$
$$12$$ −2.56329 0.686833i −0.739959 0.198272i
$$13$$ −2.37951 + 4.12143i −0.659957 + 1.14308i 0.320669 + 0.947191i $$0.396092\pi$$
−0.980626 + 0.195888i $$0.937241\pi$$
$$14$$ −1.43217 + 1.43217i −0.382763 + 0.382763i
$$15$$ 1.95713 5.60185i 0.505328 1.44639i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 0.528152 0.304929i 0.128096 0.0739561i −0.434583 0.900632i $$-0.643104\pi$$
0.562679 + 0.826676i $$0.309771\pi$$
$$18$$ −3.50066 2.02111i −0.825115 0.476380i
$$19$$ −0.968309 + 0.259458i −0.222145 + 0.0595237i −0.368175 0.929757i $$-0.620017\pi$$
0.146029 + 0.989280i $$0.453351\pi$$
$$20$$ 2.01416 0.971170i 0.450379 0.217160i
$$21$$ −4.65473 + 2.68741i −1.01575 + 0.586441i
$$22$$ 0.973266 0.561916i 0.207501 0.119801i
$$23$$ 5.88152 1.22638 0.613191 0.789934i $$-0.289885\pi$$
0.613191 + 0.789934i $$0.289885\pi$$
$$24$$ −0.686833 2.56329i −0.140199 0.523230i
$$25$$ 1.83122 + 4.65260i 0.366243 + 0.930519i
$$26$$ −4.75902 −0.933320
$$27$$ −1.95568 1.95568i −0.376372 0.376372i
$$28$$ −1.95638 0.524210i −0.369721 0.0990664i
$$29$$ 2.37706 2.37706i 0.441408 0.441408i −0.451077 0.892485i $$-0.648960\pi$$
0.892485 + 0.451077i $$0.148960\pi$$
$$30$$ 5.82991 1.10601i 1.06439 0.201928i
$$31$$ −3.83799 3.83799i −0.689323 0.689323i 0.272759 0.962082i $$-0.412064\pi$$
−0.962082 + 0.272759i $$0.912064\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ 2.88071 0.771884i 0.501467 0.134368i
$$34$$ 0.528152 + 0.304929i 0.0905774 + 0.0522949i
$$35$$ 1.49373 4.27549i 0.252487 0.722690i
$$36$$ 4.04222i 0.673703i
$$37$$ 4.85045 + 3.67057i 0.797410 + 0.603438i
$$38$$ −0.708852 0.708852i −0.114991 0.114991i
$$39$$ −12.1988 3.26865i −1.95337 0.523403i
$$40$$ 1.84814 + 1.25873i 0.292216 + 0.199022i
$$41$$ 7.57396 + 4.37283i 1.18285 + 0.682921i 0.956673 0.291164i $$-0.0940425\pi$$
0.226181 + 0.974085i $$0.427376\pi$$
$$42$$ −4.65473 2.68741i −0.718240 0.414676i
$$43$$ −2.52967 −0.385771 −0.192885 0.981221i $$-0.561785\pi$$
−0.192885 + 0.981221i $$0.561785\pi$$
$$44$$ 0.973266 + 0.561916i 0.146725 + 0.0847120i
$$45$$ 9.01373 + 0.671093i 1.34369 + 0.100041i
$$46$$ 2.94076 + 5.09355i 0.433592 + 0.751003i
$$47$$ 4.16660 4.16660i 0.607762 0.607762i −0.334599 0.942361i $$-0.608601\pi$$
0.942361 + 0.334599i $$0.108601\pi$$
$$48$$ 1.87646 1.87646i 0.270844 0.270844i
$$49$$ 2.50956 1.44889i 0.358508 0.206985i
$$50$$ −3.11366 + 3.91218i −0.440338 + 0.553265i
$$51$$ 1.14437 + 1.14437i 0.160245 + 0.160245i
$$52$$ −2.37951 4.12143i −0.329979 0.571540i
$$53$$ −0.917679 + 3.42482i −0.126053 + 0.470436i −0.999875 0.0158099i $$-0.994967\pi$$
0.873822 + 0.486246i $$0.161634\pi$$
$$54$$ 0.715830 2.67152i 0.0974122 0.363547i
$$55$$ −1.41460 + 2.07699i −0.190744 + 0.280062i
$$56$$ −0.524210 1.95638i −0.0700505 0.261432i
$$57$$ −1.33013 2.30386i −0.176180 0.305153i
$$58$$ 3.24712 + 0.870063i 0.426368 + 0.114245i
$$59$$ −1.81426 + 6.77090i −0.236196 + 0.881496i 0.741410 + 0.671052i $$0.234157\pi$$
−0.977606 + 0.210443i $$0.932509\pi$$
$$60$$ 3.87278 + 4.49585i 0.499974 + 0.580411i
$$61$$ −13.4578 + 3.60599i −1.72309 + 0.461700i −0.978572 0.205904i $$-0.933987\pi$$
−0.744516 + 0.667604i $$0.767320\pi$$
$$62$$ 1.40480 5.24279i 0.178410 0.665835i
$$63$$ −5.78914 5.78914i −0.729363 0.729363i
$$64$$ 1.00000 0.125000
$$65$$ 9.58541 4.62181i 1.18892 0.573266i
$$66$$ 2.10883 + 2.10883i 0.259579 + 0.259579i
$$67$$ 14.0161 3.75560i 1.71234 0.458820i 0.736343 0.676609i $$-0.236551\pi$$
0.975996 + 0.217789i $$0.0698845\pi$$
$$68$$ 0.609858i 0.0739561i
$$69$$ 4.03962 + 15.0761i 0.486314 + 1.81495i
$$70$$ 4.44955 0.844134i 0.531823 0.100893i
$$71$$ −3.54588 + 6.14164i −0.420818 + 0.728878i −0.996020 0.0891333i $$-0.971590\pi$$
0.575202 + 0.818012i $$0.304924\pi$$
$$72$$ 3.50066 2.02111i 0.412557 0.238190i
$$73$$ −8.20562 + 8.20562i −0.960395 + 0.960395i −0.999245 0.0388501i $$-0.987631\pi$$
0.0388501 + 0.999245i $$0.487631\pi$$
$$74$$ −0.753581 + 6.03590i −0.0876020 + 0.701659i
$$75$$ −10.6682 + 7.88950i −1.23186 + 0.911001i
$$76$$ 0.259458 0.968309i 0.0297618 0.111073i
$$77$$ 2.19864 0.589123i 0.250558 0.0671368i
$$78$$ −3.26865 12.1988i −0.370102 1.38124i
$$79$$ 4.51070 1.20864i 0.507493 0.135982i 0.00401787 0.999992i $$-0.498721\pi$$
0.503476 + 0.864009i $$0.332054\pi$$
$$80$$ −0.166021 + 2.22990i −0.0185617 + 0.249310i
$$81$$ −2.39356 + 4.14577i −0.265951 + 0.460641i
$$82$$ 8.74566i 0.965797i
$$83$$ −0.924178 + 3.44908i −0.101442 + 0.378586i −0.997917 0.0645076i $$-0.979452\pi$$
0.896475 + 0.443093i $$0.146119\pi$$
$$84$$ 5.37482i 0.586441i
$$85$$ −1.35992 0.101249i −0.147504 0.0109820i
$$86$$ −1.26483 2.19076i −0.136391 0.236235i
$$87$$ 7.72573 + 4.46045i 0.828286 + 0.478211i
$$88$$ 1.12383i 0.119801i
$$89$$ 13.2615 + 3.55341i 1.40572 + 0.376661i 0.880394 0.474243i $$-0.157278\pi$$
0.525322 + 0.850903i $$0.323945\pi$$
$$90$$ 3.92568 + 8.14167i 0.413803 + 0.858207i
$$91$$ −9.31044 2.49472i −0.975999 0.261518i
$$92$$ −2.94076 + 5.09355i −0.306596 + 0.531039i
$$93$$ 7.20184 12.4740i 0.746796 1.29349i
$$94$$ 5.69169 + 1.52508i 0.587053 + 0.157300i
$$95$$ 2.11615 + 0.739323i 0.217113 + 0.0758530i
$$96$$ 2.56329 + 0.686833i 0.261615 + 0.0700996i
$$97$$ 10.8045i 1.09703i −0.836142 0.548513i $$-0.815194\pi$$
0.836142 0.548513i $$-0.184806\pi$$
$$98$$ 2.50956 + 1.44889i 0.253504 + 0.146360i
$$99$$ 2.27139 + 3.93416i 0.228283 + 0.395398i
$$100$$ −4.94487 0.740419i −0.494487 0.0740419i
$$101$$ 13.7754i 1.37071i −0.728210 0.685354i $$-0.759648\pi$$
0.728210 0.685354i $$-0.240352\pi$$
