# Properties

 Label 370.2.q.f.103.3 Level $370$ Weight $2$ Character 370.103 Analytic conductor $2.954$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.q (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$8$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 103.3 Character $$\chi$$ $$=$$ 370.103 Dual form 370.2.q.f.97.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(-0.453882 - 1.69391i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.94207 + 1.10831i) q^{5} +(1.24003 - 1.24003i) q^{6} +(-1.25240 - 4.67400i) q^{7} -1.00000 q^{8} +(-0.0652541 + 0.0376745i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(-0.453882 - 1.69391i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.94207 + 1.10831i) q^{5} +(1.24003 - 1.24003i) q^{6} +(-1.25240 - 4.67400i) q^{7} -1.00000 q^{8} +(-0.0652541 + 0.0376745i) q^{9} +(0.0112097 + 2.23604i) q^{10} -1.80443i q^{11} +(1.69391 + 0.453882i) q^{12} +(-1.30781 + 2.26519i) q^{13} +(3.42161 - 3.42161i) q^{14} +(0.995911 - 3.79274i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.01303 - 1.73957i) q^{17} +(-0.0652541 - 0.0376745i) q^{18} +(6.17174 - 1.65371i) q^{19} +(-1.93086 + 1.12773i) q^{20} +(-7.34891 + 4.24290i) q^{21} +(1.56268 - 0.902215i) q^{22} -8.37956 q^{23} +(0.453882 + 1.69391i) q^{24} +(2.54329 + 4.30484i) q^{25} -2.61562 q^{26} +(-3.62666 - 3.62666i) q^{27} +(4.67400 + 1.25240i) q^{28} +(5.16438 - 5.16438i) q^{29} +(3.78257 - 1.03389i) q^{30} +(6.16219 + 6.16219i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-3.05655 + 0.818999i) q^{33} +(3.01303 + 1.73957i) q^{34} +(2.74801 - 10.4653i) q^{35} -0.0753490i q^{36} +(2.23377 + 5.65776i) q^{37} +(4.51803 + 4.51803i) q^{38} +(4.43063 + 1.18718i) q^{39} +(-1.94207 - 1.10831i) q^{40} +(-2.24339 - 1.29522i) q^{41} +(-7.34891 - 4.24290i) q^{42} -1.35953 q^{43} +(1.56268 + 0.902215i) q^{44} +(-0.168483 + 0.000844640i) q^{45} +(-4.18978 - 7.25691i) q^{46} +(-0.101997 + 0.101997i) q^{47} +(-1.24003 + 1.24003i) q^{48} +(-14.2156 + 8.20741i) q^{49} +(-2.45646 + 4.35497i) q^{50} +(-4.31425 - 4.31425i) q^{51} +(-1.30781 - 2.26519i) q^{52} +(-0.698572 + 2.60711i) q^{53} +(1.32745 - 4.95410i) q^{54} +(1.99987 - 3.50433i) q^{55} +(1.25240 + 4.67400i) q^{56} +(-5.60249 - 9.70379i) q^{57} +(7.05467 + 1.89029i) q^{58} +(-2.77785 + 10.3671i) q^{59} +(2.78666 + 2.75886i) q^{60} +(-5.11419 + 1.37034i) q^{61} +(-2.25552 + 8.41771i) q^{62} +(0.257815 + 0.257815i) q^{63} +1.00000 q^{64} +(-5.05040 + 2.94971i) q^{65} +(-2.23755 - 2.23755i) q^{66} +(9.52300 - 2.55168i) q^{67} +3.47915i q^{68} +(3.80333 + 14.1942i) q^{69} +(10.4372 - 2.85280i) q^{70} +(-5.81858 + 10.0781i) q^{71} +(0.0652541 - 0.0376745i) q^{72} +(3.21316 - 3.21316i) q^{73} +(-3.78288 + 4.76338i) q^{74} +(6.13767 - 6.26200i) q^{75} +(-1.65371 + 6.17174i) q^{76} +(-8.43391 + 2.25986i) q^{77} +(1.18718 + 4.43063i) q^{78} +(-13.7202 + 3.67632i) q^{79} +(-0.0112097 - 2.23604i) q^{80} +(-4.61018 + 7.98507i) q^{81} -2.59045i q^{82} +(-4.18715 + 15.6267i) q^{83} -8.48579i q^{84} +(7.77951 - 0.0390002i) q^{85} +(-0.679767 - 1.17739i) q^{86} +(-11.0920 - 6.40399i) q^{87} +1.80443i q^{88} +(3.75933 + 1.00731i) q^{89} +(-0.0849731 - 0.145488i) q^{90} +(12.2254 + 3.27579i) q^{91} +(4.18978 - 7.25691i) q^{92} +(7.64130 - 13.2351i) q^{93} +(-0.139331 - 0.0373337i) q^{94} +(13.8188 + 3.62858i) q^{95} +(-1.69391 - 0.453882i) q^{96} -4.12874i q^{97} +(-14.2156 - 8.20741i) q^{98} +(0.0679810 + 0.117746i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32 q + 16 q^{2} - 2 q^{3} - 16 q^{4} + 6 q^{5} + 8 q^{6} - 10 q^{7} - 32 q^{8} + 12 q^{9}+O(q^{10})$$ 32 * q + 16 * q^2 - 2 * q^3 - 16 * q^4 + 6 * q^5 + 8 * q^6 - 10 * q^7 - 32 * q^8 + 12 * q^9 $$32 q + 16 q^{2} - 2 q^{3} - 16 q^{4} + 6 q^{5} + 8 q^{6} - 10 q^{7} - 32 q^{8} + 12 q^{9} + 6 q^{10} + 10 q^{12} + 10 q^{13} - 8 q^{14} - 8 q^{15} - 16 q^{16} - 12 q^{17} + 12 q^{18} + 2 q^{19} - 54 q^{21} + 6 q^{22} + 12 q^{23} + 2 q^{24} - 16 q^{25} + 20 q^{26} + 40 q^{27} + 2 q^{28} + 6 q^{29} + 8 q^{30} - 4 q^{31} + 16 q^{32} + 26 q^{33} - 12 q^{34} - 12 q^{35} + 20 q^{37} - 26 q^{38} - 58 q^{39} - 6 q^{40} + 18 q^{41} - 54 q^{42} - 32 q^{43} + 6 q^{44} + 56 q^{45} + 6 q^{46} + 18 q^{47} - 8 q^{48} - 12 q^{49} - 14 q^{50} - 4 q^{51} + 10 q^{52} - 24 q^{53} + 20 q^{54} - 32 q^{55} + 10 q^{56} + 8 q^{57} + 36 q^{58} + 42 q^{59} + 16 q^{60} - 46 q^{61} - 14 q^{62} + 32 q^{64} - 18 q^{65} + 4 q^{66} + 50 q^{67} - 66 q^{69} + 12 q^{70} - 12 q^{71} - 12 q^{72} - 28 q^{73} + 16 q^{74} - 20 q^{75} - 28 q^{76} + 12 q^{77} - 26 q^{78} + 38 q^{79} - 6 q^{80} + 56 q^{81} - 8 q^{85} - 16 q^{86} + 18 q^{87} + 18 q^{89} + 4 q^{90} + 4 q^{91} - 6 q^{92} + 32 q^{93} + 30 q^{94} + 96 q^{95} - 10 q^{96} - 12 q^{98} - 26 q^{99}+O(q^{100})$$ 32 * q + 16 * q^2 - 2 * q^3 - 16 * q^4 + 6 * q^5 + 8 * q^6 - 10 * q^7 - 32 * q^8 + 12 * q^9 + 6 * q^10 + 10 * q^12 + 10 * q^13 - 8 * q^14 - 8 * q^15 - 16 * q^16 - 12 * q^17 + 12 * q^18 + 2 * q^19 - 54 * q^21 + 6 * q^22 + 12 * q^23 + 2 * q^24 - 16 * q^25 + 20 * q^26 + 40 * q^27 + 2 * q^28 + 6 * q^29 + 8 * q^30 - 4 * q^31 + 16 * q^32 + 26 * q^33 - 12 * q^34 - 12 * q^35 + 20 * q^37 - 26 * q^38 - 58 * q^39 - 6 * q^40 + 18 * q^41 - 54 * q^42 - 32 * q^43 + 6 * q^44 + 56 * q^45 + 6 * q^46 + 18 * q^47 - 8 * q^48 - 12 * q^49 - 14 * q^50 - 4 * q^51 + 10 * q^52 - 24 * q^53 + 20 * q^54 - 32 * q^55 + 10 * q^56 + 8 * q^57 + 36 * q^58 + 42 * q^59 + 16 * q^60 - 46 * q^61 - 14 * q^62 + 32 * q^64 - 18 * q^65 + 4 * q^66 + 50 * q^67 - 66 * q^69 + 12 * q^70 - 12 * q^71 - 12 * q^72 - 28 * q^73 + 16 * q^74 - 20 * q^75 - 28 * q^76 + 12 * q^77 - 26 * q^78 + 38 * q^79 - 6 * q^80 + 56 * q^81 - 8 * q^85 - 16 * q^86 + 18 * q^87 + 18 * q^89 + 4 * q^90 + 4 * q^91 - 6 * q^92 + 32 * q^93 + 30 * q^94 + 96 * q^95 - 10 * q^96 - 12 * q^98 - 26 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ −0.453882 1.69391i −0.262049 0.977981i −0.964032 0.265787i $$-0.914368\pi$$
0.701983 0.712194i $$-0.252298\pi$$
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ 1.94207 + 1.10831i 0.868521 + 0.495652i
$$6$$ 1.24003 1.24003i 0.506240 0.506240i
$$7$$ −1.25240 4.67400i −0.473361 1.76661i −0.627561 0.778568i $$-0.715946\pi$$
0.154199 0.988040i $$-0.450720\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ −0.0652541 + 0.0376745i −0.0217514 + 0.0125582i
$$10$$ 0.0112097 + 2.23604i 0.00354482 + 0.707098i
