# Properties

 Label 370.2.q.f.103.5 Level $370$ Weight $2$ Character 370.103 Analytic conductor $2.954$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.q (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$8$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 103.5 Character $$\chi$$ $$=$$ 370.103 Dual form 370.2.q.f.97.5

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(-0.0267201 - 0.0997208i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.206483 - 2.22651i) q^{5} +(0.0730007 - 0.0730007i) q^{6} +(-0.571833 - 2.13411i) q^{7} -1.00000 q^{8} +(2.58885 - 1.49467i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(-0.0267201 - 0.0997208i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.206483 - 2.22651i) q^{5} +(0.0730007 - 0.0730007i) q^{6} +(-0.571833 - 2.13411i) q^{7} -1.00000 q^{8} +(2.58885 - 1.49467i) q^{9} +(2.03146 - 0.934438i) q^{10} -2.16169i q^{11} +(0.0997208 + 0.0267201i) q^{12} +(0.466433 - 0.807886i) q^{13} +(1.56228 - 1.56228i) q^{14} +(-0.227547 + 0.0389020i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-4.83629 + 2.79223i) q^{17} +(2.58885 + 1.49467i) q^{18} +(4.52305 - 1.21195i) q^{19} +(1.82498 + 1.29208i) q^{20} +(-0.197536 + 0.114047i) q^{21} +(1.87208 - 1.08084i) q^{22} +9.14220 q^{23} +(0.0267201 + 0.0997208i) q^{24} +(-4.91473 - 0.919474i) q^{25} +0.932867 q^{26} +(-0.437226 - 0.437226i) q^{27} +(2.13411 + 0.571833i) q^{28} +(-3.75539 + 3.75539i) q^{29} +(-0.147464 - 0.177610i) q^{30} +(2.61073 + 2.61073i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.215565 + 0.0577605i) q^{33} +(-4.83629 - 2.79223i) q^{34} +(-4.86970 + 0.832537i) q^{35} +2.98934i q^{36} +(-5.95478 + 1.24118i) q^{37} +(3.31110 + 3.31110i) q^{38} +(-0.0930262 - 0.0249263i) q^{39} +(-0.206483 + 2.22651i) q^{40} +(0.618232 + 0.356936i) q^{41} +(-0.197536 - 0.114047i) q^{42} +1.79189 q^{43} +(1.87208 + 1.08084i) q^{44} +(-2.79335 - 6.07273i) q^{45} +(4.57110 + 7.91738i) q^{46} +(-0.916690 + 0.916690i) q^{47} +(-0.0730007 + 0.0730007i) q^{48} +(1.83475 - 1.05929i) q^{49} +(-1.66108 - 4.71602i) q^{50} +(0.407670 + 0.407670i) q^{51} +(0.466433 + 0.807886i) q^{52} +(-0.460907 + 1.72013i) q^{53} +(0.160036 - 0.597262i) q^{54} +(-4.81303 - 0.446352i) q^{55} +(0.571833 + 2.13411i) q^{56} +(-0.241713 - 0.418658i) q^{57} +(-5.12996 - 1.37457i) q^{58} +(0.639839 - 2.38791i) q^{59} +(0.0800833 - 0.216512i) q^{60} +(6.94753 - 1.86158i) q^{61} +(-0.955594 + 3.56633i) q^{62} +(-4.67018 - 4.67018i) q^{63} +1.00000 q^{64} +(-1.70246 - 1.20534i) q^{65} +(-0.157805 - 0.157805i) q^{66} +(-8.38887 + 2.24779i) q^{67} -5.58447i q^{68} +(-0.244280 - 0.911667i) q^{69} +(-3.15585 - 3.80101i) q^{70} +(-6.02963 + 10.4436i) q^{71} +(-2.58885 + 1.49467i) q^{72} +(-7.72337 + 7.72337i) q^{73} +(-4.05229 - 4.53640i) q^{74} +(0.0396314 + 0.514669i) q^{75} +(-1.21195 + 4.52305i) q^{76} +(-4.61328 + 1.23612i) q^{77} +(-0.0249263 - 0.0930262i) q^{78} +(12.3560 - 3.31077i) q^{79} +(-2.03146 + 0.934438i) q^{80} +(4.45209 - 7.71125i) q^{81} +0.713873i q^{82} +(0.483220 - 1.80340i) q^{83} -0.228095i q^{84} +(5.21834 + 11.3446i) q^{85} +(0.895944 + 1.55182i) q^{86} +(0.474835 + 0.274146i) q^{87} +2.16169i q^{88} +(-5.35452 - 1.43474i) q^{89} +(3.86246 - 5.45548i) q^{90} +(-1.99084 - 0.533444i) q^{91} +(-4.57110 + 7.91738i) q^{92} +(0.190585 - 0.330103i) q^{93} +(-1.25222 - 0.335532i) q^{94} +(-1.76448 - 10.3209i) q^{95} +(-0.0997208 - 0.0267201i) q^{96} -13.2375i q^{97} +(1.83475 + 1.05929i) q^{98} +(-3.23101 - 5.59628i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32 q + 16 q^{2} - 2 q^{3} - 16 q^{4} + 6 q^{5} + 8 q^{6} - 10 q^{7} - 32 q^{8} + 12 q^{9}+O(q^{10})$$ 32 * q + 16 * q^2 - 2 * q^3 - 16 * q^4 + 6 * q^5 + 8 * q^6 - 10 * q^7 - 32 * q^8 + 12 * q^9 $$32 q + 16 q^{2} - 2 q^{3} - 16 q^{4} + 6 q^{5} + 8 q^{6} - 10 q^{7} - 32 q^{8} + 12 q^{9} + 6 q^{10} + 10 q^{12} + 10 q^{13} - 8 q^{14} - 8 q^{15} - 16 q^{16} - 12 q^{17} + 12 q^{18} + 2 q^{19} - 54 q^{21} + 6 q^{22} + 12 q^{23} + 2 q^{24} - 16 q^{25} + 20 q^{26} + 40 q^{27} + 2 q^{28} + 6 q^{29} + 8 q^{30} - 4 q^{31} + 16 q^{32} + 26 q^{33} - 12 q^{34} - 12 q^{35} + 20 q^{37} - 26 q^{38} - 58 q^{39} - 6 q^{40} + 18 q^{41} - 54 q^{42} - 32 q^{43} + 6 q^{44} + 56 q^{45} + 6 q^{46} + 18 q^{47} - 8 q^{48} - 12 q^{49} - 14 q^{50} - 4 q^{51} + 10 q^{52} - 24 q^{53} + 20 q^{54} - 32 q^{55} + 10 q^{56} + 8 q^{57} + 36 q^{58} + 42 q^{59} + 16 q^{60} - 46 q^{61} - 14 q^{62} + 32 q^{64} - 18 q^{65} + 4 q^{66} + 50 q^{67} - 66 q^{69} + 12 q^{70} - 12 q^{71} - 12 q^{72} - 28 q^{73} + 16 q^{74} - 20 q^{75} - 28 q^{76} + 12 q^{77} - 26 q^{78} + 38 q^{79} - 6 q^{80} + 56 q^{81} - 8 q^{85} - 16 q^{86} + 18 q^{87} + 18 q^{89} + 4 q^{90} + 4 q^{91} - 6 q^{92} + 32 q^{93} + 30 q^{94} + 96 q^{95} - 10 q^{96} - 12 q^{98} - 26 q^{99}+O(q^{100})$$ 32 * q + 16 * q^2 - 2 * q^3 - 16 * q^4 + 6 * q^5 + 8 * q^6 - 10 * q^7 - 32 * q^8 + 12 * q^9 + 6 * q^10 + 10 * q^12 + 10 * q^13 - 8 * q^14 - 8 * q^15 - 16 * q^16 - 12 * q^17 + 12 * q^18 + 2 * q^19 - 54 * q^21 + 6 * q^22 + 12 * q^23 + 2 * q^24 - 16 * q^25 + 20 * q^26 + 40 * q^27 + 2 * q^28 + 6 * q^29 + 8 * q^30 - 4 * q^31 + 16 * q^32 + 26 * q^33 - 12 * q^34 - 12 * q^35 + 20 * q^37 - 26 * q^38 - 58 * q^39 - 6 * q^40 + 18 * q^41 - 54 * q^42 - 32 * q^43 + 6 * q^44 + 56 * q^45 + 6 * q^46 + 18 * q^47 - 8 * q^48 - 12 * q^49 - 14 * q^50 - 4 * q^51 + 10 * q^52 - 24 * q^53 + 20 * q^54 - 32 * q^55 + 10 * q^56 + 8 * q^57 + 36 * q^58 + 42 * q^59 + 16 * q^60 - 46 * q^61 - 14 * q^62 + 32 * q^64 - 18 * q^65 + 4 * q^66 + 50 * q^67 - 66 * q^69 + 12 * q^70 - 12 * q^71 - 12 * q^72 - 28 * q^73 + 16 * q^74 - 20 * q^75 - 28 * q^76 + 12 * q^77 - 26 * q^78 + 38 * q^79 - 6 * q^80 + 56 * q^81 - 8 * q^85 - 16 * q^86 + 18 * q^87 + 18 * q^89 + 4 * q^90 + 4 * q^91 - 6 * q^92 + 32 * q^93 + 30 * q^94 + 96 * q^95 - 10 * q^96 - 12 * q^98 - 26 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ −0.0267201 0.0997208i −0.0154269 0.0575738i 0.957783 0.287491i $$-0.0928211\pi$$
−0.973210 + 0.229917i $$0.926154\pi$$
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ 0.206483 2.22651i 0.0923420 0.995727i
$$6$$ 0.0730007 0.0730007i 0.0298024 0.0298024i
$$7$$ −0.571833 2.13411i −0.216133 0.806618i −0.985765 0.168130i $$-0.946227\pi$$
0.769632 0.638487i $$-0.220440\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ 2.58885 1.49467i 0.862949 0.498224i
$$10$$ 2.03146 0.934438i 0.642404 0.295495i
