# Properties

 Label 370.2.q.f.103.1 Level $370$ Weight $2$ Character 370.103 Analytic conductor $2.954$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.q (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$8$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 103.1 Character $$\chi$$ $$=$$ 370.103 Dual form 370.2.q.f.97.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(-0.875179 - 3.26621i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.0954522 - 2.23403i) q^{5} +(2.39103 - 2.39103i) q^{6} +(-0.371808 - 1.38761i) q^{7} -1.00000 q^{8} +(-7.30413 + 4.21704i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(-0.875179 - 3.26621i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.0954522 - 2.23403i) q^{5} +(2.39103 - 2.39103i) q^{6} +(-0.371808 - 1.38761i) q^{7} -1.00000 q^{8} +(-7.30413 + 4.21704i) q^{9} +(1.88700 - 1.19968i) q^{10} +3.50418i q^{11} +(3.26621 + 0.875179i) q^{12} +(2.36301 - 4.09285i) q^{13} +(1.01580 - 1.01580i) q^{14} +(-7.21328 + 2.26694i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.841769 + 0.485996i) q^{17} +(-7.30413 - 4.21704i) q^{18} +(-2.83888 + 0.760674i) q^{19} +(1.98245 + 1.03435i) q^{20} +(-4.20682 + 2.42881i) q^{21} +(-3.03471 + 1.75209i) q^{22} -4.40324 q^{23} +(0.875179 + 3.26621i) q^{24} +(-4.98178 + 0.426486i) q^{25} +4.72601 q^{26} +(12.9931 + 12.9931i) q^{27} +(1.38761 + 0.371808i) q^{28} +(7.48307 - 7.48307i) q^{29} +(-5.56987 - 5.11341i) q^{30} +(-3.66211 - 3.66211i) q^{31} +(0.500000 - 0.866025i) q^{32} +(11.4454 - 3.06678i) q^{33} +(-0.841769 - 0.485996i) q^{34} +(-3.06447 + 0.963081i) q^{35} -8.43408i q^{36} +(2.45454 - 5.56554i) q^{37} +(-2.07820 - 2.07820i) q^{38} +(-15.4362 - 4.13611i) q^{39} +(0.0954522 + 2.23403i) q^{40} +(3.39922 + 1.96254i) q^{41} +(-4.20682 - 2.42881i) q^{42} -2.05539 q^{43} +(-3.03471 - 1.75209i) q^{44} +(10.1182 + 15.9151i) q^{45} +(-2.20162 - 3.81332i) q^{46} +(7.19687 - 7.19687i) q^{47} +(-2.39103 + 2.39103i) q^{48} +(4.27496 - 2.46815i) q^{49} +(-2.86024 - 4.10110i) q^{50} +(2.32406 + 2.32406i) q^{51} +(2.36301 + 4.09285i) q^{52} +(-0.343321 + 1.28129i) q^{53} +(-4.75579 + 17.7488i) q^{54} +(7.82843 - 0.334481i) q^{55} +(0.371808 + 1.38761i) q^{56} +(4.96905 + 8.60664i) q^{57} +(10.2221 + 2.73899i) q^{58} +(1.29704 - 4.84063i) q^{59} +(1.64341 - 7.38035i) q^{60} +(1.28615 - 0.344624i) q^{61} +(1.34043 - 5.00254i) q^{62} +(8.56733 + 8.56733i) q^{63} +1.00000 q^{64} +(-9.36910 - 4.88836i) q^{65} +(8.37860 + 8.37860i) q^{66} +(1.91490 - 0.513096i) q^{67} -0.971991i q^{68} +(3.85362 + 14.3819i) q^{69} +(-2.36629 - 2.17237i) q^{70} +(-3.83717 + 6.64618i) q^{71} +(7.30413 - 4.21704i) q^{72} +(-8.69667 + 8.69667i) q^{73} +(6.04717 - 0.657081i) q^{74} +(5.75294 + 15.8983i) q^{75} +(0.760674 - 2.83888i) q^{76} +(4.86242 - 1.30288i) q^{77} +(-4.13611 - 15.4362i) q^{78} +(-2.35523 + 0.631083i) q^{79} +(-1.88700 + 1.19968i) q^{80} +(18.4157 - 31.8970i) q^{81} +3.92508i q^{82} +(0.907980 - 3.38863i) q^{83} -4.85762i q^{84} +(1.16608 + 1.83415i) q^{85} +(-1.02770 - 1.78002i) q^{86} +(-30.9903 - 17.8923i) q^{87} -3.50418i q^{88} +(8.16888 + 2.18884i) q^{89} +(-8.72379 + 16.7202i) q^{90} +(-6.55785 - 1.75717i) q^{91} +(2.20162 - 3.81332i) q^{92} +(-8.75623 + 15.1662i) q^{93} +(9.83111 + 2.63424i) q^{94} +(1.97035 + 6.26952i) q^{95} +(-3.26621 - 0.875179i) q^{96} -4.02372i q^{97} +(4.27496 + 2.46815i) q^{98} +(-14.7772 - 25.5949i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32 q + 16 q^{2} - 2 q^{3} - 16 q^{4} + 6 q^{5} + 8 q^{6} - 10 q^{7} - 32 q^{8} + 12 q^{9}+O(q^{10})$$ 32 * q + 16 * q^2 - 2 * q^3 - 16 * q^4 + 6 * q^5 + 8 * q^6 - 10 * q^7 - 32 * q^8 + 12 * q^9 $$32 q + 16 q^{2} - 2 q^{3} - 16 q^{4} + 6 q^{5} + 8 q^{6} - 10 q^{7} - 32 q^{8} + 12 q^{9} + 6 q^{10} + 10 q^{12} + 10 q^{13} - 8 q^{14} - 8 q^{15} - 16 q^{16} - 12 q^{17} + 12 q^{18} + 2 q^{19} - 54 q^{21} + 6 q^{22} + 12 q^{23} + 2 q^{24} - 16 q^{25} + 20 q^{26} + 40 q^{27} + 2 q^{28} + 6 q^{29} + 8 q^{30} - 4 q^{31} + 16 q^{32} + 26 q^{33} - 12 q^{34} - 12 q^{35} + 20 q^{37} - 26 q^{38} - 58 q^{39} - 6 q^{40} + 18 q^{41} - 54 q^{42} - 32 q^{43} + 6 q^{44} + 56 q^{45} + 6 q^{46} + 18 q^{47} - 8 q^{48} - 12 q^{49} - 14 q^{50} - 4 q^{51} + 10 q^{52} - 24 q^{53} + 20 q^{54} - 32 q^{55} + 10 q^{56} + 8 q^{57} + 36 q^{58} + 42 q^{59} + 16 q^{60} - 46 q^{61} - 14 q^{62} + 32 q^{64} - 18 q^{65} + 4 q^{66} + 50 q^{67} - 66 q^{69} + 12 q^{70} - 12 q^{71} - 12 q^{72} - 28 q^{73} + 16 q^{74} - 20 q^{75} - 28 q^{76} + 12 q^{77} - 26 q^{78} + 38 q^{79} - 6 q^{80} + 56 q^{81} - 8 q^{85} - 16 q^{86} + 18 q^{87} + 18 q^{89} + 4 q^{90} + 4 q^{91} - 6 q^{92} + 32 q^{93} + 30 q^{94} + 96 q^{95} - 10 q^{96} - 12 q^{98} - 26 q^{99}+O(q^{100})$$ 32 * q + 16 * q^2 - 2 * q^3 - 16 * q^4 + 6 * q^5 + 8 * q^6 - 10 * q^7 - 32 * q^8 + 12 * q^9 + 6 * q^10 + 10 * q^12 + 10 * q^13 - 8 * q^14 - 8 * q^15 - 16 * q^16 - 12 * q^17 + 12 * q^18 + 2 * q^19 - 54 * q^21 + 6 * q^22 + 12 * q^23 + 2 * q^24 - 16 * q^25 + 20 * q^26 + 40 * q^27 + 2 * q^28 + 6 * q^29 + 8 * q^30 - 4 * q^31 + 16 * q^32 + 26 * q^33 - 12 * q^34 - 12 * q^35 + 20 * q^37 - 26 * q^38 - 58 * q^39 - 6 * q^40 + 18 * q^41 - 54 * q^42 - 32 * q^43 + 6 * q^44 + 56 * q^45 + 6 * q^46 + 18 * q^47 - 8 * q^48 - 12 * q^49 - 14 * q^50 - 4 * q^51 + 10 * q^52 - 24 * q^53 + 20 * q^54 - 32 * q^55 + 10 * q^56 + 8 * q^57 + 36 * q^58 + 42 * q^59 + 16 * q^60 - 46 * q^61 - 14 * q^62 + 32 * q^64 - 18 * q^65 + 4 * q^66 + 50 * q^67 - 66 * q^69 + 12 * q^70 - 12 * q^71 - 12 * q^72 - 28 * q^73 + 16 * q^74 - 20 * q^75 - 28 * q^76 + 12 * q^77 - 26 * q^78 + 38 * q^79 - 6 * q^80 + 56 * q^81 - 8 * q^85 - 16 * q^86 + 18 * q^87 + 18 * q^89 + 4 * q^90 + 4 * q^91 - 6 * q^92 + 32 * q^93 + 30 * q^94 + 96 * q^95 - 10 * q^96 - 12 * q^98 - 26 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ −0.875179 3.26621i −0.505285 1.88575i −0.462407 0.886668i $$-0.653014\pi$$