$$102$$ −0.418870 + 1.56324i −0.0414743 + 0.154784i
$$103$$ 18.0233i 1.77589i −0.459953 0.887943i $$-0.652134\pi$$
0.459953 0.887943i $$-0.347866\pi$$
$$104$$ 2.37951 4.12143i 0.233330 0.404140i
$$105$$ 11.9853 + 0.892332i 1.16964 + 0.0870827i
$$106$$ −3.42482 + 0.917679i −0.332648 + 0.0891329i
$$107$$ −0.739316 2.75917i −0.0714724 0.266739i 0.920938 0.389709i $$-0.127425\pi$$
−0.992410 + 0.122971i $$0.960758\pi$$
$$108$$ 2.67152 0.715830i 0.257067 0.0688808i
$$109$$ 4.32210 16.1303i 0.413982 1.54500i −0.372884 0.927878i $$-0.621631\pi$$
0.786866 0.617124i $$-0.211702\pi$$
$$110$$ −2.50603 0.186579i −0.238940 0.0177897i
$$111$$ −6.07731 + 14.9542i −0.576832 + 1.41939i
$$112$$ 1.43217 1.43217i 0.135327 0.135327i
$$113$$ −4.26128 + 2.46025i −0.400868 + 0.231441i −0.686858 0.726791i $$-0.741011\pi$$
0.285991 + 0.958232i $$0.407677\pi$$
$$114$$ 1.33013 2.30386i 0.124578 0.215776i
$$115$$ −10.8699 7.40323i −1.01362 0.690355i
$$116$$ 0.870063 + 3.24712i 0.0807833 + 0.301487i
$$117$$ 19.2370i 1.77846i
$$118$$ −6.77090 + 1.81426i −0.623312 + 0.167016i
$$119$$ 0.873419 + 0.873419i 0.0800662 + 0.0800662i
$$120$$ −1.95713 + 5.60185i −0.178660 + 0.511377i
$$121$$ 9.73700 0.885182
$$122$$ −9.85176 9.85176i −0.891936 0.891936i
$$123$$ −6.00681 + 22.4177i −0.541615 + 2.02134i
$$124$$ 5.24279 1.40480i 0.470817 0.126155i
$$125$$ 2.47201 10.9036i 0.221103 0.975250i
$$126$$ 2.11897 7.90811i 0.188773 0.704510i
$$127$$ −6.90268 1.84957i −0.612514 0.164123i −0.0607917 0.998150i $$-0.519363\pi$$
−0.551722 + 0.834028i $$0.686029\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ −1.73746 6.48429i −0.152975 0.570910i
$$130$$ 8.79531 + 5.99030i 0.771400 + 0.525384i
$$131$$ 5.25720 19.6201i 0.459324 1.71422i −0.215732 0.976453i $$-0.569214\pi$$
0.675056 0.737767i $$-0.264120\pi$$
$$132$$ −0.771884 + 2.88071i −0.0671839 + 0.250734i
$$133$$ −1.01519 1.75837i −0.0880285 0.152470i
$$134$$ 10.2605 + 10.2605i 0.886372 + 0.886372i
$$135$$ 1.15270 + 6.07604i 0.0992086 + 0.522943i
$$136$$ −0.528152 + 0.304929i −0.0452887 + 0.0261474i
$$137$$ 4.18991 4.18991i 0.357968 0.357968i −0.505095 0.863064i $$-0.668543\pi$$
0.863064 + 0.505095i $$0.168543\pi$$
$$138$$ −11.0365 + 11.0365i −0.939486 + 0.939486i
$$139$$ 5.56954 + 9.64673i 0.472402 + 0.818225i 0.999501 0.0315791i $$-0.0100536\pi$$
−0.527099 + 0.849804i $$0.676720\pi$$
$$140$$ 2.95582 + 3.43136i 0.249812 + 0.290003i
$$141$$ 13.5420 + 7.81847i 1.14044 + 0.658434i
$$142$$ −7.09175 −0.595127
$$143$$ 4.63179 + 2.67417i 0.387330 + 0.223625i
$$144$$ 3.50066 + 2.02111i 0.291722 + 0.168426i
$$145$$ −7.38519 + 1.40106i −0.613306 + 0.116352i
$$146$$ −11.2091 3.00346i −0.927670 0.248569i
$$147$$ 5.43759 + 5.43759i 0.448485 + 0.448485i
$$148$$ −5.60404 + 2.36533i −0.460649 + 0.194429i
$$149$$ 1.58834i 0.130122i 0.997881 + 0.0650611i $$0.0207242\pi$$
−0.997881 + 0.0650611i $$0.979276\pi$$
$$150$$ −12.1666 5.29421i −0.993401 0.432271i
$$151$$ −10.3991 6.00392i −0.846266 0.488592i 0.0131234 0.999914i $$-0.495823\pi$$
−0.859389 + 0.511322i $$0.829156\pi$$
$$152$$ 0.968309 0.259458i 0.0785403 0.0210448i
$$153$$ −1.23259 + 2.13491i −0.0996489 + 0.172597i
$$154$$ 1.60952 + 1.60952i 0.129698 + 0.129698i
$$155$$ 2.26215 + 11.9241i 0.181700 + 0.957767i
$$156$$ 8.93012 8.93012i 0.714982 0.714982i
$$157$$ −7.06880 1.89408i −0.564152 0.151164i −0.0345386 0.999403i $$-0.510996\pi$$
−0.529613 + 0.848239i $$0.677663\pi$$
$$158$$ 3.30206 + 3.30206i 0.262698 + 0.262698i
$$159$$ −9.40913 −0.746192
$$160$$ −2.01416 + 0.971170i −0.159233 + 0.0767777i
$$161$$ 3.08315 + 11.5065i 0.242986 + 0.906838i
$$162$$ −4.78712 −0.376112
$$163$$ 3.61734 2.08847i 0.283332 0.163582i −0.351599 0.936151i $$-0.614362\pi$$
0.634931 + 0.772569i $$0.281029\pi$$
$$164$$ −7.57396 + 4.37283i −0.591427 + 0.341461i
$$165$$ −6.29554 2.19948i −0.490107 0.171229i
$$166$$ −3.44908 + 0.924178i −0.267701 + 0.0717301i
$$167$$ −4.69835 2.71259i −0.363569 0.209907i 0.307076 0.951685i $$-0.400649\pi$$
−0.670645 + 0.741778i $$0.733983\pi$$
$$168$$ 4.65473 2.68741i 0.359120 0.207338i
$$169$$ −4.82413 8.35563i −0.371087 0.642741i
$$170$$ −0.592275 1.22835i −0.0454254 0.0942101i
$$171$$ 2.86533 2.86533i 0.219118 0.219118i
$$172$$ 1.26483 2.19076i 0.0964427 0.167044i
$$173$$ −3.85906 1.03403i −0.293399 0.0786159i 0.109117 0.994029i $$-0.465198\pi$$
−0.402516 + 0.915413i $$0.631864\pi$$
$$174$$ 8.92091i 0.676292i
$$175$$ −8.14229 + 6.02149i −0.615500 + 0.455182i
$$176$$ −0.973266 + 0.561916i −0.0733627 + 0.0423560i
$$177$$ −18.6019 −1.39820
$$178$$ 3.55341 + 13.2615i 0.266339 + 0.993992i
$$179$$ −14.1223 + 14.1223i −1.05555 + 1.05555i −0.0571889 + 0.998363i $$0.518214\pi$$
−0.998363 + 0.0571889i $$0.981786\pi$$
$$180$$ −5.08805 + 7.47057i −0.379241 + 0.556824i
$$181$$ −5.83408 + 10.1049i −0.433644 + 0.751093i −0.997184 0.0749959i $$-0.976106\pi$$
0.563540 + 0.826089i $$0.309439\pi$$
$$182$$ −2.49472 9.31044i −0.184921 0.690136i
$$183$$ −18.4865 32.0195i −1.36656 2.36695i
$$184$$ −5.88152 −0.433592
$$185$$ −4.34406 12.8891i −0.319381 0.947626i
$$186$$ 14.4037 1.05613
$$187$$ −0.342689 0.593554i −0.0250599 0.0434050i
$$188$$ 1.52508 + 5.69169i 0.111228 + 0.415109i
$$189$$ 2.80087 4.85125i 0.203733 0.352876i
$$190$$ 0.417804 + 2.20230i 0.0303107 + 0.159772i
$$191$$ 13.5165 13.5165i 0.978021 0.978021i −0.0217424 0.999764i $$-0.506921\pi$$
0.999764 + 0.0217424i $$0.00692136\pi$$
$$192$$ 0.686833 + 2.56329i 0.0495679 + 0.184990i
$$193$$ 12.8185 0.922693 0.461347 0.887220i $$-0.347366\pi$$
0.461347 + 0.887220i $$0.347366\pi$$