$$11$$ 2.16169i 0.651774i −0.945409 0.325887i $$-0.894337\pi$$
0.945409 0.325887i $$-0.105663\pi$$
$$12$$ 0.0997208 + 0.0267201i 0.0287869 + 0.00771343i
$$13$$ 0.466433 0.807886i 0.129365 0.224067i −0.794066 0.607832i $$-0.792039\pi$$
0.923431 + 0.383765i $$0.125373\pi$$
$$14$$ 1.56228 1.56228i 0.417536 0.417536i
$$15$$ −0.227547 + 0.0389020i −0.0587524 + 0.0100445i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −4.83629 + 2.79223i −1.17297 + 0.677216i −0.954379 0.298599i $$-0.903481\pi$$
−0.218595 + 0.975816i $$0.570147\pi$$
$$18$$ 2.58885 + 1.49467i 0.610197 + 0.352297i
$$19$$ 4.52305 1.21195i 1.03766 0.278040i 0.300515 0.953777i $$-0.402841\pi$$
0.737142 + 0.675737i $$0.236175\pi$$
$$20$$ 1.82498 + 1.29208i 0.408077 + 0.288917i
$$21$$ −0.197536 + 0.114047i −0.0431058 + 0.0248872i
$$22$$ 1.87208 1.08084i 0.399128 0.230437i
$$23$$ 9.14220 1.90628 0.953140 0.302529i $$-0.0978310\pi$$
0.953140 + 0.302529i $$0.0978310\pi$$
$$24$$ 0.0267201 + 0.0997208i 0.00545422 + 0.0203554i
$$25$$ −4.91473 0.919474i −0.982946 0.183895i
$$26$$ 0.932867 0.182950
$$27$$ −0.437226 0.437226i −0.0841442 0.0841442i
$$28$$ 2.13411 + 0.571833i 0.403309 + 0.108066i
$$29$$ −3.75539 + 3.75539i −0.697358 + 0.697358i −0.963840 0.266482i $$-0.914139\pi$$
0.266482 + 0.963840i $$0.414139\pi$$
$$30$$ −0.147464 0.177610i −0.0269231 0.0324271i
$$31$$ 2.61073 + 2.61073i 0.468901 + 0.468901i 0.901558 0.432657i $$-0.142424\pi$$
−0.432657 + 0.901558i $$0.642424\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ −0.215565 + 0.0577605i −0.0375251 + 0.0100548i
$$34$$ −4.83629 2.79223i −0.829417 0.478864i
$$35$$ −4.86970 + 0.832537i −0.823129 + 0.140724i
$$36$$ 2.98934i 0.498224i
$$37$$ −5.95478 + 1.24118i −0.978961 + 0.204049i
$$38$$ 3.31110 + 3.31110i 0.537131 + 0.537131i
$$39$$ −0.0930262 0.0249263i −0.0148961 0.00399140i
$$40$$ −0.206483 + 2.22651i −0.0326478 + 0.352043i
$$41$$ 0.618232 + 0.356936i 0.0965516 + 0.0557441i 0.547498 0.836807i $$-0.315580\pi$$
−0.450947 + 0.892551i $$0.648914\pi$$
$$42$$ −0.197536 0.114047i −0.0304804 0.0175979i
$$43$$ 1.79189 0.273260 0.136630 0.990622i $$-0.456373\pi$$
0.136630 + 0.990622i $$0.456373\pi$$
$$44$$ 1.87208 + 1.08084i 0.282226 + 0.162943i
$$45$$ −2.79335 6.07273i −0.416409 0.905269i
$$46$$ 4.57110 + 7.91738i 0.673972 + 1.16735i
$$47$$ −0.916690 + 0.916690i −0.133713 + 0.133713i −0.770796 0.637083i $$-0.780141\pi$$
0.637083 + 0.770796i $$0.280141\pi$$
$$48$$ −0.0730007 + 0.0730007i −0.0105367 + 0.0105367i
$$49$$ 1.83475 1.05929i 0.262107 0.151327i
$$50$$ −1.66108 4.71602i −0.234912 0.666946i
$$51$$ 0.407670 + 0.407670i 0.0570852 + 0.0570852i
$$52$$ 0.466433 + 0.807886i 0.0646827 + 0.112034i
$$53$$ −0.460907 + 1.72013i −0.0633105 + 0.236278i −0.990329 0.138737i $$-0.955696\pi$$
0.927019 + 0.375015i $$0.122362\pi$$
$$54$$ 0.160036 0.597262i 0.0217781 0.0812770i
$$55$$ −4.81303 0.446352i −0.648989 0.0601861i
$$56$$ 0.571833 + 2.13411i 0.0764144 + 0.285182i
$$57$$ −0.241713 0.418658i −0.0320156 0.0554527i
$$58$$ −5.12996 1.37457i −0.673596 0.180490i
$$59$$ 0.639839 2.38791i 0.0832999 0.310880i −0.911687 0.410886i $$-0.865220\pi$$
0.994987 + 0.100006i $$0.0318862\pi$$
$$60$$ 0.0800833 0.216512i 0.0103387 0.0279516i
$$61$$ 6.94753 1.86158i 0.889540 0.238351i 0.215021 0.976609i $$-0.431018\pi$$
0.674518 + 0.738258i $$0.264351\pi$$
$$62$$ −0.955594 + 3.56633i −0.121361 + 0.452924i
$$63$$ −4.67018 4.67018i −0.588387 0.588387i
$$64$$ 1.00000 0.125000
$$65$$ −1.70246 1.20534i −0.211164 0.149503i
$$66$$ −0.157805 0.157805i −0.0194244 0.0194244i
$$67$$ −8.38887 + 2.24779i −1.02486 + 0.274612i −0.731828 0.681490i $$-0.761332\pi$$
−0.293037 + 0.956101i $$0.594666\pi$$
$$68$$ 5.58447i 0.677216i
$$69$$ −0.244280 0.911667i −0.0294079 0.109752i
$$70$$ −3.15585 3.80101i −0.377196 0.454308i
$$71$$ −6.02963 + 10.4436i −0.715586 + 1.23943i 0.247147 + 0.968978i $$0.420507\pi$$
−0.962733 + 0.270453i $$0.912826\pi$$
$$72$$ −2.58885 + 1.49467i −0.305098 + 0.176149i
$$73$$ −7.72337 + 7.72337i −0.903952 + 0.903952i −0.995775 0.0918231i $$-0.970731\pi$$
0.0918231 + 0.995775i $$0.470731\pi$$
$$74$$ −4.05229 4.53640i −0.471069 0.527346i
$$75$$ 0.0396314 + 0.514669i 0.00457624 + 0.0594289i
$$76$$ −1.21195 + 4.52305i −0.139020 + 0.518829i
$$77$$ −4.61328 + 1.23612i −0.525732 + 0.140870i
$$78$$ −0.0249263 0.0930262i −0.00282235 0.0105331i
$$79$$ 12.3560 3.31077i 1.39015 0.372491i 0.515355 0.856977i $$-0.327660\pi$$
0.874799 + 0.484486i $$0.160993\pi$$
$$80$$ −2.03146 + 0.934438i −0.227124 + 0.104473i
$$81$$ 4.45209 7.71125i 0.494677 0.856806i
$$82$$ 0.713873i 0.0788341i
$$83$$ 0.483220 1.80340i 0.0530403 0.197949i −0.934322 0.356431i $$-0.883993\pi$$
0.987362 + 0.158482i $$0.0506600\pi$$
$$84$$ 0.228095i 0.0248872i
$$85$$ 5.21834 + 11.3446i 0.566008 + 1.23050i
$$86$$ 0.895944 + 1.55182i 0.0966122 + 0.167337i
$$87$$ 0.474835 + 0.274146i 0.0509076 + 0.0293915i
$$88$$ 2.16169i 0.230437i
$$89$$ −5.35452 1.43474i −0.567578 0.152082i −0.0363922 0.999338i $$-0.511587\pi$$
−0.531185 + 0.847256i $$0.678253\pi$$
$$90$$ 3.86246 5.45548i 0.407139 0.575058i
$$91$$ −1.99084 0.533444i −0.208697 0.0559201i
$$92$$ −4.57110 + 7.91738i −0.476570 + 0.825444i
$$93$$ 0.190585 0.330103i 0.0197628 0.0342301i
$$94$$ −1.25222 0.335532i −0.129157 0.0346075i
$$95$$ −1.76448 10.3209i −0.181032 1.05890i
$$96$$ −0.0997208 0.0267201i −0.0101777 0.00272711i
$$97$$ 13.2375i 1.34407i −0.740521 0.672034i $$-0.765421\pi$$
0.740521 0.672034i $$-0.234579\pi$$
$$98$$ 1.83475 + 1.05929i 0.185337 + 0.107005i
$$99$$ −3.23101 5.59628i −0.324729 0.562447i
$$100$$ 3.25365 3.79654i 0.325365 0.379654i
$$101$$ 10.8961i 1.08421i 0.840312 + 0.542104i $$0.182372\pi$$
−0.840312 + 0.542104i $$0.817628\pi$$
$$102$$ −0.149218 + 0.556888i −0.0147747 + 0.0551401i
$$103$$ 12.6761i 1.24902i 0.781018 + 0.624508i $$0.214701\pi$$
−0.781018 + 0.624508i $$0.785299\pi$$
$$104$$ −0.466433 + 0.807886i −0.0457376 + 0.0792198i
$$105$$ 0.213140 + 0.463365i 0.0208003 + 0.0452198i
$$106$$ −1.72013 + 0.460907i −0.167074 + 0.0447673i
$$107$$ 1.32096 + 4.92988i 0.127702 + 0.476589i 0.999922 0.0125247i $$-0.00398683\pi$$
−0.872220 + 0.489114i $$0.837320\pi$$
$$108$$ 0.597262 0.160036i 0.0574715 0.0153995i
$$109$$ −0.305100 + 1.13865i −0.0292233 + 0.109063i −0.978997 0.203875i $$-0.934646\pi$$
0.949774 + 0.312938i $$0.101313\pi$$
$$110$$ −2.01996 4.39138i −0.192596 0.418702i
$$111$$ 0.282884 + 0.560651i 0.0268502 + 0.0532147i