−0.0428780 0.999080i $$-0.513653\pi$$
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −0.0954522 2.23403i −0.0426875 0.999088i
$$6$$ 2.39103 2.39103i 0.976135 0.976135i
$$7$$ −0.371808 1.38761i −0.140530 0.524466i −0.999914 0.0131346i $$-0.995819\pi$$
0.859383 0.511332i $$-0.170848\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ −7.30413 + 4.21704i −2.43471 + 1.40568i
$$10$$ 1.88700 1.19968i 0.596722 0.379372i
$$11$$ 3.50418i 1.05655i 0.849074 + 0.528274i $$0.177161\pi$$
−0.849074 + 0.528274i $$0.822839\pi$$
$$12$$ 3.26621 + 0.875179i 0.942874 + 0.252642i
$$13$$ 2.36301 4.09285i 0.655380 1.13515i −0.326418 0.945226i $$-0.605842\pi$$
0.981798 0.189926i $$-0.0608250\pi$$
$$14$$ 1.01580 1.01580i 0.271484 0.271484i
$$15$$ −7.21328 + 2.26694i −1.86246 + 0.585322i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −0.841769 + 0.485996i −0.204159 + 0.117871i −0.598594 0.801053i $$-0.704274\pi$$
0.394435 + 0.918924i $$0.370940\pi$$
$$18$$ −7.30413 4.21704i −1.72160 0.993966i
$$19$$ −2.83888 + 0.760674i −0.651283 + 0.174511i −0.569309 0.822124i $$-0.692789\pi$$
−0.0819740 + 0.996634i $$0.526122\pi$$
$$20$$ 1.98245 + 1.03435i 0.443290 + 0.231288i
$$21$$ −4.20682 + 2.42881i −0.918004 + 0.530010i
$$22$$ −3.03471 + 1.75209i −0.647001 + 0.373546i
$$23$$ −4.40324 −0.918140 −0.459070 0.888400i $$-0.651817\pi$$
−0.459070 + 0.888400i $$0.651817\pi$$
$$24$$ 0.875179 + 3.26621i 0.178645 + 0.666713i
$$25$$ −4.98178 + 0.426486i −0.996356 + 0.0852972i
$$26$$ 4.72601 0.926848
$$27$$ 12.9931 + 12.9931i 2.50052 + 2.50052i
$$28$$ 1.38761 + 0.371808i 0.262233 + 0.0702652i
$$29$$ 7.48307 7.48307i 1.38957 1.38957i 0.563361 0.826211i $$-0.309508\pi$$
0.826211 0.563361i $$-0.190492\pi$$
$$30$$ −5.56987 5.11341i −1.01691 0.933577i
$$31$$ −3.66211 3.66211i −0.657735 0.657735i 0.297109 0.954844i $$-0.403978\pi$$
−0.954844 + 0.297109i $$0.903978\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ 11.4454 3.06678i 1.99239 0.533858i
$$34$$ −0.841769 0.485996i −0.144362 0.0833476i
$$35$$ −3.06447 + 0.963081i −0.517989 + 0.162790i
$$36$$ 8.43408i 1.40568i
$$37$$ 2.45454 5.56554i 0.403523 0.914969i
$$38$$ −2.07820 2.07820i −0.337129 0.337129i
$$39$$ −15.4362 4.13611i −2.47176 0.662307i
$$40$$ 0.0954522 + 2.23403i 0.0150923 + 0.353231i
$$41$$ 3.39922 + 1.96254i 0.530869 + 0.306498i 0.741370 0.671096i $$-0.234176\pi$$
−0.210501 + 0.977594i $$0.567510\pi$$
$$42$$ −4.20682 2.42881i −0.649127 0.374773i
$$43$$ −2.05539 −0.313445 −0.156722 0.987643i $$-0.550093\pi$$
−0.156722 + 0.987643i $$0.550093\pi$$
$$44$$ −3.03471 1.75209i −0.457499 0.264137i
$$45$$ 10.1182 + 15.9151i 1.50833 + 2.37248i
$$46$$ −2.20162 3.81332i −0.324611 0.562243i
$$47$$ 7.19687 7.19687i 1.04977 1.04977i 0.0510766 0.998695i $$-0.483735\pi$$