$$194$$ 9.35694 5.40223i 0.671789 0.387858i
$$195$$ 18.4306 + 21.3958i 1.31985 + 1.53219i
$$196$$ 2.89779i 0.206985i
$$197$$ −0.822836 0.220478i −0.0586246 0.0157084i 0.229388 0.973335i $$-0.426328\pi$$
−0.288012 + 0.957627i $$0.592994\pi$$
$$198$$ −2.27139 + 3.93416i −0.161420 + 0.279588i
$$199$$ −11.2815 + 11.2815i −0.799726 + 0.799726i −0.983052 0.183326i $$-0.941314\pi$$
0.183326 + 0.983052i $$0.441314\pi$$
$$200$$ −1.83122 4.65260i −0.129486 0.328988i
$$201$$ 19.2534 + 33.3479i 1.35803 + 2.35218i
$$202$$ 11.9299 6.88772i 0.839384 0.484618i
$$203$$ 5.89650 + 3.40434i 0.413853 + 0.238938i
$$204$$ −1.56324 + 0.418870i −0.109449 + 0.0293268i
$$205$$ −8.49352 17.6151i −0.593213 1.23029i
$$206$$ 15.6086 9.01164i 1.08750 0.627871i
$$207$$ −20.5892 + 11.8872i −1.43105 + 0.826218i
$$208$$ 4.75902 0.329979
$$209$$ 0.291587 + 1.08822i 0.0201695 + 0.0752735i
$$210$$ 5.21986 + 10.8257i 0.360205 + 0.747046i
$$211$$ −8.38969 −0.577570 −0.288785 0.957394i $$-0.593251\pi$$
−0.288785 + 0.957394i $$0.593251\pi$$
$$212$$ −2.50715 2.50715i −0.172191 0.172191i
$$213$$ −18.1783 4.87085i −1.24555 0.333745i
$$214$$ 2.01985 2.01985i 0.138074 0.138074i
$$215$$ 4.67517 + 3.18416i 0.318844 + 0.217158i
$$216$$ 1.95568 + 1.95568i 0.133067 + 0.133067i
$$217$$ 5.49665 9.52047i 0.373137 0.646292i
$$218$$ 16.1303 4.32210i 1.09248 0.292729i
$$219$$ −26.6693 15.3975i −1.80214 1.04047i
$$220$$ −1.09143 2.26357i −0.0735843 0.152610i
$$221$$ 2.90232i 0.195231i
$$222$$ −15.9894 + 2.21401i −1.07314 + 0.148594i
$$223$$ 12.2726 + 12.2726i 0.821834 + 0.821834i 0.986371 0.164537i $$-0.0526130\pi$$
−0.164537 + 0.986371i $$0.552613\pi$$
$$224$$ 1.95638 + 0.524210i 0.130716 + 0.0350252i
$$225$$ −15.8139 12.5861i −1.05426 0.839073i
$$226$$ −4.26128 2.46025i −0.283456 0.163653i
$$227$$ 7.24577 + 4.18335i 0.480919 + 0.277659i 0.720799 0.693144i $$-0.243775\pi$$
−0.239881 + 0.970802i $$0.577108\pi$$
$$228$$ 2.66027 0.176180
$$229$$ 1.15819 + 0.668684i 0.0765356 + 0.0441879i 0.537779 0.843086i $$-0.319263\pi$$
−0.461244 + 0.887273i $$0.652597\pi$$
$$230$$ 0.976456 13.1152i 0.0643856 0.864790i
$$231$$ 3.02019 + 5.23113i 0.198714 + 0.344183i
$$232$$ −2.37706 + 2.37706i −0.156061 + 0.156061i
$$233$$ 1.84053 1.84053i 0.120577 0.120577i −0.644243 0.764821i $$-0.722828\pi$$
0.764821 + 0.644243i $$0.222828\pi$$
$$234$$ 16.6597 9.61850i 1.08908 0.628781i
$$235$$ −12.9451 + 2.45584i −0.844443 + 0.160201i
$$236$$ −4.95664 4.95664i −0.322650 0.322650i
$$237$$ 6.19619 + 10.7321i 0.402486 + 0.697126i
$$238$$ −0.319693 + 1.19311i −0.0207226 + 0.0773380i
$$239$$ 5.49007 20.4892i 0.355123 1.32534i −0.525206 0.850975i $$-0.676012\pi$$
0.880329 0.474363i $$-0.157322\pi$$
$$240$$ −5.82991 + 1.10601i −0.376319 + 0.0713923i
$$241$$ 2.12638 + 7.93574i 0.136972 + 0.511186i 0.999982 + 0.00599947i $$0.00190970\pi$$
−0.863010 + 0.505187i $$0.831424\pi$$
$$242$$ 4.86850 + 8.43249i 0.312959 + 0.542061i
$$243$$ −20.2853 5.43544i −1.30131 0.348684i
$$244$$ 3.60599 13.4578i 0.230850 0.861544i
$$245$$ −6.46177 0.481094i −0.412827 0.0307360i
$$246$$ −22.4177 + 6.00681i −1.42930 + 0.382980i
$$247$$ 1.23476 4.60820i 0.0785661 0.293213i
$$248$$ 3.83799 + 3.83799i 0.243713 + 0.243713i
$$249$$ −9.47577 −0.600502
$$250$$ 10.6788 3.31099i 0.675388 0.209406i
$$251$$ −13.6105 13.6105i −0.859084 0.859084i 0.132146 0.991230i $$-0.457813\pi$$
−0.991230 + 0.132146i $$0.957813\pi$$
$$252$$ 7.90811 2.11897i 0.498164 0.133483i
$$253$$ 6.60984i 0.415557i
$$254$$ −1.84957 6.90268i −0.116052 0.433113i
$$255$$ −0.674506 3.55542i −0.0422392 0.222649i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −6.00922 + 3.46942i −0.374845 + 0.216417i −0.675573 0.737293i $$-0.736104\pi$$
0.300728 + 0.953710i $$0.402770\pi$$
$$258$$ 4.74683 4.74683i 0.295525 0.295525i
$$259$$ −4.63837 + 11.4135i −0.288214 + 0.709199i
$$260$$ −0.790097 + 10.6121i −0.0489997 + 0.658136i
$$261$$ −3.51698 + 13.1256i −0.217696 + 0.812452i
$$262$$ 19.6201 5.25720i 1.21214 0.324791i
$$263$$ −8.10871 30.2621i −0.500005 1.86604i −0.499971 0.866042i $$-0.666656\pi$$
−3.36436e−5 1.00000i $$-0.500011\pi$$
$$264$$ −2.88071 + 0.771884i −0.177295 + 0.0475062i
$$265$$ 6.00691 5.17444i 0.369002 0.317863i
$$266$$ 1.01519 1.75837i 0.0622456 0.107812i
$$267$$ 36.4337i 2.22971i
$$268$$ −3.75560 + 14.0161i −0.229410 + 0.856169i
$$269$$ 17.3508i 1.05789i −0.848655 0.528947i $$-0.822587\pi$$
0.848655 0.528947i $$-0.177413\pi$$
$$270$$ −4.68566 + 4.03629i −0.285160 + 0.245641i
$$271$$ −8.45565 14.6456i −0.513644 0.889658i −0.999875 0.0158271i $$-0.994962\pi$$
0.486231 0.873830i $$-0.338371\pi$$
$$272$$ −0.528152 0.304929i −0.0320239 0.0184890i
$$273$$ 25.5789i 1.54810i
$$274$$ 5.72353 + 1.53361i 0.345771 + 0.0926490i
$$275$$ 5.22873 2.05798i 0.315304 0.124101i
$$276$$ −15.0761 4.03962i −0.907473 0.243157i
$$277$$ −11.9817 + 20.7529i −0.719912 + 1.24692i 0.241122 + 0.970495i $$0.422484\pi$$
−0.961034 + 0.276429i $$0.910849\pi$$
$$278$$ −5.56954 + 9.64673i −0.334039 + 0.578572i
$$279$$ 21.1925 + 5.67852i 1.26876 + 0.339964i
$$280$$ −1.49373 + 4.27549i −0.0892676 + 0.255509i
$$281$$ 23.0722 + 6.18218i 1.37637 + 0.368798i 0.869802 0.493400i $$-0.164246\pi$$
0.506571 + 0.862198i $$0.330913\pi$$
$$282$$ 15.6369i 0.931167i
$$283$$ −4.68580 2.70535i −0.278542 0.160816i 0.354221 0.935162i $$-0.384746\pi$$
−0.632763 + 0.774345i $$0.718079\pi$$
$$284$$ −3.54588 6.14164i −0.210409 0.364439i
$$285$$ −0.441660 + 5.93212i −0.0261617 + 0.351388i
$$286$$ 5.34833i 0.316254i