$$11$$ 1.80443i 0.544056i −0.962289 0.272028i $$-0.912306\pi$$
0.962289 0.272028i $$-0.0876943\pi$$
$$12$$ 1.69391 + 0.453882i 0.488990 + 0.131025i
$$13$$ −1.30781 + 2.26519i −0.362721 + 0.628251i −0.988408 0.151823i $$-0.951486\pi$$
0.625687 + 0.780074i $$0.284819\pi$$
$$14$$ 3.42161 3.42161i 0.914463 0.914463i
$$15$$ 0.995911 3.79274i 0.257143 0.979282i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 3.01303 1.73957i 0.730767 0.421909i −0.0879355 0.996126i $$-0.528027\pi$$
0.818703 + 0.574217i $$0.194694\pi$$
$$18$$ −0.0652541 0.0376745i −0.0153805 0.00887996i
$$19$$ 6.17174 1.65371i 1.41589 0.379388i 0.531869 0.846827i $$-0.321490\pi$$
0.884025 + 0.467439i $$0.154823\pi$$
$$20$$ −1.93086 + 1.12773i −0.431754 + 0.252168i
$$21$$ −7.34891 + 4.24290i −1.60366 + 0.925876i
$$22$$ 1.56268 0.902215i 0.333165 0.192353i
$$23$$ −8.37956 −1.74726 −0.873629 0.486592i $$-0.838240\pi$$
−0.873629 + 0.486592i $$0.838240\pi$$
$$24$$ 0.453882 + 1.69391i 0.0926484 + 0.345768i
$$25$$ 2.54329 + 4.30484i 0.508658 + 0.860969i
$$26$$ −2.61562 −0.512965
$$27$$ −3.62666 3.62666i −0.697950 0.697950i
$$28$$ 4.67400 + 1.25240i 0.883304 + 0.236681i
$$29$$ 5.16438 5.16438i 0.959001 0.959001i −0.0401907 0.999192i $$-0.512797\pi$$
0.999192 + 0.0401907i $$0.0127965\pi$$
$$30$$ 3.78257 1.03389i 0.690599 0.188761i
$$31$$ 6.16219 + 6.16219i 1.10676 + 1.10676i 0.993574 + 0.113188i $$0.0361064\pi$$
0.113188 + 0.993574i $$0.463894\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ −3.05655 + 0.818999i −0.532076 + 0.142569i
$$34$$ 3.01303 + 1.73957i 0.516731 + 0.298335i
$$35$$ 2.74801 10.4653i 0.464499 1.76896i
$$36$$ 0.0753490i 0.0125582i
$$37$$ 2.23377 + 5.65776i 0.367230 + 0.930130i
$$38$$ 4.51803 + 4.51803i 0.732921 + 0.732921i
$$39$$ 4.43063 + 1.18718i 0.709468 + 0.190101i
$$40$$ −1.94207 1.10831i −0.307069 0.175240i
$$41$$ −2.24339 1.29522i −0.350359 0.202280i 0.314484 0.949263i $$-0.398168\pi$$
−0.664844 + 0.746983i $$0.731502\pi$$
$$42$$ −7.34891 4.24290i −1.13396 0.654693i
$$43$$ −1.35953 −0.207327 −0.103663 0.994612i $$-0.533056\pi$$
−0.103663 + 0.994612i $$0.533056\pi$$
$$44$$ 1.56268 + 0.902215i 0.235583 + 0.136014i
$$45$$ −0.168483 0.000844640i −0.0251160 0.000125911i
$$46$$ −4.18978 7.25691i −0.617749 1.06997i
$$47$$ −0.101997 + 0.101997i −0.0148779 + 0.0148779i −0.714507 0.699629i $$-0.753349\pi$$
0.699629 + 0.714507i $$0.253349\pi$$
$$48$$ −1.24003 + 1.24003i −0.178983 + 0.178983i
$$49$$ −14.2156 + 8.20741i −2.03081 + 1.17249i
$$50$$ −2.45646 + 4.35497i −0.347396 + 0.615886i
$$51$$ −4.31425 4.31425i −0.604116 0.604116i
$$52$$ −1.30781 2.26519i −0.181360 0.314126i
$$53$$ −0.698572 + 2.60711i −0.0959563 + 0.358114i −0.997163 0.0752764i $$-0.976016\pi$$
0.901206 + 0.433390i $$0.142683\pi$$
$$54$$ 1.32745 4.95410i 0.180643 0.674168i
$$55$$ 1.99987 3.50433i 0.269663 0.472524i
$$56$$ 1.25240 + 4.67400i 0.167358 + 0.624590i
$$57$$ −5.60249 9.70379i −0.742068 1.28530i
$$58$$ 7.05467 + 1.89029i 0.926324 + 0.248208i
$$59$$ −2.77785 + 10.3671i −0.361645 + 1.34968i 0.510267 + 0.860016i $$0.329547\pi$$
−0.871912 + 0.489663i $$0.837120\pi$$
$$60$$ 2.78666 + 2.75886i 0.359756 + 0.356167i
$$61$$ −5.11419 + 1.37034i −0.654805 + 0.175454i −0.570900 0.821019i $$-0.693406\pi$$
−0.0839046 + 0.996474i $$0.526739\pi$$
$$62$$ −2.25552 + 8.41771i −0.286451 + 1.06905i
$$63$$ 0.257815 + 0.257815i 0.0324816 + 0.0324816i
$$64$$ 1.00000 0.125000
$$65$$ −5.05040 + 2.94971i −0.626425 + 0.365866i
$$66$$ −2.23755 2.23755i −0.275423 0.275423i
$$67$$ 9.52300 2.55168i 1.16342 0.311737i 0.375088 0.926989i $$-0.377612\pi$$
0.788331 + 0.615252i $$0.210946\pi$$
$$68$$ 3.47915i 0.421909i
$$69$$ 3.80333 + 14.1942i 0.457868 + 1.70879i
$$70$$ 10.4372 2.85280i 1.24749 0.340975i
$$71$$ −5.81858 + 10.0781i −0.690538 + 1.19605i 0.281124 + 0.959671i $$0.409293\pi$$
−0.971662 + 0.236375i $$0.924041\pi$$
$$72$$ 0.0652541 0.0376745i 0.00769027 0.00443998i
$$73$$ 3.21316 3.21316i 0.376072 0.376072i −0.493611 0.869683i $$-0.664323\pi$$
0.869683 + 0.493611i $$0.164323\pi$$
$$74$$ −3.78288 + 4.76338i −0.439751 + 0.553732i
$$75$$ 6.13767 6.26200i 0.708718 0.723074i
$$76$$ −1.65371 + 6.17174i −0.189694 + 0.707947i
$$77$$ −8.43391 + 2.25986i −0.961134 + 0.257535i
$$78$$ 1.18718 + 4.43063i 0.134422 + 0.501670i
$$79$$ −13.7202 + 3.67632i −1.54364 + 0.413618i −0.927441 0.373969i $$-0.877997\pi$$
−0.616203 + 0.787587i $$0.711330\pi$$
$$80$$ −0.0112097 2.23604i −0.00125328 0.249997i
$$81$$ −4.61018 + 7.98507i −0.512243 + 0.887230i
$$82$$ 2.59045i 0.286067i
$$83$$ −4.18715 + 15.6267i −0.459600 + 1.71525i 0.214602 + 0.976702i $$0.431155\pi$$
−0.674201 + 0.738547i $$0.735512\pi$$
$$84$$ 8.48579i 0.925876i
$$85$$ 7.77951 0.0390002i 0.843807 0.00423017i
$$86$$ −0.679767 1.17739i −0.0733011 0.126961i
$$87$$ −11.0920 6.40399i −1.18919 0.686579i
$$88$$ 1.80443i 0.192353i
$$89$$ 3.75933 + 1.00731i 0.398489 + 0.106775i 0.452497 0.891766i $$-0.350533\pi$$
−0.0540087 + 0.998540i $$0.517200\pi$$
$$90$$ −0.0849731 0.145488i −0.00895695 0.0153358i
$$91$$ 12.2254 + 3.27579i 1.28157 + 0.343396i
$$92$$ 4.18978 7.25691i 0.436815 0.756585i
$$93$$ 7.64130 13.2351i 0.792366 1.37242i
$$94$$ −0.139331 0.0373337i −0.0143709 0.00385067i
$$95$$ 13.8188 + 3.62858i 1.41778 + 0.372285i
$$96$$ −1.69391 0.453882i −0.172884 0.0463242i
$$97$$ 4.12874i 0.419210i −0.977786 0.209605i $$-0.932782\pi$$
0.977786 0.209605i $$-0.0672178\pi$$
$$98$$ −14.2156 8.20741i −1.43600 0.829073i
$$99$$ 0.0679810 + 0.117746i 0.00683234 + 0.0118340i
$$100$$ −4.99975 + 0.0501307i −0.499975 + 0.00501307i
$$101$$ 8.73904i 0.869567i −0.900535 0.434783i $$-0.856825\pi$$
0.900535 0.434783i $$-0.143175\pi$$
$$102$$ 1.57912 5.89337i 0.156357 0.583531i
$$103$$ 1.19613i 0.117858i −0.998262 0.0589289i $$-0.981231\pi$$
0.998262 0.0589289i $$-0.0187685\pi$$
$$104$$ 1.30781 2.26519i 0.128241 0.222120i
$$105$$ −18.9746 + 0.0951233i −1.85173 + 0.00928308i
$$106$$ −2.60711 + 0.698572i −0.253225 + 0.0678513i
$$107$$ −0.356896 1.33196i −0.0345025 0.128765i 0.946527 0.322626i $$-0.104566\pi$$
−0.981029 + 0.193861i $$0.937899\pi$$
$$108$$ 4.95410 1.32745i 0.476709 0.127734i
$$109$$ 0.635304 2.37099i 0.0608511 0.227099i −0.928803 0.370574i $$-0.879161\pi$$
0.989654 + 0.143475i $$0.0458276\pi$$
$$110$$ 4.03478 0.0202271i 0.384701 0.00192858i
$$111$$ 8.56988 6.35177i 0.813417 0.602883i