$$112$$ −1.56228 + 1.56228i −0.147621 + 0.147621i
$$113$$ −11.9875 + 6.92097i −1.12769 + 0.651070i −0.943352 0.331794i $$-0.892346\pi$$
−0.184334 + 0.982864i $$0.559013\pi$$
$$114$$ 0.241713 0.418658i 0.0226385 0.0392109i
$$115$$ 1.88771 20.3552i 0.176030 1.89814i
$$116$$ −1.37457 5.12996i −0.127625 0.476305i
$$117$$ 2.78866i 0.257811i
$$118$$ 2.38791 0.639839i 0.219825 0.0589020i
$$119$$ 8.72449 + 8.72449i 0.799772 + 0.799772i
$$120$$ 0.227547 0.0389020i 0.0207721 0.00355125i
$$121$$ 6.32710 0.575191
$$122$$ 5.08594 + 5.08594i 0.460460 + 0.460460i
$$123$$ 0.0190748 0.0711880i 0.00171991 0.00641880i
$$124$$ −3.56633 + 0.955594i −0.320265 + 0.0858149i
$$125$$ −3.06203 + 10.7529i −0.273876 + 0.961765i
$$126$$ 1.70940 6.37958i 0.152286 0.568338i
$$127$$ 19.5349 + 5.23436i 1.73344 + 0.464474i 0.980971 0.194153i $$-0.0621959\pi$$
0.752469 + 0.658627i $$0.228863\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ −0.0478795 0.178689i −0.00421555 0.0157327i
$$130$$ 0.192621 2.07704i 0.0168940 0.182169i
$$131$$ 3.58187 13.3677i 0.312950 1.16794i −0.612934 0.790134i $$-0.710011\pi$$
0.925883 0.377810i $$-0.123323\pi$$
$$132$$ 0.0577605 0.215565i 0.00502741 0.0187625i
$$133$$ −5.17285 8.95965i −0.448543 0.776900i
$$134$$ −6.14108 6.14108i −0.530509 0.530509i
$$135$$ −1.06377 + 0.883210i −0.0915547 + 0.0760146i
$$136$$ 4.83629 2.79223i 0.414709 0.239432i
$$137$$ −7.86425 + 7.86425i −0.671888 + 0.671888i −0.958151 0.286263i $$-0.907587\pi$$
0.286263 + 0.958151i $$0.407587\pi$$
$$138$$ 0.667387 0.667387i 0.0568117 0.0568117i
$$139$$ 0.315020 + 0.545631i 0.0267197 + 0.0462798i 0.879076 0.476682i $$-0.158161\pi$$
−0.852356 + 0.522961i $$0.824827\pi$$
$$140$$ 1.71385 4.63355i 0.144847 0.391607i
$$141$$ 0.115907 + 0.0669190i 0.00976114 + 0.00563560i
$$142$$ −12.0593 −1.01199
$$143$$ −1.74640 1.00828i −0.146041 0.0843169i
$$144$$ −2.58885 1.49467i −0.215737 0.124556i
$$145$$ 7.58600 + 9.13685i 0.629983 + 0.758774i
$$146$$ −10.5503 2.82695i −0.873151 0.233960i
$$147$$ −0.154658 0.154658i −0.0127560 0.0127560i
$$148$$ 1.90250 5.77759i 0.156384 0.474915i
$$149$$ 12.0604i 0.988028i 0.869454 + 0.494014i $$0.164471\pi$$
−0.869454 + 0.494014i $$0.835529\pi$$
$$150$$ −0.425901 + 0.291656i −0.0347747 + 0.0238136i
$$151$$ 11.9725 + 6.91232i 0.974308 + 0.562517i 0.900547 0.434759i $$-0.143167\pi$$
0.0737609 + 0.997276i $$0.476500\pi$$
$$152$$ −4.52305 + 1.21195i −0.366867 + 0.0983018i
$$153$$ −8.34694 + 14.4573i −0.674810 + 1.16881i
$$154$$ −3.37716 3.37716i −0.272139 0.272139i
$$155$$ 6.35190 5.27376i 0.510197 0.423598i
$$156$$ 0.0680999 0.0680999i 0.00545236 0.00545236i
$$157$$ −13.4082 3.59272i −1.07009 0.286731i −0.319562 0.947565i $$-0.603536\pi$$
−0.750531 + 0.660835i $$0.770202\pi$$
$$158$$ 9.04519 + 9.04519i 0.719597 + 0.719597i
$$159$$ 0.183848 0.0145801
$$160$$ −1.82498 1.29208i −0.144277 0.102148i
$$161$$ −5.22781 19.5105i −0.412009 1.53764i
$$162$$ 8.90419 0.699579
$$163$$ 8.36087 4.82715i 0.654874 0.378092i −0.135447 0.990785i $$-0.543247\pi$$
0.790321 + 0.612693i $$0.209914\pi$$
$$164$$ −0.618232 + 0.356936i −0.0482758 + 0.0278721i
$$165$$ 0.0840941 + 0.491886i 0.00654672 + 0.0382933i
$$166$$ 1.80340 0.483220i 0.139971 0.0375052i
$$167$$ −9.85063 5.68727i −0.762265 0.440094i 0.0678435 0.997696i $$-0.478388\pi$$
−0.830108 + 0.557602i $$0.811721\pi$$
$$168$$ 0.197536 0.114047i 0.0152402 0.00879894i
$$169$$ 6.06488 + 10.5047i 0.466529 + 0.808052i
$$170$$ −7.21556 + 10.1915i −0.553408 + 0.781654i
$$171$$ 9.89801 9.89801i 0.756920 0.756920i
$$172$$ −0.895944 + 1.55182i −0.0683151 + 0.118325i
$$173$$ 11.7935 + 3.16007i 0.896647 + 0.240256i 0.677576 0.735453i $$-0.263031\pi$$
0.219071 + 0.975709i $$0.429697\pi$$
$$174$$ 0.548292i 0.0415659i
$$175$$ 0.848145 + 11.0144i 0.0641137 + 0.832607i
$$176$$ −1.87208 + 1.08084i −0.141113 + 0.0814717i
$$177$$ −0.255221 −0.0191836
$$178$$ −1.43474 5.35452i −0.107538 0.401338i
$$179$$ 4.60327 4.60327i 0.344065 0.344065i −0.513828 0.857893i $$-0.671773\pi$$
0.857893 + 0.513828i $$0.171773\pi$$
$$180$$ 6.65581 + 0.617248i 0.496095 + 0.0460070i
$$181$$ 11.8428 20.5123i 0.880268 1.52467i 0.0292251 0.999573i $$-0.490696\pi$$
0.851043 0.525096i $$-0.175971\pi$$
$$182$$ −0.533444 1.99084i −0.0395415 0.147571i
$$183$$ −0.371277 0.643071i −0.0274456 0.0475372i
$$184$$ −9.14220 −0.673972
$$185$$ 1.53395 + 13.5147i 0.112778 + 0.993620i
$$186$$ 0.381170 0.0279488
$$187$$ 6.03594 + 10.4546i 0.441392 + 0.764513i
$$188$$ −0.335532 1.25222i −0.0244712 0.0913277i
$$189$$ −0.683068 + 1.18311i −0.0496859 + 0.0860585i
$$190$$ 8.05589 6.68852i 0.584436 0.485236i
$$191$$ −15.7937 + 15.7937i −1.14279 + 1.14279i −0.154851 + 0.987938i $$0.549490\pi$$
−0.987938 + 0.154851i $$0.950510\pi$$
$$192$$ −0.0267201 0.0997208i −0.00192836 0.00719673i
$$193$$ 18.0709 1.30077 0.650384 0.759605i $$-0.274608\pi$$
0.650384 + 0.759605i $$0.274608\pi$$
$$194$$ 11.4640 6.61876i 0.823070 0.475200i
$$195$$ −0.0747071 + 0.201977i −0.00534988 + 0.0144639i
$$196$$ 2.11858i 0.151327i
$$197$$ 18.0287 + 4.83077i 1.28449 + 0.344178i 0.835566 0.549391i $$-0.185140\pi$$
0.448926 + 0.893569i $$0.351807\pi$$
$$198$$ 3.23101 5.59628i 0.229618 0.397710i
$$199$$ 1.40477 1.40477i 0.0995816 0.0995816i −0.655561 0.755142i $$-0.727568\pi$$
0.755142 + 0.655561i $$0.227568\pi$$
$$200$$ 4.91473 + 0.919474i 0.347524 + 0.0650167i
$$201$$ 0.448303 + 0.776484i 0.0316209 + 0.0547690i
$$202$$ −9.43634 + 5.44807i −0.663939 + 0.383325i
$$203$$ 10.1619 + 5.86696i 0.713223 + 0.411780i
$$204$$ −0.556888 + 0.149218i −0.0389899 + 0.0104473i
$$205$$ 0.922378 1.30280i 0.0644217 0.0909916i
$$206$$ −10.9779 + 6.33806i −0.764863 + 0.441594i
$$207$$ 23.6677 13.6646i 1.64502 0.949754i
$$208$$ −0.932867 −0.0646827
$$209$$ −2.61985 9.77742i −0.181219 0.676318i
$$210$$ −0.294716 + 0.416267i −0.0203373 + 0.0287252i
$$211$$ 16.2232 1.11685 0.558427 0.829554i $$-0.311405\pi$$
0.558427 + 0.829554i $$0.311405\pi$$
$$212$$ −1.25922 1.25922i −0.0864837 0.0864837i
$$213$$ 1.20256 + 0.322225i 0.0823980 + 0.0220785i
$$214$$ −3.60892 + 3.60892i −0.246701 + 0.246701i
$$215$$ 0.369995 3.98967i 0.0252334 0.272093i
$$216$$ 0.437226 + 0.437226i 0.0297495 + 0.0297495i
$$217$$ 4.07869 7.06449i 0.276879 0.479569i
$$218$$ −1.13865 + 0.305100i −0.0771190 + 0.0206640i
$$219$$ 0.976550 + 0.563811i 0.0659891 + 0.0380988i
$$220$$ 2.79307 3.94503i 0.188309 0.265974i
$$221$$ 5.20957i 0.350433i