$$287$$ −4.58456 + 17.1098i −0.270618 + 1.00996i
$$288$$ 4.04222i 0.238190i
$$289$$ −8.31404 + 14.4003i −0.489061 + 0.847078i
$$290$$ −4.90595 5.69523i −0.288087 0.334435i
$$291$$ 27.6950 7.42086i 1.62351 0.435018i
$$292$$ −3.00346 11.2091i −0.175764 0.655962i
$$293$$ 4.01883 1.07684i 0.234783 0.0629098i −0.139509 0.990221i $$-0.544552\pi$$
0.374292 + 0.927311i $$0.377886\pi$$
$$294$$ −1.99030 + 7.42789i −0.116076 + 0.433203i
$$295$$ 11.8757 10.2299i 0.691430 0.595607i
$$296$$ −4.85045 3.67057i −0.281927 0.213348i
$$297$$ −2.19786 + 2.19786i −0.127533 + 0.127533i
$$298$$ −1.37555 + 0.794171i −0.0796832 + 0.0460051i
$$299$$ −13.9951 + 24.2403i −0.809360 + 1.40185i
$$300$$ −1.49839 13.1837i −0.0865096 0.761162i
$$301$$ −1.32608 4.94899i −0.0764338 0.285255i
$$302$$ 12.0078i 0.690973i
$$303$$ 35.3105 9.46143i 2.02854 0.543545i
$$304$$ 0.708852 + 0.708852i 0.0406554 + 0.0406554i
$$305$$ 29.4107 + 10.2753i 1.68405 + 0.588360i
$$306$$ −2.46518 −0.140925
$$307$$ 19.1402 + 19.1402i 1.09239 + 1.09239i 0.995273 + 0.0971133i $$0.0309609\pi$$
0.0971133 + 0.995273i $$0.469039\pi$$
$$308$$ −0.589123 + 2.19864i −0.0335684 + 0.125279i
$$309$$ 46.1990 12.3790i 2.62817 0.704215i
$$310$$ −9.19551 + 7.92113i −0.522270 + 0.449890i
$$311$$ −1.52724 + 5.69972i −0.0866016 + 0.323202i −0.995613 0.0935704i $$-0.970172\pi$$
0.909011 + 0.416772i $$0.136839\pi$$
$$312$$ 12.1988 + 3.26865i 0.690619 + 0.185051i
$$313$$ 14.8031 + 25.6397i 0.836719 + 1.44924i 0.892623 + 0.450804i $$0.148863\pi$$
−0.0559040 + 0.998436i $$0.517804\pi$$
$$314$$ −1.89408 7.06880i −0.106889 0.398915i
$$315$$ 3.41217 + 17.9861i 0.192254 + 1.01340i
$$316$$ −1.20864 + 4.51070i −0.0679912 + 0.253747i
$$317$$ 2.55646 9.54085i 0.143585 0.535868i −0.856229 0.516596i $$-0.827199\pi$$
0.999814 0.0192712i $$-0.00613459\pi$$
$$318$$ −4.70456 8.14854i −0.263819 0.456948i
$$319$$ −2.67141 2.67141i −0.149570 0.149570i
$$320$$ −1.84814 1.25873i −0.103314 0.0703649i
$$321$$ 6.56477 3.79017i 0.366410 0.211547i
$$322$$ −8.42333 + 8.42333i −0.469414 + 0.469414i
$$323$$ −0.432299 + 0.432299i −0.0240537 + 0.0240537i
$$324$$ −2.39356 4.14577i −0.132976 0.230320i
$$325$$ −23.5327 3.52367i −1.30536 0.195458i
$$326$$ 3.61734 + 2.08847i 0.200346 + 0.115670i
$$327$$ 44.3152 2.45064
$$328$$ −7.57396 4.37283i −0.418202 0.241449i
$$329$$ 10.3356 + 5.96728i 0.569822 + 0.328987i
$$330$$ −1.24296 6.55183i −0.0684229 0.360667i
$$331$$ −5.18854 1.39026i −0.285188 0.0764159i 0.113389 0.993551i $$-0.463829\pi$$
−0.398577 + 0.917135i $$0.630496\pi$$
$$332$$ −2.52490 2.52490i −0.138572 0.138572i
$$333$$ −24.3984 3.04614i −1.33703 0.166927i
$$334$$ 5.42518i 0.296853i
$$335$$ −30.6309 10.7016i −1.67355 0.584689i
$$336$$ 4.65473 + 2.68741i 0.253936 + 0.146610i
$$337$$ 24.0356 6.44031i 1.30930 0.350826i 0.464341 0.885657i $$-0.346291\pi$$
0.844959 + 0.534831i $$0.179625\pi$$
$$338$$ 4.82413 8.35563i 0.262398 0.454486i
$$339$$ −9.23314 9.23314i −0.501475 0.501475i
$$340$$ 0.767644 1.12710i 0.0416313 0.0611256i
$$341$$ −4.31325 + 4.31325i −0.233576 + 0.233576i
$$342$$ 3.91412 + 1.04878i 0.211651 + 0.0567118i
$$343$$ 14.1753 + 14.1753i 0.765394 + 0.765394i
$$344$$ 2.52967 0.136391
$$345$$ 11.5109 32.9474i 0.619725 1.77383i
$$346$$ −1.03403 3.85906i −0.0555898 0.207464i
$$347$$ −24.0293 −1.28996 −0.644981 0.764198i $$-0.723135\pi$$
−0.644981 + 0.764198i $$0.723135\pi$$
$$348$$ −7.72573 + 4.46045i −0.414143 + 0.239105i
$$349$$ −28.9043 + 16.6879i −1.54721 + 0.893283i −0.548858 + 0.835916i $$0.684937\pi$$
−0.998353 + 0.0573673i $$0.981729\pi$$
$$350$$ −9.28591 4.04069i −0.496353 0.215984i
$$351$$ 12.7138 3.40665i 0.678612 0.181833i
$$352$$ −0.973266 0.561916i −0.0518753 0.0299502i
$$353$$ 25.7151 14.8466i 1.36867 0.790205i 0.377916 0.925840i $$-0.376641\pi$$
0.990759 + 0.135635i $$0.0433075\pi$$
$$354$$ −9.30095 16.1097i −0.494340 0.856222i
$$355$$ 14.2839 6.88730i 0.758111 0.365540i
$$356$$ −9.70810 + 9.70810i −0.514528 + 0.514528i
$$357$$ −1.63894 + 2.83872i −0.0867417 + 0.150241i
$$358$$ −19.2915 5.16913i −1.01959 0.273197i
$$359$$ 8.36739i 0.441614i −0.975318 0.220807i $$-0.929131\pi$$
0.975318 0.220807i $$-0.0708691\pi$$
$$360$$ −9.01373 0.671093i −0.475065 0.0353697i
$$361$$ −15.5842 + 8.99753i −0.820220 + 0.473554i
$$362$$ −11.6682 −0.613265
$$363$$ 6.68769 + 24.9588i 0.351013 + 1.31000i
$$364$$ 6.81571 6.81571i 0.357240 0.357240i
$$365$$ 25.4937 4.83647i 1.33440 0.253153i
$$366$$ 18.4865 32.0195i 0.966302 1.67368i
$$367$$ 0.472693 + 1.76411i 0.0246744 + 0.0920860i 0.977165 0.212482i $$-0.0681546\pi$$
−0.952491 + 0.304568i $$0.901488\pi$$
$$368$$ −2.94076 5.09355i −0.153298 0.265520i
$$369$$ −35.3519 −1.84035
$$370$$ 8.99027 10.2066i 0.467382 0.530617i
$$371$$ −7.18131 −0.372835
$$372$$ 7.20184 + 12.4740i 0.373398 + 0.646744i
$$373$$ 8.64253 + 32.2544i 0.447493 + 1.67007i 0.709268 + 0.704939i $$0.249026\pi$$
−0.261774 + 0.965129i $$0.584308\pi$$
$$374$$ 0.342689 0.593554i 0.0177200 0.0306919i
$$375$$ 29.6471 1.15248i 1.53097 0.0595139i
$$376$$ −4.16660 + 4.16660i −0.214876 + 0.214876i
$$377$$ 4.14064 + 15.4531i 0.213254 + 0.795875i
$$378$$ 5.60174 0.288122
$$379$$ 10.4144 6.01276i 0.534952 0.308855i −0.208079 0.978112i $$-0.566721\pi$$
0.743031 + 0.669257i $$0.233388\pi$$
$$380$$ −1.69835 + 1.46298i −0.0871235 + 0.0750494i
$$381$$ 18.9640i 0.971553i
$$382$$ 18.4639 + 4.94739i 0.944696 + 0.253131i
$$383$$ −0.0359998 + 0.0623535i −0.00183950 + 0.00318611i −0.866944 0.498406i $$-0.833919\pi$$
0.865104 + 0.501592i $$0.167252\pi$$