$$112$$ −3.42161 + 3.42161i −0.323312 + 0.323312i
$$113$$ 7.28479 4.20588i 0.685296 0.395656i −0.116552 0.993185i $$-0.537184\pi$$
0.801847 + 0.597529i $$0.203851\pi$$
$$114$$ 5.60249 9.70379i 0.524721 0.908844i
$$115$$ −16.2737 9.28716i −1.51753 0.866033i
$$116$$ 1.89029 + 7.05467i 0.175509 + 0.655010i
$$117$$ 0.197084i 0.0182204i
$$118$$ −10.3671 + 2.77785i −0.954367 + 0.255722i
$$119$$ −11.9043 11.9043i −1.09126 1.09126i
$$120$$ −0.995911 + 3.79274i −0.0909138 + 0.346229i
$$121$$ 7.74403 0.704003
$$122$$ −3.74385 3.74385i −0.338952 0.338952i
$$123$$ −1.17576 + 4.38799i −0.106015 + 0.395652i
$$124$$ −8.41771 + 2.25552i −0.755932 + 0.202551i
$$125$$ 0.168140 + 11.1791i 0.0150389 + 0.999887i
$$126$$ −0.0943667 + 0.352181i −0.00840685 + 0.0313748i
$$127$$ 10.1458 + 2.71856i 0.900294 + 0.241233i 0.679142 0.734006i $$-0.262352\pi$$
0.221151 + 0.975239i $$0.429018\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ 0.617069 + 2.30293i 0.0543299 + 0.202762i
$$130$$ −5.07972 2.89892i −0.445521 0.254252i
$$131$$ 3.08960 11.5306i 0.269940 1.00743i −0.689217 0.724555i $$-0.742045\pi$$
0.959157 0.282875i $$-0.0912880\pi$$
$$132$$ 0.818999 3.05655i 0.0712847 0.266038i
$$133$$ −15.4589 26.7756i −1.34046 2.32174i
$$134$$ 6.97132 + 6.97132i 0.602230 + 0.602230i
$$135$$ −3.02376 11.0627i −0.260244 0.952125i
$$136$$ −3.01303 + 1.73957i −0.258365 + 0.149167i
$$137$$ −3.06772 + 3.06772i −0.262093 + 0.262093i −0.825904 0.563811i $$-0.809335\pi$$
0.563811 + 0.825904i $$0.309335\pi$$
$$138$$ −10.3909 + 10.3909i −0.884532 + 0.884532i
$$139$$ 4.71138 + 8.16035i 0.399614 + 0.692152i 0.993678 0.112266i $$-0.0358108\pi$$
−0.594064 + 0.804418i $$0.702477\pi$$
$$140$$ 7.68921 + 7.61250i 0.649857 + 0.643374i
$$141$$ 0.219070 + 0.126480i 0.0184490 + 0.0106515i
$$142$$ −11.6372 −0.976568
$$143$$ 4.08738 + 2.35985i 0.341804 + 0.197341i
$$144$$ 0.0652541 + 0.0376745i 0.00543784 + 0.00313954i
$$145$$ 15.7533 4.30585i 1.30824 0.357582i
$$146$$ 4.38926 + 1.17610i 0.363258 + 0.0973346i
$$147$$ 20.3549 + 20.3549i 1.67884 + 1.67884i
$$148$$ −6.01665 0.894379i −0.494566 0.0735175i
$$149$$ 13.1713i 1.07904i −0.841974 0.539518i $$-0.818606\pi$$
0.841974 0.539518i $$-0.181394\pi$$
$$150$$ 8.49189 + 2.18438i 0.693360 + 0.178354i
$$151$$ 9.11356 + 5.26172i 0.741651 + 0.428192i 0.822669 0.568520i $$-0.192484\pi$$
−0.0810182 + 0.996713i $$0.525817\pi$$
$$152$$ −6.17174 + 1.65371i −0.500594 + 0.134134i
$$153$$ −0.131075 + 0.227029i −0.0105968 + 0.0183542i
$$154$$ −6.17405 6.17405i −0.497519 0.497519i
$$155$$ 5.13779 + 18.7970i 0.412677 + 1.50982i
$$156$$ −3.24344 + 3.24344i −0.259683 + 0.259683i
$$157$$ −2.98011 0.798519i −0.237839 0.0637287i 0.137931 0.990442i $$-0.455955\pi$$
−0.375770 + 0.926713i $$0.622622\pi$$
$$158$$ −10.0439 10.0439i −0.799049 0.799049i
$$159$$ 4.73328 0.375374
$$160$$ 1.93086 1.12773i 0.152648 0.0891547i
$$161$$ 10.4945 + 39.1661i 0.827084 + 3.08672i
$$162$$ −9.22037 −0.724421
$$163$$ 7.99556 4.61624i 0.626260 0.361572i −0.153042 0.988220i $$-0.548907\pi$$
0.779302 + 0.626648i $$0.215574\pi$$
$$164$$ 2.24339 1.29522i 0.175180 0.101140i
$$165$$ −6.84374 1.79705i −0.532784 0.139900i
$$166$$ −15.6267 + 4.18715i −1.21286 + 0.324986i
$$167$$ 5.20455 + 3.00485i 0.402740 + 0.232522i 0.687666 0.726028i $$-0.258636\pi$$
−0.284926 + 0.958550i $$0.591969\pi$$
$$168$$ 7.34891 4.24290i 0.566981 0.327347i
$$169$$ 3.07927 + 5.33346i 0.236867 + 0.410266i
$$170$$ 3.92353 + 6.71776i 0.300921 + 0.515228i
$$171$$ −0.340429 + 0.340429i −0.0260332 + 0.0260332i
$$172$$ 0.679767 1.17739i 0.0518317 0.0897752i
$$173$$ −0.380133 0.101856i −0.0289010 0.00774399i 0.244340 0.969690i $$-0.421429\pi$$
−0.273241 + 0.961946i $$0.588096\pi$$
$$174$$ 12.8080i 0.970970i
$$175$$ 16.9357 17.2787i 1.28022 1.30615i
$$176$$ −1.56268 + 0.902215i −0.117792 + 0.0680070i
$$177$$ 18.8217 1.41473
$$178$$ 1.00731 + 3.75933i 0.0755011 + 0.281774i
$$179$$ 6.13609 6.13609i 0.458633 0.458633i −0.439573 0.898207i $$-0.644870\pi$$
0.898207 + 0.439573i $$0.144870\pi$$
$$180$$ 0.0835102 0.146333i 0.00622448 0.0109070i
$$181$$ −3.50429 + 6.06961i −0.260472 + 0.451151i −0.966367 0.257165i $$-0.917211\pi$$
0.705896 + 0.708316i $$0.250545\pi$$
$$182$$ 3.27579 + 12.2254i 0.242818 + 0.906208i
$$183$$ 4.64248 + 8.04102i 0.343182 + 0.594409i
$$184$$ 8.37956 0.617749
$$185$$ −1.93242 + 13.4635i −0.142075 + 0.989856i
$$186$$ 15.2826 1.12057
$$187$$ −3.13894 5.43680i −0.229542 0.397578i
$$188$$ −0.0373337 0.139331i −0.00272284 0.0101618i
$$189$$ −12.4090 + 21.4930i −0.902622 + 1.56339i
$$190$$ 3.76695 + 13.7817i 0.273283 + 0.999831i
$$191$$ 5.41763 5.41763i 0.392006 0.392006i −0.483396 0.875402i $$-0.660597\pi$$
0.875402 + 0.483396i $$0.160597\pi$$
$$192$$ −0.453882 1.69391i −0.0327561 0.122248i
$$193$$ 9.91460 0.713668 0.356834 0.934168i $$-0.383856\pi$$
0.356834 + 0.934168i $$0.383856\pi$$
$$194$$ 3.57559 2.06437i 0.256713 0.148213i
$$195$$ 7.28883 + 7.21611i 0.521964 + 0.516757i
$$196$$ 16.4148i 1.17249i
$$197$$ −7.20563 1.93074i −0.513380 0.137560i −0.00717713 0.999974i $$-0.502285\pi$$
−0.506203 + 0.862415i $$0.668951\pi$$
$$198$$ −0.0679810 + 0.117746i −0.00483120 + 0.00836788i
$$199$$ 6.16248 6.16248i 0.436847 0.436847i −0.454103 0.890949i $$-0.650040\pi$$
0.890949 + 0.454103i $$0.150040\pi$$
$$200$$ −2.54329 4.30484i −0.179838 0.304398i
$$201$$ −8.64464 14.9730i −0.609746 1.05611i
$$202$$ 7.56823 4.36952i 0.532499 0.307438i
$$203$$ −30.6062 17.6705i −2.14813 1.24023i
$$204$$ 5.89337 1.57912i 0.412619 0.110561i
$$205$$ −2.92132 5.00180i −0.204034 0.349341i
$$206$$ 1.03587 0.598063i 0.0721728 0.0416690i
$$207$$ 0.546801 0.315695i 0.0380053 0.0219424i
$$208$$ 2.61562 0.181360
$$209$$ −2.98401 11.1365i −0.206408 0.770326i
$$210$$ −9.56967 16.3849i −0.660370 1.13067i
$$211$$ 3.61934 0.249166 0.124583 0.992209i $$-0.460241\pi$$
0.124583 + 0.992209i $$0.460241\pi$$
$$212$$ −1.90853 1.90853i −0.131079 0.131079i
$$213$$ 19.7123 + 5.28190i 1.35067 + 0.361910i
$$214$$ 0.975059 0.975059i 0.0666537 0.0666537i
$$215$$ −2.64031 1.50679i −0.180068 0.102762i
$$216$$ 3.62666 + 3.62666i 0.246763 + 0.246763i
$$217$$ 21.0846 36.5196i 1.43132 2.47911i
$$218$$ 2.37099 0.635304i 0.160583 0.0430282i
$$219$$ −6.90121 3.98442i −0.466341 0.269242i
$$220$$ 2.03491 + 3.48411i 0.137193 + 0.234898i
$$221$$ 9.10012i 0.612140i
$$222$$ 9.78574 + 4.24585i 0.656776 + 0.284963i