$$222$$ −0.344096 + 0.525311i −0.0230942 + 0.0352565i
$$223$$ 3.11324 + 3.11324i 0.208478 + 0.208478i 0.803620 0.595142i $$-0.202904\pi$$
−0.595142 + 0.803620i $$0.702904\pi$$
$$224$$ −2.13411 0.571833i −0.142591 0.0382072i
$$225$$ −14.0978 + 4.96553i −0.939853 + 0.331035i
$$226$$ −11.9875 6.92097i −0.797394 0.460376i
$$227$$ −18.5445 10.7067i −1.23084 0.710627i −0.263637 0.964622i $$-0.584922\pi$$
−0.967206 + 0.253995i $$0.918255\pi$$
$$228$$ 0.483425 0.0320156
$$229$$ −13.3473 7.70608i −0.882015 0.509232i −0.0106930 0.999943i $$-0.503404\pi$$
−0.871322 + 0.490711i $$0.836737\pi$$
$$230$$ 18.5720 8.54281i 1.22460 0.563296i
$$231$$ 0.246535 + 0.427011i 0.0162208 + 0.0280952i
$$232$$ 3.75539 3.75539i 0.246553 0.246553i
$$233$$ −5.57317 + 5.57317i −0.365110 + 0.365110i −0.865690 0.500580i $$-0.833120\pi$$
0.500580 + 0.865690i $$0.333120\pi$$
$$234$$ 2.41505 1.39433i 0.157877 0.0911501i
$$235$$ 1.85174 + 2.23030i 0.120794 + 0.145489i
$$236$$ 1.74807 + 1.74807i 0.113790 + 0.113790i
$$237$$ −0.660305 1.14368i −0.0428914 0.0742901i
$$238$$ −3.19338 + 11.9179i −0.206996 + 0.772521i
$$239$$ −3.64592 + 13.6067i −0.235835 + 0.880147i 0.741936 + 0.670471i $$0.233908\pi$$
−0.977771 + 0.209677i $$0.932759\pi$$
$$240$$ 0.147464 + 0.177610i 0.00951874 + 0.0114647i
$$241$$ 5.18360 + 19.3455i 0.333905 + 1.24615i 0.905051 + 0.425302i $$0.139832\pi$$
−0.571146 + 0.820848i $$0.693501\pi$$
$$242$$ 3.16355 + 5.47943i 0.203361 + 0.352231i
$$243$$ −2.67972 0.718028i −0.171904 0.0460615i
$$244$$ −1.86158 + 6.94753i −0.119176 + 0.444770i
$$245$$ −1.97968 4.30381i −0.126477 0.274961i
$$246$$ 0.0711880 0.0190748i 0.00453878 0.00121616i
$$247$$ 1.13058 4.21940i 0.0719374 0.268474i
$$248$$ −2.61073 2.61073i −0.165782 0.165782i
$$249$$ −0.192748 −0.0122149
$$250$$ −10.8433 + 2.72463i −0.685788 + 0.172321i
$$251$$ −21.0945 21.0945i −1.33147 1.33147i −0.904055 0.427415i $$-0.859424\pi$$
−0.427415 0.904055i $$-0.640576\pi$$
$$252$$ 6.37958 1.70940i 0.401876 0.107682i
$$253$$ 19.7626i 1.24246i
$$254$$ 5.23436 + 19.5349i 0.328433 + 1.22573i
$$255$$ 0.991860 0.823506i 0.0621127 0.0515700i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −4.94342 + 2.85409i −0.308362 + 0.178033i −0.646193 0.763174i $$-0.723640\pi$$
0.337831 + 0.941207i $$0.390307\pi$$
$$258$$ 0.130809 0.130809i 0.00814382 0.00814382i
$$259$$ 6.05397 + 11.9984i 0.376175 + 0.745545i
$$260$$ 1.89508 0.871706i 0.117528 0.0540609i
$$261$$ −4.10905 + 15.3352i −0.254344 + 0.949225i
$$262$$ 13.3677 3.58187i 0.825861 0.221289i
$$263$$ −3.94489 14.7225i −0.243253 0.907831i −0.974254 0.225455i $$-0.927613\pi$$
0.731001 0.682376i $$-0.239053\pi$$
$$264$$ 0.215565 0.0577605i 0.0132671 0.00355492i
$$265$$ 3.73472 + 1.38139i 0.229422 + 0.0848584i
$$266$$ 5.17285 8.95965i 0.317168 0.549351i
$$267$$ 0.572293i 0.0350238i
$$268$$ 2.24779 8.38887i 0.137306 0.512432i
$$269$$ 19.0043i 1.15871i −0.815075 0.579356i $$-0.803304\pi$$
0.815075 0.579356i $$-0.196696\pi$$
$$270$$ −1.29677 0.479646i −0.0789187 0.0291904i
$$271$$ −10.0387 17.3876i −0.609809 1.05622i −0.991272 0.131836i $$-0.957913\pi$$
0.381462 0.924384i $$-0.375421\pi$$
$$272$$ 4.83629 + 2.79223i 0.293243 + 0.169304i
$$273$$ 0.212782i 0.0128781i
$$274$$ −10.7428 2.87852i −0.648994 0.173898i
$$275$$ −1.98762 + 10.6241i −0.119858 + 0.640658i
$$276$$ 0.911667 + 0.244280i 0.0548759 + 0.0147040i
$$277$$ 4.94567 8.56615i 0.297156 0.514690i −0.678328 0.734759i $$-0.737295\pi$$
0.975484 + 0.220069i $$0.0706284\pi$$
$$278$$ −0.315020 + 0.545631i −0.0188937 + 0.0327248i
$$279$$ 10.6610 + 2.85660i 0.638255 + 0.171020i
$$280$$ 4.86970 0.832537i 0.291020 0.0497536i
$$281$$ 6.02311 + 1.61389i 0.359309 + 0.0962765i 0.433957 0.900933i $$-0.357117\pi$$
−0.0746485 + 0.997210i $$0.523783\pi$$
$$282$$ 0.133838i 0.00796994i
$$283$$ 7.88244 + 4.55093i 0.468563 + 0.270525i 0.715638 0.698472i $$-0.246136\pi$$
−0.247075 + 0.968996i $$0.579469\pi$$
$$284$$ −6.02963 10.4436i −0.357793 0.619716i
$$285$$ −0.982058 + 0.451730i −0.0581721 + 0.0267582i
$$286$$ 2.01657i 0.119242i
$$287$$ 0.408216 1.52348i 0.0240962 0.0899284i
$$288$$ 2.98934i 0.176149i
$$289$$ 7.09315 12.2857i 0.417244 0.722688i
$$290$$ −4.11974 + 11.1381i −0.241920 + 0.654052i
$$291$$ −1.32006 + 0.353708i −0.0773831 + 0.0207347i
$$292$$ −2.82695 10.5503i −0.165435 0.617411i
$$293$$ −23.1383 + 6.19988i −1.35175 + 0.362201i −0.860781 0.508975i $$-0.830025\pi$$
−0.490971 + 0.871176i $$0.663358\pi$$
$$294$$ 0.0566087 0.211267i 0.00330149 0.0123213i
$$295$$ −5.18460 1.91767i −0.301859 0.111651i
$$296$$ 5.95478 1.24118i 0.346115 0.0721424i
$$297$$ −0.945147 + 0.945147i −0.0548430 + 0.0548430i
$$298$$ −10.4446 + 6.03021i −0.605041 + 0.349321i
$$299$$ 4.26423 7.38586i 0.246607 0.427135i
$$300$$ −0.465532 0.223013i −0.0268775 0.0128756i
$$301$$ −1.02466 3.82409i −0.0590605 0.220417i
$$302$$ 13.8246i 0.795519i
$$303$$ 1.08657 0.291146i 0.0624220 0.0167259i
$$304$$ −3.31110 3.31110i −0.189905 0.189905i
$$305$$ −2.71030 15.8532i −0.155191 0.907749i
$$306$$ −16.6939 −0.954326
$$307$$ −5.13771 5.13771i −0.293224 0.293224i 0.545128 0.838353i $$-0.316481\pi$$
−0.838353 + 0.545128i $$0.816481\pi$$
$$308$$ 1.23612 4.61328i 0.0704348 0.262866i
$$309$$ 1.26407 0.338707i 0.0719106 0.0192684i
$$310$$ 7.74316 + 2.86403i 0.439782 + 0.162666i
$$311$$ −2.14138 + 7.99173i −0.121426 + 0.453169i −0.999687 0.0250127i $$-0.992037\pi$$
0.878261 + 0.478182i $$0.158704\pi$$
$$312$$ 0.0930262 + 0.0249263i 0.00526657 + 0.00141117i
$$313$$ −15.5337 26.9052i −0.878017 1.52077i −0.853514 0.521070i $$-0.825533\pi$$
−0.0245033 0.999700i $$-0.507800\pi$$
$$314$$ −3.59272 13.4082i −0.202749 0.756670i
$$315$$ −11.3625 + 9.43391i −0.640206 + 0.531540i
$$316$$ −3.31077 + 12.3560i −0.186245 + 0.695077i
$$317$$ −3.12372 + 11.6579i −0.175445 + 0.654771i 0.821030 + 0.570885i $$0.193400\pi$$
−0.996475 + 0.0838862i $$0.973267\pi$$
$$318$$ 0.0919241 + 0.159217i 0.00515485 + 0.00892846i
$$319$$ 8.11798 + 8.11798i 0.454520 + 0.454520i
$$320$$ 0.206483 2.22651i 0.0115427 0.124466i
$$321$$ 0.456315 0.263454i 0.0254690 0.0147046i
$$322$$ 14.2826 14.2826i 0.795941 0.795941i
$$323$$ −18.4907 + 18.4907i −1.02885 + 1.02885i
$$324$$ 4.45209 + 7.71125i 0.247339 + 0.428403i
$$325$$ −3.03522 + 3.54167i −0.168364 + 0.196456i
$$326$$ 8.36087 + 4.82715i 0.463066 + 0.267351i
$$327$$ 0.121699 0.00672998
$$328$$ −0.618232 0.356936i −0.0341362 0.0197085i