$$384$$ −1.87646 + 1.87646i −0.0957578 + 0.0957578i
$$385$$ −4.80493 1.67870i −0.244882 0.0855547i
$$386$$ 6.40923 + 11.1011i 0.326221 + 0.565032i
$$387$$ 8.85552 5.11274i 0.450151 0.259895i
$$388$$ 9.35694 + 5.40223i 0.475027 + 0.274257i
$$389$$ −18.5818 + 4.97897i −0.942132 + 0.252444i −0.697020 0.717051i $$-0.745491\pi$$
−0.245112 + 0.969495i $$0.578825\pi$$
$$390$$ −9.31400 + 26.6593i −0.471633 + 1.34995i
$$391$$ 3.10634 1.79345i 0.157094 0.0906985i
$$392$$ −2.50956 + 1.44889i −0.126752 + 0.0731802i
$$393$$ 53.9030 2.71905
$$394$$ −0.220478 0.822836i −0.0111075 0.0414539i
$$395$$ −9.85773 3.44401i −0.495996 0.173287i
$$396$$ −4.54277 −0.228283
$$397$$ −9.99150 9.99150i −0.501459 0.501459i 0.410432 0.911891i $$-0.365378\pi$$
−0.911891 + 0.410432i $$0.865378\pi$$
$$398$$ −15.4109 4.12933i −0.772476 0.206984i
$$399$$ 3.80995 3.80995i 0.190736 0.190736i
$$400$$ 3.11366 3.91218i 0.155683 0.195609i
$$401$$ −22.6392 22.6392i −1.13055 1.13055i −0.990086 0.140461i $$-0.955141\pi$$
−0.140461 0.990086i $$-0.544859\pi$$
$$402$$ −19.2534 + 33.3479i −0.960274 + 1.66324i
$$403$$ 24.9505 6.68548i 1.24287 0.333027i
$$404$$ 11.9299 + 6.88772i 0.593534 + 0.342677i
$$405$$ 9.64202 4.64911i 0.479116 0.231016i
$$406$$ 6.80869i 0.337909i
$$407$$ 4.12510 5.45109i 0.204474 0.270201i
$$408$$ −1.14437 1.14437i −0.0566550 0.0566550i
$$409$$ −21.4024 5.73477i −1.05828 0.283566i −0.312612 0.949881i $$-0.601204\pi$$
−0.745670 + 0.666315i $$0.767871\pi$$
$$410$$ 11.0084 16.1632i 0.543666 0.798242i
$$411$$ 13.6177 + 7.86221i 0.671714 + 0.387814i
$$412$$ 15.6086 + 9.01164i 0.768981 + 0.443972i
$$413$$ −14.1975 −0.698613
$$414$$ −20.5892 11.8872i −1.01191 0.584224i
$$415$$ 6.04946 5.21108i 0.296956 0.255802i
$$416$$ 2.37951 + 4.12143i 0.116665 + 0.202070i
$$417$$ −20.9021 + 20.9021i −1.02358 + 1.02358i
$$418$$ −0.796629 + 0.796629i −0.0389644 + 0.0389644i
$$419$$ −0.594991 + 0.343518i −0.0290672 + 0.0167820i −0.514463 0.857512i $$-0.672009\pi$$
0.485396 + 0.874294i $$0.338675\pi$$
$$420$$ −6.76543 + 9.93340i −0.330119 + 0.484700i
$$421$$ 21.9676 + 21.9676i 1.07064 + 1.07064i 0.997308 + 0.0733291i $$0.0233623\pi$$
0.0733291 + 0.997308i $$0.476638\pi$$
$$422$$ −4.19484 7.26568i −0.204202 0.353688i
$$423$$ −6.16472 + 23.0070i −0.299739 + 1.11864i
$$424$$ 0.917679 3.42482i 0.0445664 0.166324i
$$425$$ 2.38587 + 1.89889i 0.115732 + 0.0921096i
$$426$$ −4.87085 18.1783i −0.235993 0.880739i
$$427$$ −14.1094 24.4382i −0.682800 1.18265i
$$428$$ 2.75917 + 0.739316i 0.133369 + 0.0357362i
$$429$$ −3.67341 + 13.7094i −0.177354 + 0.661894i
$$430$$ −0.419978 + 5.64090i −0.0202531 + 0.272028i
$$431$$ 25.8534 6.92740i 1.24531 0.333681i 0.424790 0.905292i $$-0.360348\pi$$
0.820525 + 0.571611i $$0.193681\pi$$
$$432$$ −0.715830 + 2.67152i −0.0344404 + 0.128533i
$$433$$ 15.2715 + 15.2715i 0.733900 + 0.733900i 0.971390 0.237490i $$-0.0763247\pi$$
−0.237490 + 0.971390i $$0.576325\pi$$
$$434$$ 10.9933 0.527695
$$435$$ −8.66372 17.9681i −0.415393 0.861505i
$$436$$ 11.8082 + 11.8082i 0.565510 + 0.565510i
$$437$$ −5.69513 + 1.52601i −0.272435 + 0.0729988i
$$438$$ 30.7951i 1.47144i
$$439$$ −7.17501 26.7775i −0.342445 1.27802i −0.895569 0.444922i $$-0.853231\pi$$
0.553124 0.833099i $$-0.313435\pi$$
$$440$$ 1.41460 2.07699i 0.0674382 0.0990168i
$$441$$ −5.85675 + 10.1442i −0.278893 + 0.483057i
$$442$$ −2.51349 + 1.45116i −0.119554 + 0.0690247i
$$443$$ 0.994977 0.994977i 0.0472728 0.0472728i −0.683075 0.730348i $$-0.739358\pi$$
0.730348 + 0.683075i $$0.239358\pi$$
$$444$$ −9.91208 12.7402i −0.470406 0.604623i
$$445$$ −20.0363 23.2598i −0.949812 1.10262i
$$446$$ −4.49208 + 16.7647i −0.212706 + 0.793830i
$$447$$ −4.07139 + 1.09093i −0.192570 + 0.0515990i
$$448$$ 0.524210 + 1.95638i 0.0247666 + 0.0924302i
$$449$$ 20.6726 5.53920i 0.975598 0.261411i 0.264408 0.964411i $$-0.414823\pi$$
0.711190 + 0.703000i $$0.248157\pi$$
$$450$$ 2.99294 19.9883i 0.141088 0.942256i
$$451$$ 4.91432 8.51186i 0.231406 0.400808i
$$452$$ 4.92050i 0.231441i
$$453$$ 8.24737 30.7796i 0.387495 1.44615i
$$454$$ 8.36669i 0.392668i
$$455$$ 14.0668 + 16.3299i 0.659461 + 0.765557i
$$456$$ 1.33013 + 2.30386i 0.0622892 + 0.107888i
$$457$$ 13.9056 + 8.02843i 0.650479 + 0.375554i 0.788640 0.614856i $$-0.210786\pi$$
−0.138161 + 0.990410i $$0.544119\pi$$
$$458$$ 1.33737i 0.0624911i
$$459$$ −1.62924 0.436555i −0.0760466 0.0203766i
$$460$$ 11.8463 5.71196i 0.552337 0.266321i
$$461$$ −9.28681 2.48839i −0.432530 0.115896i 0.0359836 0.999352i $$-0.488544\pi$$
−0.468513 + 0.883456i $$0.655210\pi$$
$$462$$ −3.02019 + 5.23113i −0.140512 + 0.243374i
$$463$$ 7.67172 13.2878i 0.356535 0.617536i −0.630845 0.775909i $$-0.717291\pi$$
0.987379 + 0.158373i $$0.0506248\pi$$
$$464$$ −3.24712 0.870063i −0.150744 0.0403917i
$$465$$ −29.0113 + 13.9884i −1.34537 + 0.648698i
$$466$$ 2.51421 + 0.673681i 0.116469 + 0.0312077i
$$467$$ 3.94300i 0.182460i 0.995830 + 0.0912301i $$0.0290799\pi$$
−0.995830 + 0.0912301i $$0.970920\pi$$
$$468$$ 16.6597 + 9.61850i 0.770096 + 0.444615i
$$469$$ 14.6947 + 25.4521i 0.678540 + 1.17527i
$$470$$ −8.59935 9.98284i −0.396658 0.460474i
$$471$$ 19.4203i 0.894842i
$$472$$ 1.81426 6.77090i 0.0835079 0.311656i
$$473$$ 2.84292i 0.130718i
$$474$$ −6.19619 + 10.7321i −0.284601 + 0.492943i
$$475$$ −2.98033 4.03003i −0.136747 0.184910i
$$476$$ −1.19311 + 0.319693i −0.0546862 + 0.0146531i
$$477$$ −3.70946 13.8439i −0.169844 0.633868i
$$478$$ 20.4892 5.49007i 0.937156 0.251110i
$$479$$ −3.81670 + 14.2441i −0.174389 + 0.650830i 0.822266 + 0.569104i $$0.192710\pi$$