$$223$$ 2.55180 + 2.55180i 0.170881 + 0.170881i 0.787366 0.616485i $$-0.211444\pi$$
−0.616485 + 0.787366i $$0.711444\pi$$
$$224$$ −4.67400 1.25240i −0.312295 0.0836792i
$$225$$ −0.328143 0.185092i −0.0218762 0.0123394i
$$226$$ 7.28479 + 4.20588i 0.484577 + 0.279771i
$$227$$ −10.7831 6.22565i −0.715703 0.413211i 0.0974662 0.995239i $$-0.468926\pi$$
−0.813169 + 0.582028i $$0.802260\pi$$
$$228$$ 11.2050 0.742068
$$229$$ −15.5682 8.98833i −1.02878 0.593965i −0.112144 0.993692i $$-0.535772\pi$$
−0.916634 + 0.399727i $$0.869105\pi$$
$$230$$ −0.0939324 18.7370i −0.00619372 1.23548i
$$231$$ 7.65601 + 13.2606i 0.503729 + 0.872483i
$$232$$ −5.16438 + 5.16438i −0.339058 + 0.339058i
$$233$$ −9.77692 + 9.77692i −0.640507 + 0.640507i −0.950680 0.310173i $$-0.899613\pi$$
0.310173 + 0.950680i $$0.399613\pi$$
$$234$$ 0.170680 0.0985420i 0.0111577 0.00644189i
$$235$$ −0.311131 + 0.0850414i −0.0202960 + 0.00554749i
$$236$$ −7.58923 7.58923i −0.494017 0.494017i
$$237$$ 12.4547 + 21.5722i 0.809021 + 1.40127i
$$238$$ 4.35727 16.2616i 0.282440 1.05408i
$$239$$ −7.64800 + 28.5427i −0.494708 + 1.84627i 0.0369533 + 0.999317i $$0.488235\pi$$
−0.531661 + 0.846957i $$0.678432\pi$$
$$240$$ −3.78257 + 1.03389i −0.244164 + 0.0667372i
$$241$$ −2.75650 10.2874i −0.177562 0.662669i −0.996101 0.0882189i $$-0.971883\pi$$
0.818539 0.574450i $$-0.194784\pi$$
$$242$$ 3.87202 + 6.70653i 0.248903 + 0.431112i
$$243$$ 0.756190 + 0.202621i 0.0485096 + 0.0129981i
$$244$$ 1.37034 5.11419i 0.0877272 0.327403i
$$245$$ −36.7042 + 0.184005i −2.34494 + 0.0117557i
$$246$$ −4.38799 + 1.17576i −0.279768 + 0.0749637i
$$247$$ −4.32548 + 16.1429i −0.275224 + 1.02715i
$$248$$ −6.16219 6.16219i −0.391299 0.391299i
$$249$$ 28.3707 1.79792
$$250$$ −9.59729 + 5.73515i −0.606986 + 0.362723i
$$251$$ −18.6677 18.6677i −1.17829 1.17829i −0.980179 0.198116i $$-0.936518\pi$$
−0.198116 0.980179i $$-0.563482\pi$$
$$252$$ −0.352181 + 0.0943667i −0.0221853 + 0.00594454i
$$253$$ 15.1203i 0.950607i
$$254$$ 2.71856 + 10.1458i 0.170578 + 0.636604i
$$255$$ −3.59705 13.1601i −0.225256 0.824118i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −12.3176 + 7.11154i −0.768348 + 0.443606i −0.832285 0.554348i $$-0.812968\pi$$
0.0639371 + 0.997954i $$0.479634\pi$$
$$258$$ −1.68586 + 1.68586i −0.104957 + 0.104957i
$$259$$ 23.6468 17.5264i 1.46934 1.08904i
$$260$$ −0.0293203 5.84863i −0.00181837 0.362716i
$$261$$ −0.142432 + 0.531562i −0.00881630 + 0.0329029i
$$262$$ 11.5306 3.08960i 0.712360 0.190876i
$$263$$ 5.12046 + 19.1098i 0.315741 + 1.17836i 0.923298 + 0.384085i $$0.125483\pi$$
−0.607557 + 0.794276i $$0.707850\pi$$
$$264$$ 3.05655 0.818999i 0.188117 0.0504059i
$$265$$ −4.24617 + 4.28895i −0.260840 + 0.263468i
$$266$$ 15.4589 26.7756i 0.947847 1.64172i
$$267$$ 6.82518i 0.417694i
$$268$$ −2.55168 + 9.52300i −0.155869 + 0.581710i
$$269$$ 3.15145i 0.192147i 0.995374 + 0.0960736i $$0.0306284\pi$$
−0.995374 + 0.0960736i $$0.969372\pi$$
$$270$$ 8.06869 8.15000i 0.491045 0.495993i
$$271$$ −6.30478 10.9202i −0.382988 0.663355i 0.608500 0.793554i $$-0.291772\pi$$
−0.991488 + 0.130199i $$0.958438\pi$$
$$272$$ −3.01303 1.73957i −0.182692 0.105477i
$$273$$ 22.1956i 1.34334i
$$274$$ −4.19059 1.12287i −0.253163 0.0678348i
$$275$$ 7.76779 4.58919i 0.468415 0.276738i
$$276$$ −14.1942 3.80333i −0.854393 0.228934i
$$277$$ 1.64510 2.84940i 0.0988448 0.171204i −0.812362 0.583154i $$-0.801819\pi$$
0.911207 + 0.411949i $$0.135152\pi$$
$$278$$ −4.71138 + 8.16035i −0.282570 + 0.489425i
$$279$$ −0.634265 0.169951i −0.0379725 0.0101747i
$$280$$ −2.74801 + 10.4653i −0.164225 + 0.625421i
$$281$$ 0.778302 + 0.208545i 0.0464296 + 0.0124408i 0.281959 0.959426i $$-0.409016\pi$$
−0.235529 + 0.971867i $$0.575682\pi$$
$$282$$ 0.252960i 0.0150635i
$$283$$ 10.6557 + 6.15205i 0.633413 + 0.365701i 0.782073 0.623187i $$-0.214163\pi$$
−0.148660 + 0.988888i $$0.547496\pi$$
$$284$$ −5.81858 10.0781i −0.345269 0.598023i
$$285$$ −0.125604 25.0548i −0.00744017 1.48412i
$$286$$ 4.71970i 0.279082i
$$287$$ −3.24427 + 12.1078i −0.191503 + 0.714699i
$$288$$ 0.0753490i 0.00443998i
$$289$$ −2.44776 + 4.23965i −0.143986 + 0.249391i
$$290$$ 11.6057 + 11.4899i 0.681507 + 0.674708i
$$291$$ −6.99372 + 1.87396i −0.409979 + 0.109854i
$$292$$ 1.17610 + 4.38926i 0.0688260 + 0.256862i
$$293$$ −11.5868 + 3.10467i −0.676907 + 0.181377i −0.580864 0.814000i $$-0.697285\pi$$
−0.0960429 + 0.995377i $$0.530619\pi$$
$$294$$ −7.45039 + 27.8053i −0.434516 + 1.62164i
$$295$$ −16.8847 + 17.0549i −0.983068 + 0.992974i
$$296$$ −2.23377 5.65776i −0.129835 0.328851i
$$297$$ −6.54404 + 6.54404i −0.379724 + 0.379724i
$$298$$ 11.4067 6.58566i 0.660772 0.381497i
$$299$$ 10.9589 18.9813i 0.633767 1.09772i
$$300$$ 2.35422 + 8.44638i 0.135921 + 0.487652i
$$301$$ 1.70267 + 6.35447i 0.0981405 + 0.366265i
$$302$$ 10.5234i 0.605556i
$$303$$ −14.8032 + 3.96650i −0.850420 + 0.227869i
$$304$$ −4.51803 4.51803i −0.259127 0.259127i
$$305$$ −11.4509 3.00681i −0.655676 0.172170i
$$306$$ −0.262150 −0.0149861
$$307$$ −19.1278 19.1278i −1.09168 1.09168i −0.995349 0.0963307i $$-0.969289\pi$$
−0.0963307 0.995349i $$-0.530711\pi$$
$$308$$ 2.25986 8.43391i 0.128767 0.480567i
$$309$$ −2.02613 + 0.542900i −0.115263 + 0.0308845i
$$310$$ −13.7098 + 13.8480i −0.778666 + 0.786512i
$$311$$ 3.57605 13.3460i 0.202779 0.756782i −0.787336 0.616524i $$-0.788540\pi$$
0.990115 0.140258i $$-0.0447931\pi$$
$$312$$ −4.43063 1.18718i −0.250835 0.0672110i
$$313$$ −1.91505 3.31696i −0.108245 0.187486i 0.806814 0.590805i $$-0.201190\pi$$
−0.915059 + 0.403319i $$0.867856\pi$$
$$314$$ −0.798519 2.98011i −0.0450630 0.168178i
$$315$$ 0.214956 + 0.786434i 0.0121114 + 0.0443105i
$$316$$ 3.67632 13.7202i 0.206809 0.771822i
$$317$$ 2.00879 7.49692i 0.112825 0.421069i −0.886290 0.463131i $$-0.846726\pi$$
0.999115 + 0.0420620i $$0.0133927\pi$$
$$318$$ 2.36664 + 4.09914i 0.132715 + 0.229868i
$$319$$ −9.31876 9.31876i −0.521750 0.521750i
$$320$$ 1.94207 + 1.10831i 0.108565 + 0.0619565i
$$321$$ −2.09423 + 1.20910i −0.116888 + 0.0674855i
$$322$$ −28.6716 + 28.6716i −1.59780 + 1.59780i
$$323$$ 15.7189 15.7189i 0.874622 0.874622i
$$324$$ −4.61018 7.98507i −0.256121 0.443615i
$$325$$ −13.0774 + 0.131123i −0.725405 + 0.00727338i
$$326$$ 7.99556 + 4.61624i 0.442833 + 0.255670i
$$327$$ −4.30460 −0.238045
$$328$$ 2.24339 + 1.29522i 0.123871 + 0.0715168i