$$329$$ 2.48051 + 1.43212i 0.136755 + 0.0789555i
$$330$$ −0.383938 + 0.318770i −0.0211351 + 0.0175477i
$$331$$ −25.4114 6.80897i −1.39674 0.374255i −0.519565 0.854431i $$-0.673906\pi$$
−0.877172 + 0.480176i $$0.840573\pi$$
$$332$$ 1.32018 + 1.32018i 0.0724544 + 0.0724544i
$$333$$ −13.5609 + 12.1137i −0.743130 + 0.663826i
$$334$$ 11.3745i 0.622387i
$$335$$ 3.27258 + 19.1421i 0.178800 + 1.04584i
$$336$$ 0.197536 + 0.114047i 0.0107765 + 0.00622179i
$$337$$ −5.83517 + 1.56353i −0.317862 + 0.0851709i −0.414223 0.910176i $$-0.635947\pi$$
0.0963604 + 0.995347i $$0.469280\pi$$
$$338$$ −6.06488 + 10.5047i −0.329886 + 0.571379i
$$339$$ 1.01047 + 1.01047i 0.0548812 + 0.0548812i
$$340$$ −12.4339 1.15310i −0.674323 0.0625355i
$$341$$ 5.64359 5.64359i 0.305617 0.305617i
$$342$$ 13.5209 + 3.62292i 0.731128 + 0.195905i
$$343$$ −14.2457 14.2457i −0.769198 0.769198i
$$344$$ −1.79189 −0.0966122
$$345$$ −2.08028 + 0.355650i −0.111998 + 0.0191476i
$$346$$ 3.16007 + 11.7935i 0.169887 + 0.634025i
$$347$$ 10.5674 0.567287 0.283643 0.958930i $$-0.408457\pi$$
0.283643 + 0.958930i $$0.408457\pi$$
$$348$$ −0.474835 + 0.274146i −0.0254538 + 0.0146958i
$$349$$ −21.8768 + 12.6306i −1.17104 + 0.676099i −0.953924 0.300047i $$-0.902998\pi$$
−0.217114 + 0.976146i $$0.569664\pi$$
$$350$$ −9.11464 + 6.24169i −0.487198 + 0.333633i
$$351$$ −0.557166 + 0.149292i −0.0297393 + 0.00796862i
$$352$$ −1.87208 1.08084i −0.0997821 0.0576092i
$$353$$ 8.58914 4.95894i 0.457154 0.263938i −0.253693 0.967285i $$-0.581645\pi$$
0.710847 + 0.703347i $$0.248312\pi$$
$$354$$ −0.127610 0.221028i −0.00678242 0.0117475i
$$355$$ 22.0079 + 15.5815i 1.16806 + 0.826980i
$$356$$ 3.91978 3.91978i 0.207748 0.207748i
$$357$$ 0.636894 1.10313i 0.0337080 0.0583839i
$$358$$ 6.28819 + 1.68491i 0.332341 + 0.0890505i
$$359$$ 15.2529i 0.805019i 0.915416 + 0.402510i $$0.131862\pi$$
−0.915416 + 0.402510i $$0.868138\pi$$
$$360$$ 2.79335 + 6.07273i 0.147223 + 0.320061i
$$361$$ 2.53465 1.46338i 0.133402 0.0770199i
$$362$$ 23.6856 1.24489
$$363$$ −0.169061 0.630944i −0.00887339 0.0331160i
$$364$$ 1.45740 1.45740i 0.0763883 0.0763883i
$$365$$ 15.6014 + 18.7909i 0.816617 + 0.983563i
$$366$$ 0.371277 0.643071i 0.0194070 0.0336139i
$$367$$ −1.52765 5.70127i −0.0797427 0.297604i 0.914524 0.404531i $$-0.132565\pi$$
−0.994267 + 0.106928i $$0.965899\pi$$
$$368$$ −4.57110 7.91738i −0.238285 0.412722i
$$369$$ 2.13401 0.111092
$$370$$ −10.9371 + 8.08579i −0.568592 + 0.420360i
$$371$$ 3.93451 0.204269
$$372$$ 0.190585 + 0.330103i 0.00988138 + 0.0171151i
$$373$$ −2.08177 7.76928i −0.107790 0.402278i 0.890857 0.454284i $$-0.150105\pi$$
−0.998647 + 0.0520065i $$0.983438\pi$$
$$374$$ −6.03594 + 10.4546i −0.312111 + 0.540592i
$$375$$ 1.15410 + 0.0180306i 0.0595975 + 0.000931097i
$$376$$ 0.916690 0.916690i 0.0472747 0.0472747i
$$377$$ 1.28229 + 4.78557i 0.0660412 + 0.246469i
$$378$$ −1.36614 −0.0702665
$$379$$ −21.9353 + 12.6643i −1.12674 + 0.650524i −0.943113 0.332472i $$-0.892117\pi$$
−0.183627 + 0.982996i $$0.558784\pi$$
$$380$$ 9.82038 + 3.63235i 0.503775 + 0.186336i
$$381$$ 2.08790i 0.106966i
$$382$$ −21.5745 5.78088i −1.10385 0.295775i
$$383$$ −2.85241 + 4.94052i −0.145751 + 0.252449i −0.929653 0.368436i $$-0.879893\pi$$
0.783902 + 0.620885i $$0.213227\pi$$
$$384$$ 0.0730007 0.0730007i 0.00372530 0.00372530i
$$385$$ 1.79969 + 10.5268i 0.0917205 + 0.536494i
$$386$$ 9.03543 + 15.6498i 0.459891 + 0.796555i
$$387$$ 4.63892 2.67828i 0.235810 0.136145i
$$388$$ 11.4640 + 6.61876i 0.581998 + 0.336017i
$$389$$ 3.86573 1.03582i 0.196000 0.0525181i −0.159483 0.987201i $$-0.550983\pi$$
0.355484 + 0.934683i $$0.384316\pi$$
$$390$$ −0.212271 + 0.0362904i −0.0107488 + 0.00183764i
$$391$$ −44.2143 + 25.5272i −2.23602 + 1.29096i
$$392$$ −1.83475 + 1.05929i −0.0926687 + 0.0535023i
$$393$$ −1.42875 −0.0720708
$$394$$ 4.83077 + 18.0287i 0.243371 + 0.908273i
$$395$$ −4.82018 28.1943i −0.242530 1.41861i
$$396$$ 6.46203 0.324729
$$397$$ 10.0898 + 10.0898i 0.506393 + 0.506393i 0.913417 0.407024i $$-0.133434\pi$$
−0.407024 + 0.913417i $$0.633434\pi$$
$$398$$ 1.91895 + 0.514182i 0.0961884 + 0.0257736i
$$399$$ −0.755244 + 0.755244i −0.0378095 + 0.0378095i
$$400$$ 1.66108 + 4.71602i 0.0830538 + 0.235801i
$$401$$ −9.90660 9.90660i −0.494712 0.494712i 0.415075 0.909787i $$-0.363755\pi$$
−0.909787 + 0.415075i $$0.863755\pi$$
$$402$$ −0.448303 + 0.776484i −0.0223593 + 0.0387275i
$$403$$ 3.32691 0.891442i 0.165725 0.0444059i
$$404$$ −9.43634 5.44807i −0.469476 0.271052i
$$405$$ −16.2499 11.5049i −0.807466 0.571683i
$$406$$ 11.7339i 0.582344i
$$407$$ 2.68305 + 12.8724i 0.132994 + 0.638061i
$$408$$ −0.407670 0.407670i −0.0201827 0.0201827i
$$409$$ −25.3152 6.78318i −1.25176 0.335407i −0.428741 0.903427i $$-0.641043\pi$$
−0.823014 + 0.568021i $$0.807709\pi$$
$$410$$ 1.58945 + 0.147403i 0.0784972 + 0.00727970i
$$411$$ 0.994363 + 0.574096i 0.0490483 + 0.0283181i
$$412$$ −10.9779 6.33806i −0.540840 0.312254i
$$413$$ −5.46195 −0.268765
$$414$$ 23.6677 + 13.6646i 1.16321 + 0.671577i
$$415$$ −3.91552 1.44827i −0.192206 0.0710927i
$$416$$ −0.466433 0.807886i −0.0228688 0.0396099i
$$417$$ 0.0459934 0.0459934i 0.00225231 0.00225231i
$$418$$ 7.15757 7.15757i 0.350088 0.350088i
$$419$$ −4.98984 + 2.88089i −0.243770 + 0.140741i −0.616908 0.787035i $$-0.711615\pi$$
0.373138 + 0.927776i $$0.378282\pi$$
$$420$$ −0.507856 0.0470976i −0.0247808 0.00229813i
$$421$$ −22.0327 22.0327i −1.07381 1.07381i −0.997050 0.0767578i $$-0.975543\pi$$
−0.0767578 0.997050i $$-0.524457\pi$$
$$422$$ 8.11162 + 14.0497i 0.394867 + 0.683931i
$$423$$ −1.00302 + 3.74332i −0.0487685 + 0.182006i
$$424$$ 0.460907 1.72013i 0.0223836 0.0835369i
$$425$$ 26.3365 9.27623i 1.27751 0.449963i
$$426$$ 0.322225 + 1.20256i 0.0156118 + 0.0582642i
$$427$$ −7.94565 13.7623i −0.384517 0.666003i
$$428$$ −4.92988 1.32096i −0.238295 0.0638509i
$$429$$ −0.0538829 + 0.201094i −0.00260149 + 0.00970889i
$$430$$ 3.64015 1.67441i 0.175544 0.0807471i
$$431$$ 2.42703 0.650322i 0.116906 0.0313249i −0.199892 0.979818i $$-0.564059\pi$$
0.316798 + 0.948493i $$0.397392\pi$$
$$432$$ −0.160036 + 0.597262i −0.00769973 + 0.0287358i
$$433$$ 14.2760 + 14.2760i 0.686059 + 0.686059i 0.961359 0.275299i $$-0.0887769\pi$$
−0.275299 + 0.961359i $$0.588777\pi$$
$$434$$ 8.15737 0.391566
$$435$$ 0.708435 1.00062i 0.0339669 0.0479760i
$$436$$ −0.833549 0.833549i −0.0399197 0.0399197i
$$437$$ 41.3506 11.0799i 1.97807 0.530021i
$$438$$ 1.12762i 0.0538799i