−0.996655 + 0.0817257i $$0.973957\pi$$
$$480$$ −3.87278 4.49585i −0.176768 0.205206i
$$481$$ −26.6697 + 11.2567i −1.21603 + 0.513259i
$$482$$ −5.80937 + 5.80937i −0.264609 + 0.264609i
$$483$$ −27.3769 + 15.8061i −1.24569 + 0.719201i
$$484$$ −4.86850 + 8.43249i −0.221296 + 0.383295i
$$485$$ −13.5999 + 19.9681i −0.617538 + 0.906706i
$$486$$ −5.43544 20.2853i −0.246557 0.920162i
$$487$$ 40.5464i 1.83733i 0.395035 + 0.918666i $$0.370733\pi$$
−0.395035 + 0.918666i $$0.629267\pi$$
$$488$$ 13.4578 3.60599i 0.609204 0.163236i
$$489$$ 7.83787 + 7.83787i 0.354441 + 0.354441i
$$490$$ −2.81425 5.83660i −0.127135 0.263671i
$$491$$ −2.02704 −0.0914790 −0.0457395 0.998953i $$-0.514564\pi$$
−0.0457395 + 0.998953i $$0.514564\pi$$
$$492$$ −16.4109 16.4109i −0.739860 0.739860i
$$493$$ 0.530614 1.98028i 0.0238977 0.0891873i
$$494$$ 4.60820 1.23476i 0.207333 0.0555547i
$$495$$ 0.754195 10.1299i 0.0338986 0.455306i
$$496$$ −1.40480 + 5.24279i −0.0630775 + 0.235408i
$$497$$ −13.8742 3.71757i −0.622341 0.166756i
$$498$$ −4.73788 8.20625i −0.212310 0.367731i
$$499$$ −10.0374 37.4600i −0.449335 1.67694i −0.704229 0.709973i $$-0.748707\pi$$
0.254894 0.966969i $$-0.417959\pi$$
$$500$$ 8.20682 + 7.59264i 0.367020 + 0.339553i
$$501$$ 3.72619 13.9063i 0.166474 0.621290i
$$502$$ 4.98177 18.5922i 0.222347 0.829812i
$$503$$ −1.86775 3.23504i −0.0832789 0.144243i 0.821378 0.570385i $$-0.193206\pi$$
−0.904657 + 0.426141i $$0.859873\pi$$
$$504$$ 5.78914 + 5.78914i 0.257869 + 0.257869i
$$505$$ −17.3395 + 25.4589i −0.771598 + 1.13291i
$$506$$ 5.72429 3.30492i 0.254476 0.146922i
$$507$$ 18.1046 18.1046i 0.804053 0.804053i
$$508$$ 5.05311 5.05311i 0.224196 0.224196i
$$509$$ 14.5825 + 25.2577i 0.646360 + 1.11953i 0.983986 + 0.178248i $$0.0570428\pi$$
−0.337626 + 0.941280i $$0.609624\pi$$
$$510$$ 2.74183 2.36185i 0.121410 0.104584i
$$511$$ −20.3548 11.7518i −0.900441 0.519870i
$$512$$ −1.00000 −0.0441942
$$513$$ 2.40113 + 1.38629i 0.106012 + 0.0612062i
$$514$$ −6.00922 3.46942i −0.265055 0.153030i
$$515$$ −22.6864 + 33.3095i −0.999681 + 1.46779i
$$516$$ 6.48429 + 1.73746i 0.285455 + 0.0764874i
$$517$$ −4.68256 4.68256i −0.205939 0.205939i
$$518$$ −12.2035 + 1.68979i −0.536193 + 0.0742451i
$$519$$ 10.6021i 0.465381i
$$520$$ −9.58541 + 4.62181i −0.420348 + 0.202680i
$$521$$ 14.2125 + 8.20557i 0.622659 + 0.359492i 0.777904 0.628384i $$-0.216283\pi$$
−0.155244 + 0.987876i $$0.549617\pi$$
$$522$$ −13.1256 + 3.51698i −0.574490 + 0.153934i
$$523$$ −17.0300 + 29.4968i −0.744668 + 1.28980i 0.205681 + 0.978619i $$0.434059\pi$$
−0.950350 + 0.311184i $$0.899274\pi$$
$$524$$ 14.3629 + 14.3629i 0.627448 + 0.627448i
$$525$$ −21.0272 16.7353i −0.917704 0.730390i
$$526$$ 22.1534 22.1534i 0.965935 0.965935i
$$527$$ −3.19736 0.856729i −0.139279 0.0373197i
$$528$$ −2.10883 2.10883i −0.0917749 0.0917749i
$$529$$ 11.5923 0.504014
$$530$$ 7.48465 + 2.61492i 0.325112 + 0.113585i
$$531$$ −7.33362 27.3695i −0.318252 1.18773i
$$532$$ 2.03039 0.0880285
$$533$$ −36.0446 + 20.8104i −1.56127 + 0.901398i
$$534$$ −31.5525 + 18.2169i −1.36541 + 0.788321i
$$535$$ −2.10668 + 6.02991i −0.0910796 + 0.260696i
$$536$$ −14.0161 + 3.75560i −0.605403 + 0.162217i
$$537$$ −45.8994 26.5000i −1.98070 1.14356i
$$538$$ 15.0262 8.67538i 0.647825 0.374022i
$$539$$ −1.62831 2.82032i −0.0701364 0.121480i
$$540$$ −5.83836 2.03975i −0.251243 0.0877771i
$$541$$ 8.61393 8.61393i 0.370342 0.370342i −0.497260 0.867602i $$-0.665660\pi$$
0.867602 + 0.497260i $$0.165660\pi$$
$$542$$ 8.45565 14.6456i 0.363201 0.629083i
$$543$$ −29.9089 8.01407i −1.28351 0.343917i
$$544$$ 0.609858i 0.0261474i
$$545$$ −28.2914 + 24.3706i −1.21187 + 1.04392i
$$546$$ 22.1519 12.7894i 0.948015 0.547337i
$$547$$ −1.86737 −0.0798431 −0.0399215 0.999203i $$-0.512711\pi$$
−0.0399215 + 0.999203i $$0.512711\pi$$
$$548$$ 1.53361 + 5.72353i 0.0655128 + 0.244497i
$$549$$ 39.8230 39.8230i 1.69960 1.69960i
$$550$$ 4.39663 + 3.49923i 0.187473 + 0.149208i
$$551$$ −1.68498 + 2.91847i −0.0717826 + 0.124331i
$$552$$ −4.03962 15.0761i −0.171938 0.641681i
$$553$$ 4.72911 + 8.19105i 0.201102 + 0.348319i
$$554$$ −23.9634 −1.01811
$$555$$ 30.0550 19.9878i 1.27576 0.848433i
$$556$$ −11.1391 −0.472402
$$557$$ 20.3530 + 35.2525i 0.862386 + 1.49370i 0.869620 + 0.493722i $$0.164364\pi$$
−0.00723424 + 0.999974i $$0.502303\pi$$
$$558$$ 5.67852 + 21.1925i 0.240391 + 0.897151i
$$559$$ 6.01937 10.4259i 0.254592 0.440967i
$$560$$ −4.44955 + 0.844134i −0.188028 + 0.0356712i
$$561$$ 1.28608 1.28608i 0.0542985 0.0542985i
$$562$$ 6.18218 + 23.0722i 0.260780 + 0.973243i
$$563$$ −12.4306 −0.523887 −0.261943 0.965083i $$-0.584363\pi$$
−0.261943 + 0.965083i $$0.584363\pi$$
$$564$$ −13.5420 + 7.81847i −0.570221 + 0.329217i
$$565$$ 10.9722 + 0.816906i 0.461604 + 0.0343675i
$$566$$ 5.41070i 0.227429i
$$567$$ −9.36542 2.50946i −0.393311 0.105387i
$$568$$ 3.54588 6.14164i 0.148782 0.257697i
$$569$$ 0.758462 0.758462i 0.0317964 0.0317964i −0.691030 0.722826i $$-0.742843\pi$$
0.722826 + 0.691030i $$0.242843\pi$$
$$570$$ −5.35819 + 2.58357i −0.224430 + 0.108214i
$$571$$ −1.95838 3.39202i −0.0819558 0.141952i 0.822134 0.569294i $$-0.192783\pi$$
−0.904090 + 0.427342i $$0.859450\pi$$
$$572$$ −4.63179 + 2.67417i −0.193665 + 0.111813i
$$573$$ 43.9304 + 25.3632i 1.83522 + 1.05956i
$$574$$ −17.1098 + 4.58456i −0.714150 + 0.191356i
$$575$$ 10.7703 + 27.3644i 0.449154 + 1.14117i
$$576$$ −3.50066 + 2.02111i −0.145861 + 0.0842129i
$$577$$ −7.95453 + 4.59255i −0.331151 + 0.191190i −0.656352 0.754455i $$-0.727901\pi$$