$$329$$ 0.604478 + 0.348995i 0.0333259 + 0.0192407i
$$330$$ −1.86558 6.82538i −0.102697 0.375725i
$$331$$ 3.24978 + 0.870777i 0.178624 + 0.0478622i 0.347022 0.937857i $$-0.387193\pi$$
−0.168398 + 0.985719i $$0.553859\pi$$
$$332$$ −11.4395 11.4395i −0.627825 0.627825i
$$333$$ −0.358916 0.285036i −0.0196685 0.0156199i
$$334$$ 6.00969i 0.328836i
$$335$$ 21.3224 + 5.59891i 1.16497 + 0.305901i
$$336$$ 7.34891 + 4.24290i 0.400916 + 0.231469i
$$337$$ 2.76951 0.742087i 0.150865 0.0404240i −0.182596 0.983188i $$-0.558450\pi$$
0.333461 + 0.942764i $$0.391783\pi$$
$$338$$ −3.07927 + 5.33346i −0.167490 + 0.290102i
$$339$$ −10.4308 10.4308i −0.566525 0.566525i
$$340$$ −3.85598 + 6.75676i −0.209120 + 0.366437i
$$341$$ 11.1192 11.1192i 0.602141 0.602141i
$$342$$ −0.465034 0.124606i −0.0251462 0.00673789i
$$343$$ 32.2138 + 32.2138i 1.73938 + 1.73938i
$$344$$ 1.35953 0.0733011
$$345$$ −8.34529 + 31.7815i −0.449296 + 1.71106i
$$346$$ −0.101856 0.380133i −0.00547583 0.0204361i
$$347$$ 13.5539 0.727613 0.363807 0.931474i $$-0.381477\pi$$
0.363807 + 0.931474i $$0.381477\pi$$
$$348$$ 11.0920 6.40399i 0.594595 0.343290i
$$349$$ −0.794285 + 0.458581i −0.0425171 + 0.0245473i −0.521108 0.853491i $$-0.674481\pi$$
0.478591 + 0.878038i $$0.341148\pi$$
$$350$$ 23.4316 + 6.02735i 1.25247 + 0.322176i
$$351$$ 12.9580 3.47210i 0.691649 0.185327i
$$352$$ −1.56268 0.902215i −0.0832912 0.0480882i
$$353$$ −11.6101 + 6.70307i −0.617941 + 0.356768i −0.776067 0.630651i $$-0.782788\pi$$
0.158126 + 0.987419i $$0.449455\pi$$
$$354$$ 9.41087 + 16.3001i 0.500182 + 0.866341i
$$355$$ −22.4697 + 13.1235i −1.19257 + 0.696525i
$$356$$ −2.75202 + 2.75202i −0.145857 + 0.145857i
$$357$$ −14.7617 + 25.5680i −0.781270 + 1.35320i
$$358$$ 8.38206 + 2.24597i 0.443006 + 0.118703i
$$359$$ 16.4314i 0.867219i 0.901101 + 0.433609i $$0.142760\pi$$
−0.901101 + 0.433609i $$0.857240\pi$$
$$360$$ 0.168483 0.000844640i 0.00887985 4.45164e-5i
$$361$$ 18.9011 10.9126i 0.994795 0.574345i
$$362$$ −7.00858 −0.368363
$$363$$ −3.51488 13.1177i −0.184483 0.688501i
$$364$$ −8.94962 + 8.94962i −0.469088 + 0.469088i
$$365$$ 9.80138 2.67901i 0.513028 0.140226i
$$366$$ −4.64248 + 8.04102i −0.242666 + 0.420311i
$$367$$ −5.83154 21.7636i −0.304404 1.13605i −0.933457 0.358688i $$-0.883224\pi$$
0.629054 0.777362i $$-0.283443\pi$$
$$368$$ 4.18978 + 7.25691i 0.218407 + 0.378293i
$$369$$ 0.195188 0.0101611
$$370$$ −12.6259 + 5.05822i −0.656391 + 0.262964i
$$371$$ 13.0605 0.678068
$$372$$ 7.64130 + 13.2351i 0.396183 + 0.686209i
$$373$$ 0.409211 + 1.52720i 0.0211881 + 0.0790752i 0.975710 0.219065i $$-0.0703005\pi$$
−0.954522 + 0.298140i $$0.903634\pi$$
$$374$$ 3.13894 5.43680i 0.162311 0.281130i
$$375$$ 18.8601 5.35880i 0.973929 0.276727i
$$376$$ 0.101997 0.101997i 0.00526012 0.00526012i
$$377$$ 4.94429 + 18.4523i 0.254644 + 0.950343i
$$378$$ −24.8180 −1.27650
$$379$$ −2.59270 + 1.49690i −0.133178 + 0.0768904i −0.565109 0.825016i $$-0.691166\pi$$
0.431931 + 0.901907i $$0.357833\pi$$
$$380$$ −10.0518 + 10.1531i −0.515649 + 0.520845i
$$381$$ 18.4200i 0.943685i
$$382$$ 7.40061 + 1.98299i 0.378648 + 0.101459i
$$383$$ −1.07120 + 1.85538i −0.0547358 + 0.0948053i −0.892095 0.451848i $$-0.850765\pi$$
0.837359 + 0.546653i $$0.184098\pi$$
$$384$$ 1.24003 1.24003i 0.0632800 0.0632800i
$$385$$ −18.8839 4.95860i −0.962413 0.252713i
$$386$$ 4.95730 + 8.58629i 0.252320 + 0.437031i
$$387$$ 0.0887152 0.0512197i 0.00450965 0.00260364i
$$388$$ 3.57559 + 2.06437i 0.181523 + 0.104802i
$$389$$ −11.7125 + 3.13836i −0.593848 + 0.159121i −0.543211 0.839596i $$-0.682792\pi$$
−0.0506365 + 0.998717i $$0.516125\pi$$
$$390$$ −2.60492 + 9.92037i −0.131905 + 0.502337i
$$391$$ −25.2479 + 14.5769i −1.27684 + 0.737184i
$$392$$ 14.2156 8.20741i 0.717998 0.414537i
$$393$$ −20.9341 −1.05598
$$394$$ −1.93074 7.20563i −0.0972694 0.363014i
$$395$$ −30.7201 8.06660i −1.54570 0.405875i
$$396$$ −0.135962 −0.00683234
$$397$$ 15.5183 + 15.5183i 0.778843 + 0.778843i 0.979634 0.200791i $$-0.0643513\pi$$
−0.200791 + 0.979634i $$0.564351\pi$$
$$398$$ 8.41810 + 2.25562i 0.421961 + 0.113064i
$$399$$ −38.3390 + 38.3390i −1.91935 + 1.91935i
$$400$$ 2.45646 4.35497i 0.122823 0.217749i
$$401$$ −13.6332 13.6332i −0.680808 0.680808i 0.279375 0.960182i $$-0.409873\pi$$
−0.960182 + 0.279375i $$0.909873\pi$$
$$402$$ 8.64464 14.9730i 0.431156 0.746783i
$$403$$ −22.0175 + 5.89957i −1.09677 + 0.293879i
$$404$$ 7.56823 + 4.36952i 0.376534 + 0.217392i
$$405$$ −17.8033 + 10.3981i −0.884651 + 0.516684i
$$406$$ 35.3410i 1.75394i
$$407$$ 10.2090 4.03068i 0.506043 0.199793i
$$408$$ 4.31425 + 4.31425i 0.213587 + 0.213587i
$$409$$ 24.9978 + 6.69813i 1.23606 + 0.331201i 0.816936 0.576728i $$-0.195671\pi$$
0.419124 + 0.907929i $$0.362337\pi$$
$$410$$ 2.87103 5.03084i 0.141790 0.248455i
$$411$$ 6.58884 + 3.80407i 0.325004 + 0.187641i
$$412$$ 1.03587 + 0.598063i 0.0510339 + 0.0294644i
$$413$$ 51.9347 2.55554
$$414$$ 0.546801 + 0.315695i 0.0268738 + 0.0155156i
$$415$$ −25.4510 + 25.7074i −1.24934 + 1.26193i
$$416$$ 1.30781 + 2.26519i 0.0641206 + 0.111060i
$$417$$ 11.6845 11.6845i 0.572193 0.572193i
$$418$$ 8.15246 8.15246i 0.398750 0.398750i
$$419$$ −12.8156 + 7.39907i −0.626081 + 0.361468i −0.779233 0.626735i $$-0.784391\pi$$
0.153152 + 0.988203i $$0.451058\pi$$
$$420$$ 9.40491 16.4800i 0.458913 0.804143i
$$421$$ 8.16156 + 8.16156i 0.397770 + 0.397770i 0.877446 0.479676i $$-0.159246\pi$$
−0.479676 + 0.877446i $$0.659246\pi$$
$$422$$ 1.80967 + 3.13444i 0.0880935 + 0.152582i
$$423$$ 0.00281305 0.0104985i 0.000136775 0.000510452i
$$424$$ 0.698572 2.60711i 0.0339257 0.126612i
$$425$$ 15.1516 + 8.54639i 0.734961 + 0.414561i
$$426$$ 5.28190 + 19.7123i 0.255909 + 0.955065i
$$427$$ 12.8100 + 22.1875i 0.619918 + 1.07373i
$$428$$ 1.33196 + 0.356896i 0.0643825 + 0.0172512i
$$429$$ 2.14219 7.99476i 0.103426 0.385991i
$$430$$ −0.0152400 3.03997i −0.000734937 0.146600i
$$431$$ −3.05539 + 0.818691i −0.147173 + 0.0394349i −0.331653 0.943401i $$-0.607606\pi$$
0.184480 + 0.982836i $$0.440940\pi$$
$$432$$ −1.32745 + 4.95410i −0.0638669 + 0.238354i
$$433$$ −18.4572 18.4572i −0.886996 0.886996i 0.107237 0.994233i $$-0.465800\pi$$
−0.994233 + 0.107237i $$0.965800\pi$$
$$434$$ 42.1692 2.02419
$$435$$ −14.4439 24.7304i −0.692532 1.18573i
$$436$$ 1.73568 + 1.73568i 0.0831241 + 0.0831241i
$$437$$ −51.7164 + 13.8574i −2.47393 + 0.662888i
$$438$$ 7.96883i 0.380766i