$$439$$ 2.25626 + 8.42047i 0.107685 + 0.401887i 0.998636 0.0522130i $$-0.0166275\pi$$
−0.890951 + 0.454100i $$0.849961\pi$$
$$440$$ 4.81303 + 0.446352i 0.229452 + 0.0212790i
$$441$$ 3.16658 5.48468i 0.150790 0.261175i
$$442$$ −4.51162 + 2.60478i −0.214596 + 0.123897i
$$443$$ 17.0281 17.0281i 0.809027 0.809027i −0.175459 0.984487i $$-0.556141\pi$$
0.984487 + 0.175459i $$0.0561410\pi$$
$$444$$ −0.626980 0.0353406i −0.0297552 0.00167719i
$$445$$ −4.30008 + 11.6257i −0.203843 + 0.551109i
$$446$$ −1.13953 + 4.25277i −0.0539581 + 0.201374i
$$447$$ 1.20267 0.322256i 0.0568846 0.0152422i
$$448$$ −0.571833 2.13411i −0.0270166 0.100827i
$$449$$ 0.766242 0.205314i 0.0361612 0.00968937i −0.240693 0.970601i $$-0.577375\pi$$
0.276854 + 0.960912i $$0.410708\pi$$
$$450$$ −11.3492 9.72628i −0.535005 0.458501i
$$451$$ 0.771586 1.33643i 0.0363325 0.0629298i
$$452$$ 13.8419i 0.651070i
$$453$$ 0.369396 1.37860i 0.0173557 0.0647725i
$$454$$ 21.4134i 1.00498i
$$455$$ −1.59879 + 4.32249i −0.0749527 + 0.202641i
$$456$$ 0.241713 + 0.418658i 0.0113192 + 0.0196055i
$$457$$ −24.6177 14.2130i −1.15157 0.664857i −0.202297 0.979324i $$-0.564841\pi$$
−0.949268 + 0.314468i $$0.898174\pi$$
$$458$$ 15.4122i 0.720163i
$$459$$ 3.33539 + 0.893715i 0.155683 + 0.0417151i
$$460$$ 16.6843 + 11.8124i 0.777909 + 0.550757i
$$461$$ −9.17243 2.45774i −0.427203 0.114469i 0.0388102 0.999247i $$-0.487643\pi$$
−0.466013 + 0.884778i $$0.654310\pi$$
$$462$$ −0.246535 + 0.427011i −0.0114698 + 0.0198663i
$$463$$ 6.89518 11.9428i 0.320446 0.555029i −0.660134 0.751148i $$-0.729501\pi$$
0.980580 + 0.196119i $$0.0628339\pi$$
$$464$$ 5.12996 + 1.37457i 0.238152 + 0.0638127i
$$465$$ −0.695627 0.492501i −0.0322589 0.0228392i
$$466$$ −7.61309 2.03992i −0.352670 0.0944975i
$$467$$ 37.7134i 1.74517i −0.488466 0.872583i $$-0.662443\pi$$
0.488466 0.872583i $$-0.337557\pi$$
$$468$$ 2.41505 + 1.39433i 0.111636 + 0.0644529i
$$469$$ 9.59407 + 16.6174i 0.443013 + 0.767321i
$$470$$ −1.00563 + 2.71881i −0.0463862 + 0.125409i
$$471$$ 1.43308i 0.0660327i
$$472$$ −0.639839 + 2.38791i −0.0294510 + 0.109913i
$$473$$ 3.87351i 0.178104i
$$474$$ 0.660305 1.14368i 0.0303288 0.0525311i
$$475$$ −23.3439 + 1.79756i −1.07109 + 0.0824779i
$$476$$ −11.9179 + 3.19338i −0.546255 + 0.146369i
$$477$$ 1.37781 + 5.14206i 0.0630856 + 0.235439i
$$478$$ −13.6067 + 3.64592i −0.622358 + 0.166760i
$$479$$ −0.942768 + 3.51846i −0.0430761 + 0.160762i −0.984114 0.177540i $$-0.943186\pi$$
0.941037 + 0.338303i $$0.109853\pi$$
$$480$$ −0.0800833 + 0.216512i −0.00365529 + 0.00988240i
$$481$$ −1.77477 + 5.38972i −0.0809227 + 0.245750i
$$482$$ −14.1619 + 14.1619i −0.645055 + 0.645055i
$$483$$ −1.80591 + 1.04264i −0.0821718 + 0.0474419i
$$484$$ −3.16355 + 5.47943i −0.143798 + 0.249065i
$$485$$ −29.4735 2.73332i −1.33832 0.124114i
$$486$$ −0.718028 2.67972i −0.0325704 0.121554i
$$487$$ 1.17023i 0.0530284i −0.999648 0.0265142i $$-0.991559\pi$$
0.999648 0.0265142i $$-0.00844071\pi$$
$$488$$ −6.94753 + 1.86158i −0.314500 + 0.0842700i
$$489$$ −0.704771 0.704771i −0.0318708 0.0318708i
$$490$$ 2.73737 3.86636i 0.123662 0.174664i
$$491$$ −17.8819 −0.807001 −0.403500 0.914979i $$-0.632207\pi$$
−0.403500 + 0.914979i $$0.632207\pi$$
$$492$$ 0.0521132 + 0.0521132i 0.00234945 + 0.00234945i
$$493$$ 7.67623 28.6481i 0.345720 1.29025i
$$494$$ 4.21940 1.13058i 0.189840 0.0508674i
$$495$$ −13.1273 + 6.03836i −0.590030 + 0.271404i
$$496$$ 0.955594 3.56633i 0.0429074 0.160133i
$$497$$ 25.7358 + 6.89589i 1.15441 + 0.309323i
$$498$$ −0.0963742 0.166925i −0.00431863 0.00748009i
$$499$$ −1.44413 5.38957i −0.0646482 0.241270i 0.926039 0.377428i $$-0.123191\pi$$
−0.990687 + 0.136158i $$0.956525\pi$$
$$500$$ −7.78123 8.02823i −0.347987 0.359033i
$$501$$ −0.303929 + 1.13428i −0.0135785 + 0.0506758i
$$502$$ 7.72111 28.8156i 0.344610 1.28610i
$$503$$ 4.36133 + 7.55404i 0.194462 + 0.336818i 0.946724 0.322046i $$-0.104371\pi$$
−0.752262 + 0.658864i $$0.771037\pi$$
$$504$$ 4.67018 + 4.67018i 0.208026 + 0.208026i
$$505$$ 24.2604 + 2.24987i 1.07957 + 0.100118i
$$506$$ 17.1149 9.88129i 0.760850 0.439277i
$$507$$ 0.885481 0.885481i 0.0393256 0.0393256i
$$508$$ −14.3005 + 14.3005i −0.634483 + 0.634483i
$$509$$ −7.64937 13.2491i −0.339052 0.587256i 0.645202 0.764012i $$-0.276773\pi$$
−0.984255 + 0.176756i $$0.943440\pi$$
$$510$$ 1.20911 + 0.447223i 0.0535402 + 0.0198034i
$$511$$ 20.8990 + 12.0660i 0.924517 + 0.533770i
$$512$$ −1.00000 −0.0441942
$$513$$ −2.50749 1.44770i −0.110708 0.0639175i
$$514$$ −4.94342 2.85409i −0.218045 0.125888i
$$515$$ 28.2236 + 2.61740i 1.24368 + 0.115337i
$$516$$ 0.178689 + 0.0478795i 0.00786633 + 0.00210778i
$$517$$ 1.98160 + 1.98160i 0.0871506 + 0.0871506i
$$518$$ −7.36395 + 11.2421i −0.323553 + 0.493949i
$$519$$ 1.26050i 0.0553298i
$$520$$ 1.70246 + 1.20534i 0.0746578 + 0.0528574i
$$521$$ 36.6921 + 21.1842i 1.60751 + 0.928097i 0.989925 + 0.141593i $$0.0452224\pi$$
0.617585 + 0.786504i $$0.288111\pi$$
$$522$$ −15.3352 + 4.10905i −0.671203 + 0.179848i
$$523$$ 18.9503 32.8229i 0.828640 1.43525i −0.0704660 0.997514i $$-0.522449\pi$$
0.899106 0.437732i $$-0.144218\pi$$
$$524$$ 9.78586 + 9.78586i 0.427497 + 0.427497i
$$525$$ 1.07570 0.378882i 0.0469473 0.0165358i
$$526$$ 10.7776 10.7776i 0.469928 0.469928i
$$527$$ −19.9160 5.33649i −0.867556 0.232461i
$$528$$ 0.157805 + 0.157805i 0.00686757 + 0.00686757i
$$529$$ 60.5798 2.63390
$$530$$ 0.671039 + 3.92506i 0.0291481 + 0.170494i
$$531$$ −1.91270 7.13828i −0.0830040 0.309775i
$$532$$ 10.3457 0.448543
$$533$$ 0.576728 0.332974i 0.0249809 0.0144227i
$$534$$ −0.495620 + 0.286146i −0.0214476 + 0.0123828i
$$535$$ 11.2492 1.92319i 0.486345 0.0831469i
$$536$$ 8.38887 2.24779i 0.362344 0.0970898i
$$537$$ −0.582042 0.336042i −0.0251170 0.0145013i
$$538$$ 16.4582 9.50215i 0.709563 0.409667i
$$539$$ −2.28986 3.96615i −0.0986311 0.170834i
$$540$$ −0.232998 1.36286i −0.0100266 0.0586480i
$$541$$ 14.5675 14.5675i 0.626305 0.626305i −0.320832 0.947136i $$-0.603962\pi$$
0.947136 + 0.320832i $$0.103962\pi$$
$$542$$ 10.0387 17.3876i 0.431200 0.746861i
$$543$$ −2.36195 0.632881i −0.101361 0.0271595i
$$544$$ 5.58447i 0.239432i
$$545$$ 2.47222 + 0.914421i 0.105898 + 0.0391695i
$$546$$ −0.184274 + 0.106391i −0.00788622 + 0.00455311i
$$547$$ −4.94178 −0.211295 −0.105648 0.994404i $$-0.533692\pi$$
−0.105648 + 0.994404i $$0.533692\pi$$
$$548$$ −2.87852 10.7428i −0.122964 0.458908i
$$549$$ 15.2036 15.2036i 0.648875 0.648875i