0.325201 + 0.945645i $$0.394568\pi$$
$$578$$ −16.6281 −0.691637
$$579$$ 8.80414 + 32.8575i 0.365888 + 1.36551i
$$580$$ 2.47924 7.09629i 0.102945 0.294657i
$$581$$ −7.23217 −0.300041
$$582$$ 20.2742 + 20.2742i 0.840391 + 0.840391i
$$583$$ 3.84892 + 1.03132i 0.159406 + 0.0427128i
$$584$$ 8.20562 8.20562i 0.339551 0.339551i
$$585$$ −24.2141 + 35.5526i −1.00113 + 1.46992i
$$586$$ 2.94199 + 2.94199i 0.121532 + 0.121532i
$$587$$ 7.19146 12.4560i 0.296823 0.514113i −0.678584 0.734523i $$-0.737406\pi$$
0.975407 + 0.220410i $$0.0707395\pi$$
$$588$$ −7.42789 + 1.99030i −0.306321 + 0.0820785i
$$589$$ 4.71216 + 2.72056i 0.194161 + 0.112099i
$$590$$ 14.7972 + 5.16972i 0.609191 + 0.212834i
$$591$$ 2.26060i 0.0929887i
$$592$$ 0.753581 6.03590i 0.0309720 0.248074i
$$593$$ −17.4500 17.4500i −0.716584 0.716584i 0.251320 0.967904i $$-0.419135\pi$$
−0.967904 + 0.251320i $$0.919135\pi$$
$$594$$ −3.00233 0.804472i −0.123187 0.0330079i
$$595$$ −0.514802 2.71359i −0.0211048 0.111246i
$$596$$ −1.37555 0.794171i −0.0563445 0.0325305i
$$597$$ −36.6664 21.1694i −1.50066 0.866404i
$$598$$ −27.9903 −1.14461
$$599$$ 12.7512 + 7.36193i 0.521001 + 0.300800i 0.737344 0.675517i $$-0.236080\pi$$
−0.216343 + 0.976317i $$0.569413\pi$$
$$600$$ 10.6682 7.88950i 0.435529 0.322088i
$$601$$ −13.4916 23.3682i −0.550336 0.953209i −0.998250 0.0591330i $$-0.981166\pi$$
0.447914 0.894076i $$-0.352167\pi$$
$$602$$ 3.62291 3.62291i 0.147659 0.147659i
$$603$$ −41.4752 + 41.4752i −1.68900 + 1.68900i
$$604$$ 10.3991 6.00392i 0.423133 0.244296i
$$605$$ −17.9953 12.2562i −0.731613 0.498286i
$$606$$ 25.8491 + 25.8491i 1.05005 + 1.05005i
$$607$$ 0.945249 + 1.63722i 0.0383665 + 0.0664527i 0.884571 0.466406i $$-0.154451\pi$$
−0.846205 + 0.532858i $$0.821118\pi$$
$$608$$ −0.259458 + 0.968309i −0.0105224 + 0.0392701i
$$609$$ −4.67643 + 17.4527i −0.189498 + 0.707218i
$$610$$ 5.80672 + 30.6081i 0.235107 + 1.23928i
$$611$$ 7.25790 + 27.0868i 0.293623 + 1.09582i
$$612$$ −1.23259 2.13491i −0.0498245 0.0862985i
$$613$$ −24.2316 6.49283i −0.978704 0.262243i −0.266205 0.963916i $$-0.585770\pi$$
−0.712499 + 0.701673i $$0.752437\pi$$
$$614$$ −7.00578 + 26.1459i −0.282730 + 1.05516i
$$615$$ 39.3192 33.8700i 1.58550 1.36577i
$$616$$ −2.19864 + 0.589123i −0.0885857 + 0.0237365i
$$617$$ 1.23831 4.62145i 0.0498526 0.186052i −0.936510 0.350642i $$-0.885963\pi$$
0.986362 + 0.164590i $$0.0526300\pi$$
$$618$$ 33.8200 + 33.8200i 1.36044 + 1.36044i
$$619$$ 2.92309 0.117489 0.0587445 0.998273i $$-0.481290\pi$$
0.0587445 + 0.998273i $$0.481290\pi$$
$$620$$ −11.4577 4.00298i −0.460150 0.160763i
$$621$$ −11.5024 11.5024i −0.461576 0.461576i
$$622$$ −5.69972 + 1.52724i −0.228538 + 0.0612366i
$$623$$ 27.8072i 1.11407i
$$624$$ 3.26865 + 12.1988i 0.130851 + 0.488341i
$$625$$ −18.2933 + 17.0398i −0.731732 + 0.681592i
$$626$$ −14.8031 + 25.6397i −0.591650 + 1.02477i
$$627$$ −2.58915 + 1.49484i −0.103401 + 0.0596984i
$$628$$ 5.17472 5.17472i 0.206494 0.206494i
$$629$$ 3.68104 + 0.459577i 0.146773 + 0.0183245i
$$630$$ −13.8703 + 11.9481i −0.552606 + 0.476022i
$$631$$ 9.97860 37.2406i 0.397242 1.48253i −0.420687 0.907206i $$-0.638211\pi$$
0.817928 0.575320i $$-0.195123\pi$$
$$632$$ −4.51070 + 1.20864i −0.179426 + 0.0480771i
$$633$$ −5.76231 21.5052i −0.229031 0.854757i
$$634$$ 9.54085 2.55646i 0.378916 0.101530i
$$635$$ 10.4290 + 12.1068i 0.413862 + 0.480445i
$$636$$ 4.70456 8.14854i 0.186548 0.323111i
$$637$$ 13.7906i 0.546405i
$$638$$ 0.977804 3.64921i 0.0387116 0.144474i
$$639$$ 28.6664i 1.13403i
$$640$$ 0.166021 2.22990i 0.00656255 0.0881444i
$$641$$ −16.5248 28.6217i −0.652689 1.13049i −0.982468 0.186432i $$-0.940307\pi$$
0.329779 0.944058i $$-0.393026\pi$$
$$642$$ 6.56477 + 3.79017i 0.259091 + 0.149586i
$$643$$ 11.6270i 0.458523i −0.973365 0.229262i $$-0.926369\pi$$
0.973365 0.229262i $$-0.0736311\pi$$
$$644$$ −11.5065 3.08315i −0.453419 0.121493i
$$645$$ −4.95088 + 14.1708i −0.194941 + 0.557976i
$$646$$ −0.590531 0.158232i −0.0232341 0.00622556i
$$647$$ −4.49154 + 7.77957i −0.176581 + 0.305847i −0.940707 0.339220i $$-0.889837\pi$$
0.764127 + 0.645066i $$0.223170\pi$$
$$648$$ 2.39356 4.14577i 0.0940279 0.162861i
$$649$$ 7.60935 + 2.03892i 0.298693 + 0.0800345i
$$650$$ −8.71479 22.1418i −0.341822 0.868472i
$$651$$ 28.1790 + 7.55055i 1.10442 + 0.295930i
$$652$$ 4.17694i 0.163582i
$$653$$ 32.6893 + 18.8732i 1.27923 + 0.738563i 0.976707 0.214579i $$-0.0688378\pi$$
0.302523 + 0.953142i $$0.402171\pi$$
$$654$$ 22.1576 + 38.3781i 0.866431 + 1.50070i
$$655$$ −34.4124 + 29.6433i −1.34460 + 1.15826i
$$656$$ 8.74566i 0.341461i
$$657$$ 12.1407 45.3096i 0.473652 1.76769i
$$658$$ 11.9346i 0.465257i
$$659$$ 17.7677 30.7746i 0.692132 1.19881i −0.279006 0.960289i $$-0.590005\pi$$
0.971138 0.238518i $$-0.0766617\pi$$
$$660$$ 5.05257 4.35235i 0.196671 0.169415i
$$661$$ −32.5227 + 8.71443i −1.26499 + 0.338952i −0.828108 0.560568i $$-0.810583\pi$$
−0.436879 + 0.899521i $$0.643916\pi$$
$$662$$ −1.39026 5.18854i −0.0540342 0.201658i
$$663$$ −7.43951 + 1.99341i −0.288927 + 0.0774177i
$$664$$ 0.924178 3.44908i 0.0358651 0.133850i
$$665$$ −0.337087 + 4.52756i −0.0130717 + 0.175571i
$$666$$ −9.56119 22.6527i −0.370488 0.877776i
$$667$$ 13.9807 13.9807i 0.541335 0.541335i
$$668$$ 4.69835 2.71259i 0.181785 0.104953i
$$669$$ −23.0291 + 39.8875i −0.890355 + 1.54214i
$$670$$ −6.04764 31.8779i −0.233641 1.23155i
$$671$$ 4.05253 + 15.1242i 0.156446 + 0.583865i
$$672$$ 5.37482i 0.207338i
$$673$$ −15.6901 + 4.20415i −0.604809 + 0.162058i −0.548213 0.836339i $$-0.684692\pi$$