$$439$$ −6.74905 25.1878i −0.322115 1.20215i −0.917181 0.398472i $$-0.869541\pi$$
0.595066 0.803677i $$-0.297126\pi$$
$$440$$ −1.99987 + 3.50433i −0.0953401 + 0.167063i
$$441$$ 0.618419 1.07113i 0.0294485 0.0510064i
$$442$$ −7.88094 + 4.55006i −0.374858 + 0.216424i
$$443$$ −6.81050 + 6.81050i −0.323577 + 0.323577i −0.850137 0.526561i $$-0.823481\pi$$
0.526561 + 0.850137i $$0.323481\pi$$
$$444$$ 1.21585 + 10.5976i 0.0577018 + 0.502941i
$$445$$ 6.18448 + 6.12279i 0.293173 + 0.290248i
$$446$$ −0.934023 + 3.48582i −0.0442272 + 0.165058i
$$447$$ −22.3111 + 5.97823i −1.05528 + 0.282761i
$$448$$ −1.25240 4.67400i −0.0591701 0.220826i
$$449$$ 13.6000 3.64411i 0.641823 0.171976i 0.0767941 0.997047i $$-0.475532\pi$$
0.565029 + 0.825071i $$0.308865\pi$$
$$450$$ −0.00377730 0.376726i −0.000178063 0.0177590i
$$451$$ −2.33714 + 4.04805i −0.110052 + 0.190615i
$$452$$ 8.41175i 0.395656i
$$453$$ 4.77640 17.8258i 0.224415 0.837528i
$$454$$ 12.4513i 0.584369i
$$455$$ 20.1120 + 19.9114i 0.942867 + 0.933460i
$$456$$ 5.60249 + 9.70379i 0.262361 + 0.454422i
$$457$$ 16.4208 + 9.48058i 0.768135 + 0.443483i 0.832209 0.554462i $$-0.187076\pi$$
−0.0640742 + 0.997945i $$0.520409\pi$$
$$458$$ 17.9767i 0.839994i
$$459$$ −17.2361 4.61839i −0.804510 0.215568i
$$460$$ 16.1798 9.44986i 0.754386 0.440602i
$$461$$ 3.92362 + 1.05133i 0.182741 + 0.0489654i 0.349029 0.937112i $$-0.386511\pi$$
−0.166288 + 0.986077i $$0.553178\pi$$
$$462$$ −7.65601 + 13.2606i −0.356190 + 0.616939i
$$463$$ 0.600566 1.04021i 0.0279107 0.0483427i −0.851733 0.523977i $$-0.824448\pi$$
0.879643 + 0.475634i $$0.157781\pi$$
$$464$$ −7.05467 1.89029i −0.327505 0.0877547i
$$465$$ 29.5086 17.2346i 1.36843 0.799236i
$$466$$ −13.3555 3.57860i −0.618682 0.165775i
$$467$$ 35.6633i 1.65030i −0.564914 0.825150i $$-0.691091\pi$$
0.564914 0.825150i $$-0.308909\pi$$
$$468$$ 0.170680 + 0.0985420i 0.00788968 + 0.00455511i
$$469$$ −23.8531 41.3148i −1.10143 1.90774i
$$470$$ −0.229214 0.226927i −0.0105728 0.0104674i
$$471$$ 5.41048i 0.249302i
$$472$$ 2.77785 10.3671i 0.127861 0.477184i
$$473$$ 2.45318i 0.112797i
$$474$$ −12.4547 + 21.5722i −0.572064 + 0.990845i
$$475$$ 22.8155 + 22.3625i 1.04685 + 1.02606i
$$476$$ 16.2616 4.35727i 0.745347 0.199715i
$$477$$ −0.0526367 0.196443i −0.00241007 0.00899450i
$$478$$ −28.5427 + 7.64800i −1.30551 + 0.349811i
$$479$$ −9.09174 + 33.9308i −0.415412 + 1.55034i 0.368597 + 0.929589i $$0.379838\pi$$
−0.784009 + 0.620750i $$0.786828\pi$$
$$480$$ −2.78666 2.75886i −0.127193 0.125924i
$$481$$ −15.7373 2.33935i −0.717557 0.106665i
$$482$$ 7.53089 7.53089i 0.343023 0.343023i
$$483$$ 61.5806 35.5536i 2.80202 1.61774i
$$484$$ −3.87202 + 6.70653i −0.176001 + 0.304842i
$$485$$ 4.57593 8.01831i 0.207782 0.364093i
$$486$$ 0.202621 + 0.756190i 0.00919105 + 0.0343015i
$$487$$ 34.6270i 1.56910i 0.620065 + 0.784551i $$0.287106\pi$$
−0.620065 + 0.784551i $$0.712894\pi$$
$$488$$ 5.11419 1.37034i 0.231509 0.0620325i
$$489$$ −11.4485 11.4485i −0.517721 0.517721i
$$490$$ −18.5114 31.6947i −0.836262 1.43182i
$$491$$ −38.1904 −1.72351 −0.861754 0.507327i $$-0.830634\pi$$
−0.861754 + 0.507327i $$0.830634\pi$$
$$492$$ −3.21223 3.21223i −0.144819 0.144819i
$$493$$ 6.57661 24.5443i 0.296196 1.10542i
$$494$$ −16.1429 + 4.32548i −0.726304 + 0.194613i
$$495$$ 0.00152409 + 0.304016i 6.85029e−5 + 0.0136645i
$$496$$ 2.25552 8.41771i 0.101276 0.377966i
$$497$$ 54.3921 + 14.5743i 2.43982 + 0.653748i
$$498$$ 14.1853 + 24.5697i 0.635660 + 1.10100i
$$499$$ −9.53373 35.5804i −0.426788 1.59280i −0.759986 0.649939i $$-0.774794\pi$$
0.333198 0.942857i $$-0.391872\pi$$
$$500$$ −9.76543 5.44392i −0.436723 0.243460i
$$501$$ 2.72770 10.1799i 0.121864 0.454804i
$$502$$ 6.83285 25.5005i 0.304965 1.13815i
$$503$$ −13.3228 23.0758i −0.594034 1.02890i −0.993682 0.112229i $$-0.964201\pi$$
0.399648 0.916669i $$-0.369132\pi$$
$$504$$ −0.257815 0.257815i −0.0114840 0.0114840i
$$505$$ 9.68558 16.9718i 0.431003 0.755237i
$$506$$ −13.0946 + 7.56016i −0.582125 + 0.336090i
$$507$$ 7.63678 7.63678i 0.339161 0.339161i
$$508$$ −7.42724 + 7.42724i −0.329530 + 0.329530i
$$509$$ −12.6773 21.9577i −0.561910 0.973257i −0.997330 0.0730294i $$-0.976733\pi$$
0.435420 0.900228i $$-0.356600\pi$$
$$510$$ 9.59847 9.69519i 0.425027 0.429310i
$$511$$ −19.0425 10.9942i −0.842390 0.486354i
$$512$$ −1.00000 −0.0441942
$$513$$ −28.3802 16.3853i −1.25302 0.723430i
$$514$$ −12.3176 7.11154i −0.543304 0.313677i
$$515$$ 1.32568 2.32296i 0.0584164 0.102362i
$$516$$ −2.30293 0.617069i −0.101381 0.0271649i
$$517$$ 0.184047 + 0.184047i 0.00809439 + 0.00809439i
$$518$$ 27.0017 + 11.7156i 1.18639 + 0.514752i
$$519$$ 0.690143i 0.0302939i
$$520$$ 5.05040 2.94971i 0.221475 0.129353i
$$521$$ −20.7644 11.9884i −0.909707 0.525220i −0.0293701 0.999569i $$-0.509350\pi$$
−0.880337 + 0.474349i $$0.842683\pi$$
$$522$$ −0.531562 + 0.142432i −0.0232659 + 0.00623407i
$$523$$ −19.7392 + 34.1892i −0.863133 + 1.49499i 0.00575557 + 0.999983i $$0.498168\pi$$
−0.868889 + 0.495007i $$0.835165\pi$$
$$524$$ 8.44095 + 8.44095i 0.368745 + 0.368745i
$$525$$ −36.9554 20.8450i −1.61287 0.909751i
$$526$$ −13.9894 + 13.9894i −0.609965 + 0.609965i
$$527$$ 29.2865 + 7.84728i 1.27574 + 0.341833i
$$528$$ 2.23755 + 2.23755i 0.0973767 + 0.0973767i
$$529$$ 47.2170 2.05291
$$530$$ −5.83743 1.53281i −0.253562 0.0665810i
$$531$$ −0.209308 0.781149i −0.00908320 0.0338990i
$$532$$ 30.9178 1.34046
$$533$$ 5.86786 3.38781i 0.254165 0.146742i
$$534$$ 5.91078 3.41259i 0.255785 0.147677i
$$535$$ 0.783104 2.98231i 0.0338565 0.128936i
$$536$$ −9.52300 + 2.55168i −0.411331 + 0.110216i
$$537$$ −13.1791 7.60894i −0.568719 0.328350i
$$538$$ −2.72923 + 1.57572i −0.117666 + 0.0679343i
$$539$$ 14.8097 + 25.6511i 0.637898 + 1.10487i
$$540$$ 11.0925 + 2.91269i 0.477343 + 0.125342i
$$541$$ −24.9396 + 24.9396i −1.07224 + 1.07224i −0.0750574 + 0.997179i $$0.523914\pi$$
−0.997179 + 0.0750574i $$0.976086\pi$$
$$542$$ 6.30478 10.9202i 0.270813 0.469063i
$$543$$ 11.8719 + 3.18107i 0.509473 + 0.136513i
$$544$$ 3.47915i 0.149167i
$$545$$ 3.86160 3.90051i 0.165413 0.167080i
$$546$$ 19.2219 11.0978i 0.822624 0.474942i
$$547$$ 27.6892 1.18391 0.591953 0.805973i $$-0.298357\pi$$
0.591953 + 0.805973i $$0.298357\pi$$
$$548$$ −1.12287 4.19059i −0.0479664 0.179013i
$$549$$ 0.282095 0.282095i 0.0120395 0.0120395i
$$550$$ 7.85825 + 4.43251i 0.335077 + 0.189003i