$$550$$ −10.1946 + 3.59073i −0.434698 + 0.153109i
$$551$$ −12.4345 + 21.5371i −0.529726 + 0.917512i
$$552$$ 0.244280 + 0.911667i 0.0103973 + 0.0388031i
$$553$$ −14.1311 24.4758i −0.600915 1.04082i
$$554$$ 9.89133 0.420243
$$555$$ 1.30671 0.514081i 0.0554667 0.0218215i
$$556$$ −0.630040 −0.0267197
$$557$$ 21.0873 + 36.5242i 0.893497 + 1.54758i 0.835654 + 0.549256i $$0.185089\pi$$
0.0578426 + 0.998326i $$0.481578\pi$$
$$558$$ 2.85660 + 10.6610i 0.120929 + 0.451315i
$$559$$ 0.835797 1.44764i 0.0353504 0.0612287i
$$560$$ 3.15585 + 3.80101i 0.133359 + 0.160622i
$$561$$ 0.881256 0.881256i 0.0372066 0.0372066i
$$562$$ 1.61389 + 6.02311i 0.0680778 + 0.254070i
$$563$$ 32.2486 1.35912 0.679559 0.733621i $$-0.262171\pi$$
0.679559 + 0.733621i $$0.262171\pi$$
$$564$$ −0.115907 + 0.0669190i −0.00488057 + 0.00281780i
$$565$$ 12.9344 + 28.1193i 0.544155 + 1.18299i
$$566$$ 9.10186i 0.382580i
$$567$$ −19.0025 5.09171i −0.798031 0.213832i
$$568$$ 6.02963 10.4436i 0.252998 0.438205i
$$569$$ −29.4533 + 29.4533i −1.23475 + 1.23475i −0.272625 + 0.962120i $$0.587892\pi$$
−0.962120 + 0.272625i $$0.912108\pi$$
$$570$$ −0.882239 0.624622i −0.0369529 0.0261625i
$$571$$ 15.8008 + 27.3678i 0.661243 + 1.14531i 0.980289 + 0.197568i $$0.0633043\pi$$
−0.319046 + 0.947739i $$0.603362\pi$$
$$572$$ 1.74640 1.00828i 0.0730206 0.0421585i
$$573$$ 1.99696 + 1.15295i 0.0834243 + 0.0481651i
$$574$$ 1.52348 0.408216i 0.0635890 0.0170386i
$$575$$ −44.9314 8.40602i −1.87377 0.350555i
$$576$$ 2.58885 1.49467i 0.107869 0.0622780i
$$577$$ 7.73904 4.46813i 0.322180 0.186011i −0.330184 0.943917i $$-0.607111\pi$$
0.652364 + 0.757906i $$0.273777\pi$$
$$578$$ 14.1863 0.590072
$$579$$ −0.482855 1.80204i −0.0200668 0.0748902i
$$580$$ −11.7057 + 2.00125i −0.486055 + 0.0830972i
$$581$$ −4.12498 −0.171133
$$582$$ −0.966348 0.966348i −0.0400564 0.0400564i
$$583$$ 3.71838 + 0.996338i 0.154000 + 0.0412641i
$$584$$ 7.72337 7.72337i 0.319595 0.319595i
$$585$$ −6.20898 0.575810i −0.256710 0.0238068i
$$586$$ −16.9384 16.9384i −0.699718 0.699718i
$$587$$ 14.2169 24.6243i 0.586793 1.01636i −0.407856 0.913046i $$-0.633723\pi$$
0.994649 0.103309i $$-0.0329432\pi$$
$$588$$ 0.211267 0.0566087i 0.00871249 0.00233450i
$$589$$ 14.9725 + 8.64439i 0.616932 + 0.356186i
$$590$$ −0.931547 5.44883i −0.0383512 0.224325i
$$591$$ 1.92691i 0.0792627i
$$592$$ 4.05229 + 4.53640i 0.166548 + 0.186445i
$$593$$ −16.0994 16.0994i −0.661124 0.661124i 0.294521 0.955645i $$-0.404840\pi$$
−0.955645 + 0.294521i $$0.904840\pi$$
$$594$$ −1.29109 0.345948i −0.0529742 0.0141944i
$$595$$ 21.2267 17.6237i 0.870208 0.722503i
$$596$$ −10.4446 6.03021i −0.427829 0.247007i
$$597$$ −0.177621 0.102549i −0.00726952 0.00419706i
$$598$$ 8.52845 0.348754
$$599$$ −24.0280 13.8726i −0.981758 0.566818i −0.0789578 0.996878i $$-0.525159\pi$$
−0.902801 + 0.430059i $$0.858493\pi$$
$$600$$ −0.0396314 0.514669i −0.00161794 0.0210113i
$$601$$ 6.12097 + 10.6018i 0.249680 + 0.432458i 0.963437 0.267935i $$-0.0863413\pi$$
−0.713757 + 0.700393i $$0.753008\pi$$
$$602$$ 2.79943 2.79943i 0.114096 0.114096i
$$603$$ −18.3578 + 18.3578i −0.747587 + 0.747587i
$$604$$ −11.9725 + 6.91232i −0.487154 + 0.281258i
$$605$$ 1.30644 14.0874i 0.0531143 0.572734i
$$606$$ 0.795426 + 0.795426i 0.0323120 + 0.0323120i
$$607$$ 17.9940 + 31.1665i 0.730354 + 1.26501i 0.956732 + 0.290971i $$0.0939784\pi$$
−0.226377 + 0.974040i $$0.572688\pi$$
$$608$$ 1.21195 4.52305i 0.0491509 0.183434i
$$609$$ 0.313531 1.17012i 0.0127049 0.0474155i
$$610$$ 12.3741 10.2738i 0.501012 0.415972i
$$611$$ 0.313006 + 1.16816i 0.0126629 + 0.0472585i
$$612$$ −8.34694 14.4573i −0.337405 0.584403i
$$613$$ 10.4914 + 2.81116i 0.423743 + 0.113542i 0.464387 0.885632i $$-0.346275\pi$$
−0.0406447 + 0.999174i $$0.512941\pi$$
$$614$$ 1.88053 7.01824i 0.0758921 0.283233i
$$615$$ −0.154562 0.0571693i −0.00623256 0.00230529i
$$616$$ 4.61328 1.23612i 0.185874 0.0498049i
$$617$$ 1.95778 7.30652i 0.0788171 0.294149i −0.915255 0.402876i $$-0.868011\pi$$
0.994072 + 0.108727i $$0.0346773\pi$$
$$618$$ 0.925366 + 0.925366i 0.0372237 + 0.0372237i
$$619$$ 5.36196 0.215515 0.107758 0.994177i $$-0.465633\pi$$
0.107758 + 0.994177i $$0.465633\pi$$
$$620$$ 1.39126 + 8.13779i 0.0558743 + 0.326821i
$$621$$ −3.99721 3.99721i −0.160402 0.160402i
$$622$$ −7.99173 + 2.14138i −0.320439 + 0.0858614i
$$623$$ 12.2476i 0.490688i
$$624$$ 0.0249263 + 0.0930262i 0.000997850 + 0.00372403i
$$625$$ 23.3091 + 9.03794i 0.932365 + 0.361517i
$$626$$ 15.5337 26.9052i 0.620852 1.07535i
$$627$$ −0.905009 + 0.522507i −0.0361426 + 0.0208669i
$$628$$ 9.81550 9.81550i 0.391681 0.391681i
$$629$$ 25.3334 22.6299i 1.01011 0.902313i
$$630$$ −13.8513 5.12329i −0.551848 0.204117i
$$631$$ −9.37285 + 34.9800i −0.373127 + 1.39253i 0.482934 + 0.875657i $$0.339571\pi$$
−0.856062 + 0.516874i $$0.827096\pi$$
$$632$$ −12.3560 + 3.31077i −0.491494 + 0.131695i
$$633$$ −0.433487 1.61779i −0.0172295 0.0643015i
$$634$$ −11.6579 + 3.12372i −0.462993 + 0.124059i
$$635$$ 15.6880 42.4139i 0.622559 1.68314i
$$636$$ −0.0919241 + 0.159217i −0.00364503 + 0.00631337i
$$637$$ 1.97635i 0.0783060i
$$638$$ −2.97139 + 11.0894i −0.117638 + 0.439032i
$$639$$ 36.0493i 1.42609i
$$640$$ 2.03146 0.934438i 0.0803005 0.0369369i
$$641$$ −10.7192 18.5662i −0.423384 0.733323i 0.572884 0.819637i $$-0.305825\pi$$
−0.996268 + 0.0863138i $$0.972491\pi$$
$$642$$ 0.456315 + 0.263454i 0.0180093 + 0.0103977i
$$643$$ 0.739740i 0.0291725i 0.999894 + 0.0145862i $$0.00464311\pi$$
−0.999894 + 0.0145862i $$0.995357\pi$$
$$644$$ 19.5105 + 5.22781i 0.768820 + 0.206005i
$$645$$ −0.407739 + 0.0697081i −0.0160547 + 0.00274476i
$$646$$ −25.2588 6.76808i −0.993795 0.266286i
$$647$$ 14.1176 24.4524i 0.555019 0.961322i −0.442883 0.896580i $$-0.646044\pi$$
0.997902 0.0647421i $$-0.0206225\pi$$
$$648$$ −4.45209 + 7.71125i −0.174895 + 0.302927i
$$649$$ −5.16192 1.38313i −0.202623 0.0542927i
$$650$$ −4.58479 0.857747i −0.179830 0.0336436i
$$651$$ −0.813459 0.217966i −0.0318820 0.00854275i
$$652$$ 9.65430i 0.378092i
$$653$$ −0.725000 0.418579i −0.0283715 0.0163803i 0.485747 0.874099i $$-0.338548\pi$$
−0.514119 + 0.857719i $$0.671881\pi$$
$$654$$ 0.0608496 + 0.105395i 0.00237941 + 0.00412126i
$$655$$ −29.0238 10.7353i −1.13406 0.419463i
$$656$$ 0.713873i 0.0278721i
$$657$$ −8.45072 + 31.5385i −0.329694 + 1.23043i
$$658$$ 2.86425i 0.111660i
$$659$$ 16.9248 29.3146i 0.659297 1.14194i −0.321501 0.946909i $$-0.604187\pi$$