−0.0565967 + 0.998397i $$0.518025\pi$$
$$674$$ 17.5953 + 17.5953i 0.677744 + 0.677744i
$$675$$ 5.51773 12.6803i 0.212378 0.488065i
$$676$$ 9.64825 0.371087
$$677$$ 16.5260 + 16.5260i 0.635145 + 0.635145i 0.949354 0.314209i $$-0.101739\pi$$
−0.314209 + 0.949354i $$0.601739\pi$$
$$678$$ 3.37956 12.6127i 0.129791 0.484388i
$$679$$ 21.1376 5.66381i 0.811187 0.217357i
$$680$$ 1.35992 + 0.101249i 0.0521505 + 0.00388273i
$$681$$ −5.74652 + 21.4463i −0.220207 + 0.821824i
$$682$$ −5.89201 1.57876i −0.225617 0.0604538i
$$683$$ −15.8504 27.4537i −0.606499 1.05049i −0.991813 0.127701i $$-0.959240\pi$$
0.385314 0.922786i $$-0.374093\pi$$
$$684$$ 1.04878 + 3.91412i 0.0401013 + 0.149660i
$$685$$ −13.0175 + 2.46958i −0.497372 + 0.0943576i
$$686$$ −5.18852 + 19.3638i −0.198099 + 0.739314i
$$687$$ −0.918548 + 3.42807i −0.0350448 + 0.130789i
$$688$$ 1.26483 + 2.19076i 0.0482214 + 0.0835218i
$$689$$ −11.9316 11.9316i −0.454556 0.454556i
$$690$$ 34.2888 6.50500i 1.30535 0.247641i
$$691$$ 37.5818 21.6979i 1.42968 0.825426i 0.432585 0.901593i $$-0.357602\pi$$
0.997095 + 0.0761670i $$0.0242682\pi$$
$$692$$ 2.82502 2.82502i 0.107391 0.107391i
$$693$$ −6.50601 + 6.50601i −0.247143 + 0.247143i
$$694$$ −12.0147 20.8100i −0.456071 0.789937i
$$695$$ 1.84932 24.8390i 0.0701487 0.942197i
$$696$$ −7.72573 4.46045i −0.292843 0.169073i
$$697$$ 5.33361 0.202025
$$698$$ −28.9043 16.6879i −1.09404 0.631646i
$$699$$ 5.98196 + 3.45369i 0.226259 + 0.130630i
$$700$$ −1.14361 10.0622i −0.0432245 0.380315i
$$701$$ 7.31445 + 1.95990i 0.276263 + 0.0740244i 0.394290 0.918986i $$-0.370990\pi$$
−0.118027 + 0.993010i $$0.537657\pi$$
$$702$$ 9.30714 + 9.30714i 0.351275 + 0.351275i
$$703$$ −5.64910 2.29576i −0.213060 0.0865863i
$$704$$ 1.12383i 0.0423560i
$$705$$ −15.1861 31.4953i −0.571943 1.18618i
$$706$$ 25.7151 + 14.8466i 0.967799 + 0.558759i
$$707$$ 26.9500 7.22122i 1.01356 0.271582i
$$708$$ 9.30095 16.1097i 0.349551 0.605440i
$$709$$ 22.7969 + 22.7969i 0.856155 + 0.856155i 0.990883 0.134728i $$-0.0430159\pi$$
−0.134728 + 0.990883i $$0.543016\pi$$
$$710$$ 13.1065 + 8.92658i 0.491879 + 0.335009i
$$711$$ −13.3477 + 13.3477i −0.500576 + 0.500576i
$$712$$ −13.2615 3.55341i −0.496996 0.133170i
$$713$$ −22.5732 22.5732i −0.845374 0.845374i
$$714$$ −3.27787 −0.122671
$$715$$ −5.19414 10.7724i −0.194250 0.402864i
$$716$$ −5.16913 19.2915i −0.193179 0.720956i
$$717$$ 56.2907 2.10221
$$718$$ 7.24637 4.18369i 0.270432 0.156134i
$$719$$ −34.5568 + 19.9514i −1.28875 + 0.744062i −0.978432 0.206570i $$-0.933770\pi$$
−0.310321 + 0.950632i $$0.600437\pi$$
$$720$$ −3.92568 8.14167i −0.146301 0.303422i
$$721$$ 35.2603 9.44798i 1.31316 0.351861i
$$722$$ −15.5842 8.99753i −0.579983 0.334853i
$$723$$ −18.8812 + 10.9011i −0.702199 + 0.405415i
$$724$$ −5.83408 10.1049i −0.216822 0.375546i
$$725$$ 15.4124 + 6.70658i 0.572402 + 0.249076i
$$726$$ −18.2711 + 18.2711i −0.678105 + 0.678105i
$$727$$ 9.28337 16.0793i 0.344301 0.596347i −0.640925 0.767603i $$-0.721449\pi$$
0.985227 + 0.171256i $$0.0547825\pi$$
$$728$$ 9.31044 + 2.49472i 0.345068 + 0.0924606i
$$729$$ 41.3692i 1.53219i
$$730$$ 16.9354 + 19.6600i 0.626806 + 0.727649i
$$731$$ −1.33605 + 0.771369i −0.0494156 + 0.0285301i
$$732$$ 36.9729 1.36656
$$733$$ 7.18267 + 26.8061i 0.265298 + 0.990106i 0.962068 + 0.272811i $$0.0879534\pi$$
−0.696770 + 0.717295i $$0.745380\pi$$
$$734$$ −1.29142 + 1.29142i −0.0476672 + 0.0476672i
$$735$$ −3.20497 16.8939i −0.118217 0.623139i
$$736$$ 2.94076 5.09355i 0.108398 0.187751i
$$737$$ −4.22066 15.7517i −0.155470 0.580222i
$$738$$ −17.6759 30.6156i −0.650660 1.12698i
$$739$$ 3.93004 0.144569 0.0722845 0.997384i $$-0.476971\pi$$
0.0722845 + 0.997384i $$0.476971\pi$$
$$740$$ 13.3343 + 2.68249i 0.490180 + 0.0986104i
$$741$$ 12.6603 0.465086
$$742$$ −3.59065 6.21919i −0.131817 0.228314i
$$743$$ −6.15599 22.9745i −0.225841 0.842851i −0.982066 0.188539i $$-0.939625\pi$$
0.756224 0.654312i $$-0.227042\pi$$
$$744$$ −7.20184 + 12.4740i −0.264032 + 0.457317i
$$745$$ 1.99929 2.93547i 0.0732483 0.107547i
$$746$$ −23.6118 + 23.6118i −0.864491 + 0.864491i
$$747$$ −3.73573 13.9419i −0.136683 0.510109i
$$748$$ 0.685377 0.0250599
$$749$$ 5.01041 2.89276i 0.183077 0.105699i
$$750$$ 15.8216 + 25.0989i 0.577724 + 0.916482i
$$751$$ 17.4262i 0.635893i 0.948109 + 0.317946i $$0.102993\pi$$
−0.948109 + 0.317946i $$0.897007\pi$$
$$752$$ −5.69169 1.52508i −0.207554 0.0556141i
$$753$$ 25.5395 44.2357i 0.930711 1.61204i
$$754$$ −11.3125 + 11.3125i −0.411975 + 0.411975i
$$755$$ 11.6616 + 24.1857i 0.424411 + 0.880206i
$$756$$ 2.80087 + 4.85125i 0.101867 + 0.176438i
$$757$$ −2.28616 + 1.31992i −0.0830919 + 0.0479731i −0.540970 0.841042i $$-0.681943\pi$$
0.457878 + 0.889015i $$0.348610\pi$$
$$758$$ 10.4144 + 6.01276i 0.378268 + 0.218393i
$$759$$ 16.9430 4.53985i 0.614991 0.164786i
$$760$$ −2.11615 0.739323i −0.0767610 0.0268181i
$$761$$ −27.4751 + 15.8628i −0.995972 + 0.575025i −0.907054 0.421014i $$-0.861674\pi$$
−0.0889182 + 0.996039i $$0.528341\pi$$
$$762$$ 16.4233 9.48198i 0.594952 0.343496i
$$763$$ 33.8226 1.22446
$$764$$ 4.94739 + 18.4639i 0.178990 + 0.668001i
$$765$$ 4.96526 2.39411i 0.179519 0.0865591i
$$766$$ −0.0719996 −0.00260145
$$767$$ −23.5887 23.5887i −0.851740 0.851740i
$$768$$ −2.56329 0.686833i −0.0924949 0.0247839i
$$769$$ 16.8239 16.8239i 0.606685 0.606685i −0.335393 0.942078i $$-0.608869\pi$$
0.942078 + 0.335393i $$0.108869\pi$$
$$770$$ −0.948664 5.00054i −0.0341875 0.180207i
$$771$$ −13.0205 13.0205i −0.468921 0.468921i