$$551$$ 23.3328 40.4136i 0.994011 1.72168i
$$552$$ −3.80333 14.1942i −0.161881 0.604147i
$$553$$ 34.3663 + 59.5241i 1.46140 + 2.53122i
$$554$$ 3.29021 0.139788
$$555$$ 23.6831 2.83749i 1.00529 0.120445i
$$556$$ −9.42276 −0.399614
$$557$$ −7.77630 13.4690i −0.329492 0.570698i 0.652919 0.757428i $$-0.273544\pi$$
−0.982411 + 0.186730i $$0.940211\pi$$
$$558$$ −0.169951 0.634265i −0.00719460 0.0268506i
$$559$$ 1.77801 3.07960i 0.0752018 0.130253i
$$560$$ −10.4372 + 2.85280i −0.441053 + 0.120553i
$$561$$ −7.78476 + 7.78476i −0.328673 + 0.328673i
$$562$$ 0.208545 + 0.778302i 0.00879696 + 0.0328307i
$$563$$ −6.39301 −0.269433 −0.134717 0.990884i $$-0.543012\pi$$
−0.134717 + 0.990884i $$0.543012\pi$$
$$564$$ −0.219070 + 0.126480i −0.00922449 + 0.00532576i
$$565$$ 18.8090 0.0942933i 0.791301 0.00396695i
$$566$$ 12.3041i 0.517180i
$$567$$ 43.0960 + 11.5476i 1.80986 + 0.484952i
$$568$$ 5.81858 10.0781i 0.244142 0.422866i
$$569$$ 0.679587 0.679587i 0.0284897 0.0284897i −0.692718 0.721208i $$-0.743587\pi$$
0.721208 + 0.692718i $$0.243587\pi$$
$$570$$ 21.6353 12.6362i 0.906202 0.529271i
$$571$$ −15.2224 26.3660i −0.637038 1.10338i −0.986079 0.166275i $$-0.946826\pi$$
0.349042 0.937107i $$-0.386507\pi$$
$$572$$ −4.08738 + 2.35985i −0.170902 + 0.0986703i
$$573$$ −11.6359 6.71802i −0.486099 0.280649i
$$574$$ −12.1078 + 3.24427i −0.505369 + 0.135413i
$$575$$ −21.3116 36.0727i −0.888757 1.50433i
$$576$$ −0.0652541 + 0.0376745i −0.00271892 + 0.00156977i
$$577$$ 6.16200 3.55763i 0.256527 0.148106i −0.366222 0.930527i $$-0.619349\pi$$
0.622749 + 0.782421i $$0.286016\pi$$
$$578$$ −4.89553 −0.203627
$$579$$ −4.50006 16.7945i −0.187016 0.697954i
$$580$$ −4.14769 + 15.7957i −0.172224 + 0.655882i
$$581$$ 78.2831 3.24773
$$582$$ −5.11976 5.11976i −0.212221 0.212221i
$$583$$ 4.70434 + 1.26052i 0.194834 + 0.0522056i
$$584$$ −3.21316 + 3.21316i −0.132962 + 0.132962i
$$585$$ 0.218431 0.382752i 0.00903100 0.0158248i
$$586$$ −8.48211 8.48211i −0.350393 0.350393i
$$587$$ −9.06433 + 15.6999i −0.374125 + 0.648003i −0.990196 0.139687i $$-0.955390\pi$$
0.616071 + 0.787691i $$0.288724\pi$$
$$588$$ −27.8053 + 7.45039i −1.14667 + 0.307249i
$$589$$ 48.2219 + 27.8409i 1.98695 + 1.14717i
$$590$$ −23.2123 6.09517i −0.955637 0.250934i
$$591$$ 13.0820i 0.538123i
$$592$$ 3.78288 4.76338i 0.155475 0.195774i
$$593$$ 8.04997 + 8.04997i 0.330573 + 0.330573i 0.852804 0.522231i $$-0.174900\pi$$
−0.522231 + 0.852804i $$0.674900\pi$$
$$594$$ −8.93933 2.39529i −0.366785 0.0982798i
$$595$$ −9.92532 36.3126i −0.406898 1.48867i
$$596$$ 11.4067 + 6.58566i 0.467237 + 0.269759i
$$597$$ −13.2357 7.64166i −0.541703 0.312752i
$$598$$ 21.9177 0.896282
$$599$$ −0.467718 0.270037i −0.0191104 0.0110334i 0.490414 0.871489i $$-0.336845\pi$$
−0.509525 + 0.860456i $$0.670179\pi$$
$$600$$ −6.13767 + 6.26200i −0.250570 + 0.255645i
$$601$$ 19.1979 + 33.2517i 0.783097 + 1.35636i 0.930129 + 0.367232i $$0.119695\pi$$
−0.147032 + 0.989132i $$0.546972\pi$$
$$602$$ −4.65179 + 4.65179i −0.189593 + 0.189593i
$$603$$ −0.525281 + 0.525281i −0.0213911 + 0.0213911i
$$604$$ −9.11356 + 5.26172i −0.370826 + 0.214096i
$$605$$ 15.0395 + 8.58281i 0.611441 + 0.348941i
$$606$$ −10.8367 10.8367i −0.440210 0.440210i
$$607$$ −6.71310 11.6274i −0.272476 0.471943i 0.697019 0.717053i $$-0.254509\pi$$
−0.969495 + 0.245110i $$0.921176\pi$$
$$608$$ 1.65371 6.17174i 0.0670669 0.250297i
$$609$$ −16.0407 + 59.8645i −0.650000 + 2.42583i
$$610$$ −3.12147 11.4202i −0.126385 0.462389i
$$611$$ −0.0976506 0.364437i −0.00395052 0.0147435i
$$612$$ −0.131075 0.227029i −0.00529840 0.00917709i
$$613$$ 10.8976 + 2.92001i 0.440151 + 0.117938i 0.472087 0.881552i $$-0.343501\pi$$
−0.0319365 + 0.999490i $$0.510167\pi$$
$$614$$ 7.00125 26.1290i 0.282548 1.05448i
$$615$$ −7.14668 + 7.21869i −0.288182 + 0.291086i
$$616$$ 8.43391 2.25986i 0.339812 0.0910524i
$$617$$ −1.50639 + 5.62193i −0.0606450 + 0.226330i −0.989596 0.143872i $$-0.954045\pi$$
0.928951 + 0.370202i $$0.120711\pi$$
$$618$$ −1.48323 1.48323i −0.0596643 0.0596643i
$$619$$ −31.6242 −1.27108 −0.635542 0.772066i $$-0.719223\pi$$
−0.635542 + 0.772066i $$0.719223\pi$$
$$620$$ −18.8476 4.94907i −0.756938 0.198759i
$$621$$ 30.3898 + 30.3898i 1.21950 + 1.21950i
$$622$$ 13.3460 3.57605i 0.535126 0.143387i
$$623$$ 18.8327i 0.754516i
$$624$$ −1.18718 4.43063i −0.0475254 0.177367i
$$625$$ −12.0634 + 21.8969i −0.482535 + 0.875877i
$$626$$ 1.91505 3.31696i 0.0765407 0.132572i
$$627$$ −17.5098 + 10.1093i −0.699275 + 0.403726i
$$628$$ 2.18159 2.18159i 0.0870551 0.0870551i
$$629$$ 16.5725 + 13.1612i 0.660789 + 0.524772i
$$630$$ −0.573594 + 0.579374i −0.0228525 + 0.0230828i
$$631$$ 0.368325 1.37461i 0.0146628 0.0547222i −0.958207 0.286076i $$-0.907649\pi$$
0.972870 + 0.231354i $$0.0743156\pi$$
$$632$$ 13.7202 3.67632i 0.545761 0.146236i
$$633$$ −1.64276 6.13085i −0.0652937 0.243680i
$$634$$ 7.49692 2.00879i 0.297741 0.0797793i
$$635$$ 16.6909 + 16.5243i 0.662357 + 0.655749i
$$636$$ −2.36664 + 4.09914i −0.0938434 + 0.162542i
$$637$$ 42.9349i 1.70114i
$$638$$ 3.41090 12.7297i 0.135039 0.503972i
$$639$$ 0.876847i 0.0346875i
$$640$$ 0.0112097 + 2.23604i 0.000443102 + 0.0883872i
$$641$$ −10.9917 19.0382i −0.434147 0.751964i 0.563079 0.826403i $$-0.309617\pi$$
−0.997226 + 0.0744390i $$0.976283\pi$$
$$642$$ −2.09423 1.20910i −0.0826525 0.0477195i
$$643$$ 44.3917i 1.75064i 0.483546 + 0.875319i $$0.339349\pi$$
−0.483546 + 0.875319i $$0.660651\pi$$
$$644$$ −39.1661 10.4945i −1.54336 0.413542i
$$645$$ −1.35397 + 5.15636i −0.0533127 + 0.203032i
$$646$$ 21.4724 + 5.75351i 0.844820 + 0.226369i
$$647$$ −18.1902 + 31.5064i −0.715132 + 1.23865i 0.247776 + 0.968817i $$0.420300\pi$$
−0.962908 + 0.269828i $$0.913033\pi$$
$$648$$ 4.61018 7.98507i 0.181105 0.313683i
$$649$$ 18.7067 + 5.01244i 0.734301 + 0.196755i
$$650$$ −6.65227 11.2598i −0.260924 0.441647i
$$651$$ −71.4309 19.1399i −2.79960 0.750150i
$$652$$ 9.23247i 0.361572i
$$653$$ 21.5913 + 12.4658i 0.844934 + 0.487823i 0.858938 0.512079i $$-0.171125\pi$$
−0.0140044 + 0.999902i $$0.504458\pi$$
$$654$$ −2.15230 3.72789i −0.0841615 0.145772i
$$655$$ 18.7797 18.9689i 0.733783 0.741177i
$$656$$ 2.59045i 0.101140i
$$657$$ −0.0886178 + 0.330726i −0.00345731 + 0.0129029i
$$658$$ 0.697991i 0.0272105i
$$659$$ 9.94693 17.2286i 0.387477 0.671131i −0.604632 0.796505i $$-0.706680\pi$$
0.992110 + 0.125374i $$0.0400132\pi$$