0.980798 0.195026i $$-0.0624793\pi$$
$$660$$ −0.468033 0.173115i −0.0182181 0.00673850i
$$661$$ 6.42042 1.72035i 0.249725 0.0669137i −0.131785 0.991278i $$-0.542071\pi$$
0.381510 + 0.924365i $$0.375404\pi$$
$$662$$ −6.80897 25.4114i −0.264638 0.987642i
$$663$$ 0.519502 0.139200i 0.0201758 0.00540609i
$$664$$ −0.483220 + 1.80340i −0.0187526 + 0.0699856i
$$665$$ −21.0169 + 9.66742i −0.815000 + 0.374886i
$$666$$ −17.2712 5.68721i −0.669245 0.220375i
$$667$$ −34.3325 + 34.3325i −1.32936 + 1.32936i
$$668$$ 9.85063 5.68727i 0.381132 0.220047i
$$669$$ 0.227269 0.393641i 0.00878672 0.0152190i
$$670$$ −14.9412 + 12.4052i −0.577230 + 0.479254i
$$671$$ −4.02417 15.0184i −0.155351 0.579778i
$$672$$ 0.228095i 0.00879894i
$$673$$ 22.9801 6.15749i 0.885816 0.237354i 0.212901 0.977074i $$-0.431709\pi$$
0.672915 + 0.739720i $$0.265042\pi$$
$$674$$ −4.27164 4.27164i −0.164538 0.164538i
$$675$$ 1.74683 + 2.55087i 0.0672355 + 0.0981829i
$$676$$ −12.1298 −0.466529
$$677$$ −21.0110 21.0110i −0.807519 0.807519i 0.176739 0.984258i $$-0.443445\pi$$
−0.984258 + 0.176739i $$0.943445\pi$$
$$678$$ −0.369858 + 1.38033i −0.0142043 + 0.0530112i
$$679$$ −28.2503 + 7.56965i −1.08415 + 0.290497i
$$680$$ −5.21834 11.3446i −0.200114 0.435046i
$$681$$ −0.572167 + 2.13536i −0.0219255 + 0.0818270i
$$682$$ 7.70929 + 2.06570i 0.295204 + 0.0790996i
$$683$$ 2.68519 + 4.65089i 0.102746 + 0.177961i 0.912815 0.408373i $$-0.133904\pi$$
−0.810069 + 0.586334i $$0.800570\pi$$
$$684$$ 3.62292 + 13.5209i 0.138526 + 0.516986i
$$685$$ 15.8860 + 19.1337i 0.606974 + 0.731061i
$$686$$ 5.21431 19.4601i 0.199083 0.742988i
$$687$$ −0.411814 + 1.53691i −0.0157117 + 0.0586368i
$$688$$ −0.895944 1.55182i −0.0341576 0.0591626i
$$689$$ 1.17469 + 1.17469i 0.0447520 + 0.0447520i
$$690$$ −1.34814 1.62375i −0.0513229 0.0618151i
$$691$$ 0.793456 0.458102i 0.0301845 0.0174270i −0.484832 0.874607i $$-0.661119\pi$$
0.515016 + 0.857180i $$0.327786\pi$$
$$692$$ −8.63348 + 8.63348i −0.328196 + 0.328196i
$$693$$ −10.0955 + 10.0955i −0.383495 + 0.383495i
$$694$$ 5.28369 + 9.15162i 0.200566 + 0.347391i
$$695$$ 1.27990 0.588733i 0.0485494 0.0223319i
$$696$$ −0.474835 0.274146i −0.0179986 0.0103915i
$$697$$ −3.98660 −0.151003
$$698$$ −21.8768 12.6306i −0.828049 0.478074i
$$699$$ 0.704676 + 0.406845i 0.0266533 + 0.0153883i
$$700$$ −9.96279 4.77266i −0.376558 0.180390i
$$701$$ −5.09773 1.36593i −0.192539 0.0515906i 0.161261 0.986912i $$-0.448444\pi$$
−0.353800 + 0.935321i $$0.615111\pi$$
$$702$$ −0.407874 0.407874i −0.0153942 0.0153942i
$$703$$ −25.4295 + 12.8308i −0.959092 + 0.483923i
$$704$$ 2.16169i 0.0814717i
$$705$$ 0.172929 0.244251i 0.00651288 0.00919903i
$$706$$ 8.58914 + 4.95894i 0.323257 + 0.186632i
$$707$$ 23.2536 6.23078i 0.874541 0.234332i
$$708$$ 0.127610 0.221028i 0.00479590 0.00830674i
$$709$$ −29.3850 29.3850i −1.10358 1.10358i −0.993976 0.109600i $$-0.965043\pi$$
−0.109600 0.993976i $$-0.534957\pi$$
$$710$$ −2.49003 + 26.8501i −0.0934493 + 1.00767i
$$711$$ 27.0392 27.0392i 1.01405 1.01405i
$$712$$ 5.35452 + 1.43474i 0.200669 + 0.0537691i
$$713$$ 23.8678 + 23.8678i 0.893857 + 0.893857i
$$714$$ 1.27379 0.0476703
$$715$$ −2.60556 + 3.68019i −0.0974424 + 0.137631i
$$716$$ 1.68491 + 6.28819i 0.0629682 + 0.235001i
$$717$$ 1.45429 0.0543116
$$718$$ −13.2094 + 7.62647i −0.492972 + 0.284617i
$$719$$ −11.6903 + 6.74940i −0.435975 + 0.251710i −0.701889 0.712287i $$-0.747660\pi$$
0.265914 + 0.963997i $$0.414326\pi$$
$$720$$ −3.86246 + 5.45548i −0.143945 + 0.203314i
$$721$$ 27.0523 7.24863i 1.00748 0.269953i
$$722$$ 2.53465 + 1.46338i 0.0943298 + 0.0544613i
$$723$$ 1.79064 1.03383i 0.0665946 0.0384484i
$$724$$ 11.8428 + 20.5123i 0.440134 + 0.762335i
$$725$$ 21.9097 15.0037i 0.813706 0.557225i
$$726$$ 0.461883 0.461883i 0.0171421 0.0171421i
$$727$$ −22.6609 + 39.2498i −0.840445 + 1.45569i 0.0490736 + 0.998795i $$0.484373\pi$$
−0.889519 + 0.456899i $$0.848960\pi$$
$$728$$ 1.99084 + 0.533444i 0.0737854 + 0.0197707i
$$729$$ 26.4262i 0.978747i
$$730$$ −8.47271 + 22.9067i −0.313589 + 0.847816i
$$731$$ −8.66610 + 5.00337i −0.320527 + 0.185056i
$$732$$ 0.742555 0.0274456
$$733$$ 12.4626 + 46.5110i 0.460316 + 1.71792i 0.671971 + 0.740578i $$0.265448\pi$$
−0.211655 + 0.977345i $$0.567885\pi$$
$$734$$ 4.17362 4.17362i 0.154051 0.154051i
$$735$$ −0.376282 + 0.312414i −0.0138794 + 0.0115236i
$$736$$ 4.57110 7.91738i 0.168493 0.291838i
$$737$$ 4.85903 + 18.1341i 0.178985 + 0.667979i
$$738$$ 1.06701 + 1.84811i 0.0392770 + 0.0680298i
$$739$$ −35.1315 −1.29233 −0.646167 0.763196i $$-0.723629\pi$$
−0.646167 + 0.763196i $$0.723629\pi$$
$$740$$ −12.4710 5.42891i −0.458445 0.199571i
$$741$$ −0.450971 −0.0165668
$$742$$ 1.96725 + 3.40738i 0.0722202 + 0.125089i
$$743$$ 11.9968 + 44.7727i 0.440121 + 1.64255i 0.728507 + 0.685039i $$0.240215\pi$$
−0.288386 + 0.957514i $$0.593119\pi$$
$$744$$ −0.190585 + 0.330103i −0.00698719 + 0.0121022i
$$745$$ 26.8527 + 2.49027i 0.983807 + 0.0912365i
$$746$$ 5.68751 5.68751i 0.208234 0.208234i
$$747$$ −1.44451 5.39099i −0.0528519 0.197246i
$$748$$ −12.0719 −0.441392
$$749$$ 9.76554 5.63814i 0.356825 0.206013i
$$750$$ 0.561436 + 1.00850i 0.0205007 + 0.0368251i
$$751$$ 41.9538i 1.53092i 0.643485 + 0.765458i $$0.277488\pi$$
−0.643485 + 0.765458i $$0.722512\pi$$
$$752$$ 1.25222 + 0.335532i 0.0456638 + 0.0122356i
$$753$$ −1.53991 + 2.66720i −0.0561174 + 0.0971983i
$$754$$ −3.50328 + 3.50328i −0.127582 + 0.127582i
$$755$$ 17.8625 25.2296i 0.650083 0.918201i
$$756$$ −0.683068 1.18311i −0.0248429 0.0430292i
$$757$$ 22.2153 12.8260i 0.807427 0.466168i −0.0386345 0.999253i $$-0.512301\pi$$
0.846062 + 0.533085i $$0.178967\pi$$
$$758$$ −21.9353 12.6643i −0.796725 0.459990i
$$759$$ −1.97074 + 0.528058i −0.0715334 + 0.0191673i
$$760$$ 1.76448 + 10.3209i 0.0640046 + 0.374377i
$$761$$ −27.3710 + 15.8026i −0.992197 + 0.572845i −0.905930 0.423427i $$-0.860827\pi$$
−0.0862666 + 0.996272i $$0.527494\pi$$
$$762$$ 1.80817 1.04395i 0.0655031 0.0378183i
$$763$$ 2.60447 0.0942881
$$764$$ −5.78088 21.5745i −0.209145 0.780539i
$$765$$ 30.4659 + 21.5698i 1.10150 + 0.779857i
$$766$$ −5.70483 −0.206124
$$767$$ −1.63072 1.63072i −0.0588818 0.0588818i
$$768$$ 0.0997208 + 0.0267201i 0.00359836 + 0.000964179i
$$769$$ −18.7032 + 18.7032i −0.674454 + 0.674454i −0.958740 0.284286i $$-0.908244\pi$$
0.284286 + 0.958740i $$0.408244\pi$$
$$770$$ −8.21661 + 6.82196i −0.296106 + 0.245846i
$$771$$ 0.416700 +