$$660$$ 4.97816 5.02833i 0.193775 0.195727i
$$661$$ −36.1647 + 9.69031i −1.40665 + 0.376909i −0.880726 0.473625i $$-0.842945\pi$$
−0.525919 + 0.850535i $$0.676278\pi$$
$$662$$ 0.870777 + 3.24978i 0.0338437 + 0.126306i
$$663$$ 15.4148 4.13039i 0.598662 0.160411i
$$664$$ 4.18715 15.6267i 0.162493 0.606432i
$$665$$ −0.346580 69.1335i −0.0134398 2.68088i
$$666$$ 0.0673905 0.453348i 0.00261133 0.0175669i
$$667$$ −43.2752 + 43.2752i −1.67562 + 1.67562i
$$668$$ −5.20455 + 3.00485i −0.201370 + 0.116261i
$$669$$ 3.16430 5.48074i 0.122339 0.211898i
$$670$$ 5.81241 + 21.2652i 0.224553 + 0.821546i
$$671$$ 2.47269 + 9.22820i 0.0954571 + 0.356251i
$$672$$ 8.48579i 0.327347i
$$673$$ 24.0710 6.44979i 0.927867 0.248621i 0.236922 0.971529i $$-0.423861\pi$$
0.690945 + 0.722907i $$0.257195\pi$$
$$674$$ 2.02742 + 2.02742i 0.0780933 + 0.0780933i
$$675$$ 6.38855 24.8358i 0.245896 0.955931i
$$676$$ −6.15854 −0.236867
$$677$$ −7.00253 7.00253i −0.269129 0.269129i 0.559620 0.828749i $$-0.310947\pi$$
−0.828749 + 0.559620i $$0.810947\pi$$
$$678$$ 3.81795 14.2488i 0.146627 0.547221i
$$679$$ −19.2977 + 5.17081i −0.740579 + 0.198438i
$$680$$ −7.77951 + 0.0390002i −0.298331 + 0.00149559i
$$681$$ −5.65143 + 21.0914i −0.216563 + 0.808225i
$$682$$ 15.1892 + 4.06992i 0.581623 + 0.155845i
$$683$$ −21.7393 37.6536i −0.831832 1.44078i −0.896584 0.442874i $$-0.853959\pi$$
0.0647514 0.997901i $$-0.479375\pi$$
$$684$$ −0.124606 0.465034i −0.00476441 0.0177810i
$$685$$ −9.35774 + 2.55775i −0.357541 + 0.0977265i
$$686$$ −11.7911 + 44.0049i −0.450185 + 1.68011i
$$687$$ −8.15929 + 30.4509i −0.311296 + 1.16177i
$$688$$ 0.679767 + 1.17739i 0.0259159 + 0.0448876i
$$689$$ −4.99200 4.99200i −0.190180 0.190180i
$$690$$ −31.6962 + 8.66352i −1.20666 + 0.329815i
$$691$$ 33.4252 19.2981i 1.27156 0.734133i 0.296276 0.955102i $$-0.404255\pi$$
0.975281 + 0.220969i $$0.0709220\pi$$
$$692$$ 0.278277 0.278277i 0.0105785 0.0105785i
$$693$$ 0.465208 0.465208i 0.0176718 0.0176718i
$$694$$ 6.77697 + 11.7381i 0.257250 + 0.445570i
$$695$$ 0.105626 + 21.0697i 0.00400664 + 0.799218i
$$696$$ 11.0920 + 6.40399i 0.420442 + 0.242742i
$$697$$ −9.01256 −0.341375
$$698$$ −0.794285 0.458581i −0.0300641 0.0173575i
$$699$$ 20.9988 + 12.1237i 0.794248 + 0.458559i
$$700$$ 6.49597 + 23.3061i 0.245525 + 0.880886i
$$701$$ 48.7459 + 13.0614i 1.84111 + 0.493323i 0.998946 0.0459030i $$-0.0146165\pi$$
0.842161 + 0.539226i $$0.181283\pi$$
$$702$$ 9.48594 + 9.48594i 0.358024 + 0.358024i
$$703$$ 23.1426 + 31.2242i 0.872838 + 1.17764i
$$704$$ 1.80443i 0.0680070i
$$705$$ 0.285270 + 0.488431i 0.0107439 + 0.0183954i
$$706$$ −11.6101 6.70307i −0.436950 0.252273i
$$707$$ −40.8463 + 10.9447i −1.53618 + 0.411619i
$$708$$ −9.41087 + 16.3001i −0.353682 + 0.612596i
$$709$$ −25.9991 25.9991i −0.976416 0.976416i 0.0233124 0.999728i $$-0.492579\pi$$
−0.999728 + 0.0233124i $$0.992579\pi$$
$$710$$ −22.6002 12.8976i −0.848170 0.484038i
$$711$$ 0.756797 0.756797i 0.0283821 0.0283821i
$$712$$ −3.75933 1.00731i −0.140887 0.0377506i
$$713$$ −51.6364 51.6364i −1.93380 1.93380i
$$714$$ −29.5233 −1.10488
$$715$$ 5.32254 + 9.11309i 0.199052 + 0.340810i
$$716$$ 2.24597 + 8.38206i 0.0839357 + 0.313252i
$$717$$ 51.8201 1.93526
$$718$$ −14.2301 + 8.21572i −0.531061 + 0.306608i
$$719$$ 16.5495 9.55486i 0.617192 0.356336i −0.158583 0.987346i $$-0.550692\pi$$
0.775775 + 0.631010i $$0.217359\pi$$
$$720$$ 0.0849731 + 0.145488i 0.00316676 + 0.00542204i
$$721$$ −5.59069 + 1.49802i −0.208208 + 0.0557893i
$$722$$ 18.9011 + 10.9126i 0.703426 + 0.406123i
$$723$$ −16.1748 + 9.33853i −0.601548 + 0.347304i
$$724$$ −3.50429 6.06961i −0.130236 0.225575i
$$725$$ 35.3664 + 9.09734i 1.31347 + 0.337867i
$$726$$ 9.60283 9.60283i 0.356395 0.356395i
$$727$$ 7.58505 13.1377i 0.281314 0.487250i −0.690395 0.723433i $$-0.742563\pi$$
0.971709 + 0.236183i $$0.0758965\pi$$
$$728$$ −12.2254 3.27579i −0.453104 0.121409i
$$729$$ 26.2882i 0.973638i
$$730$$ 7.22078 + 7.14874i 0.267253 + 0.264587i
$$731$$ −4.09632 + 2.36501i −0.151508 + 0.0874730i
$$732$$ −9.28497 −0.343182
$$733$$ −8.37175 31.2438i −0.309218 1.15402i −0.929253 0.369443i $$-0.879549\pi$$
0.620036 0.784574i $$-0.287118\pi$$
$$734$$ 15.9321 15.9321i 0.588063 0.588063i
$$735$$ 16.9711 + 62.0901i 0.625987 + 2.29023i
$$736$$ −4.18978 + 7.25691i −0.154437 + 0.267493i
$$737$$ −4.60433 17.1836i −0.169603 0.632965i
$$738$$ 0.0975938 + 0.169037i 0.00359248 + 0.00622235i
$$739$$ 1.49398 0.0549568 0.0274784 0.999622i $$-0.491252\pi$$
0.0274784 + 0.999622i $$0.491252\pi$$
$$740$$ −10.6935 8.40528i −0.393102 0.308984i
$$741$$ 29.3079 1.07665
$$742$$ 6.53026 + 11.3107i 0.239733 + 0.415230i
$$743$$ 1.81344 + 6.76786i 0.0665288 + 0.248289i 0.991179 0.132528i $$-0.0423095\pi$$
−0.924650 + 0.380817i $$0.875643\pi$$
$$744$$ −7.64130 + 13.2351i −0.280144 + 0.485223i
$$745$$ 14.5979 25.5797i 0.534827 0.937166i
$$746$$ −1.11799 + 1.11799i −0.0409323 + 0.0409323i
$$747$$ −0.315498 1.17745i −0.0115435 0.0430807i
$$748$$ 6.27788 0.229542
$$749$$ −5.77859 + 3.33627i −0.211145 + 0.121905i
$$750$$ 14.0709 + 13.6539i 0.513796 + 0.498570i
$$751$$ 3.01004i 0.109838i 0.998491 + 0.0549190i $$0.0174901\pi$$
−0.998491 + 0.0549190i $$0.982510\pi$$
$$752$$ 0.139331 + 0.0373337i 0.00508088 + 0.00136142i
$$753$$ −23.1485 + 40.0944i −0.843578 + 1.46112i
$$754$$ −13.5080 + 13.5080i −0.491934 + 0.491934i
$$755$$ 11.8676 + 20.3193i 0.431905 + 0.739495i
$$756$$ −12.4090 21.4930i −0.451311 0.781693i
$$757$$ −36.7380 + 21.2107i −1.33527 + 0.770916i −0.986101 0.166145i $$-0.946868\pi$$
−0.349165 + 0.937061i $$0.613535\pi$$
$$758$$ −2.59270 1.49690i −0.0941712 0.0543698i
$$759$$ 25.6125 6.86285i 0.929675 0.249106i
$$760$$ −13.8188 3.62858i −0.501260 0.131623i
$$761$$ 17.0535 9.84585i 0.618189 0.356912i −0.157975 0.987443i $$-0.550496\pi$$
0.776164 + 0.630532i $$0.217163\pi$$
$$762$$ 15.9522 9.21000i 0.577887 0.333643i
$$763$$ −11.8776 −0.430000
$$764$$ 1.98299 + 7.40061i 0.0717420 + 0.267745i
$$765$$ −0.506176 + 0.295634i −0.0183008 + 0.0106887i
$$766$$ −2.14240 −0.0774082
$$767$$ −19.8505 19.8505i −0.716761 0.716761i
$$768$$ 1.69391 + 0.453882i 0.0611238 + 0.0163781i
$$769$$ 12.9133 12.9133i 0.465667 0.465667i −0.434841 0.900507i $$-0.643195\pi$$
0.900507 + 0.434841i $$0.143195\pi$$
$$770$$ −5.14768 18.8332i −0.185509 0.678703i
$$771$$ 17.6371 + 17.6371i 0.635183 + 0.635183i