0.998695 0.0510766i $$-0.0162653\pi$$
$$48$$ −2.39103 + 2.39103i −0.345116 + 0.345116i
$$49$$ 4.27496 2.46815i 0.610709 0.352593i
$$50$$ −2.86024 4.10110i −0.404499 0.579984i
$$51$$ 2.32406 + 2.32406i 0.325434 + 0.325434i
$$52$$ 2.36301 + 4.09285i 0.327690 + 0.567576i
$$53$$ −0.343321 + 1.28129i −0.0471587 + 0.175999i −0.985488 0.169743i $$-0.945706\pi$$
0.938330 + 0.345742i $$0.112373\pi$$
$$54$$ −4.75579 + 17.7488i −0.647181 + 2.41531i
$$55$$ 7.82843 0.334481i 1.05559 0.0451015i
$$56$$ 0.371808 + 1.38761i 0.0496850 + 0.185427i
$$57$$ 4.96905 + 8.60664i 0.658166 + 1.13998i
$$58$$ 10.2221 + 2.73899i 1.34222 + 0.359648i
$$59$$ 1.29704 4.84063i 0.168861 0.630196i −0.828656 0.559759i $$-0.810894\pi$$
0.997516 0.0704374i $$-0.0224395\pi$$
$$60$$ 1.64341 7.38035i 0.212163 0.952799i
$$61$$ 1.28615 0.344624i 0.164675 0.0441246i −0.175539 0.984472i $$-0.556167\pi$$
0.340215 + 0.940348i $$0.389500\pi$$
$$62$$ 1.34043 5.00254i 0.170234 0.635323i
$$63$$ 8.56733 + 8.56733i 1.07938 + 1.07938i
$$64$$ 1.00000 0.125000
$$65$$ −9.36910 4.88836i −1.16209 0.606326i
$$66$$ 8.37860 + 8.37860i 1.03133 + 1.03133i
$$67$$ 1.91490 0.513096i 0.233942 0.0626847i −0.139943 0.990160i $$-0.544692\pi$$
0.373885 + 0.927475i $$0.378025\pi$$
$$68$$ 0.971991i 0.117871i
$$69$$ 3.85362 + 14.3819i 0.463922 + 1.73138i
$$70$$ −2.36629 2.17237i −0.282825 0.259647i
$$71$$ −3.83717 + 6.64618i −0.455389 + 0.788756i −0.998710 0.0507683i $$-0.983833\pi$$
0.543322 + 0.839524i $$0.317166\pi$$
$$72$$ 7.30413 4.21704i 0.860799 0.496983i
$$73$$ −8.69667 + 8.69667i −1.01787 + 1.01787i −0.0180303 + 0.999837i $$0.505740\pi$$
−0.999837 + 0.0180303i $$0.994260\pi$$
$$74$$ 6.04717 0.657081i 0.702969 0.0763841i
$$75$$ 5.75294 + 15.8983i 0.664292 + 1.83578i
$$76$$ 0.760674 2.83888i 0.0872553 0.325641i
$$77$$ 4.86242 1.30288i 0.554124 0.148477i
$$78$$ −4.13611 15.4362i −0.468322 1.74780i
$$79$$ −2.35523 + 0.631083i −0.264985 + 0.0710024i −0.388865 0.921295i $$-0.627133\pi$$
0.123880 + 0.992297i $$0.460466\pi$$
$$80$$ −1.88700 + 1.19968i −0.210973 + 0.134128i
$$81$$ 18.4157 31.8970i 2.04619 3.54411i
$$82$$ 3.92508i 0.433453i
$$83$$ 0.907980 3.38863i 0.0996637 0.371950i −0.898022 0.439952i $$-0.854996\pi$$
0.997685 + 0.0680016i $$0.0216623\pi$$
$$84$$ 4.85762i 0.530010i
$$85$$ 1.16608 + 1.83415i 0.126479 + 0.198941i
$$86$$ −1.02770 1.78002i −0.110819 0.191945i
$$87$$ −30.9903 17.8923i −3.32251 1.91825i
$$88$$ 3.50418i 0.373546i
$$89$$ 8.16888 + 2.18884i 0.865899 + 0.232017i 0.664314 0.747454i $$-0.268724\pi$$
0.201586 + 0.979471i $$0.435391\pi$$
$$90$$ −8.72379 + 16.7202i −0.919569 + 1.76246i
$$91$$ −6.55785 1.75717i −0.687450 0.184202i
$$92$$ 2.20162 3.81332i 0.229535 0.397566i
$$93$$ −8.75623 + 15.1662i −0.907979 + 1.57267i
$$94$$ 9.83111 + 2.63424i 1.01400 + 0.271701i
$$95$$ 1.97035 + 6.26952i 0.202153 + 0.643240i
$$96$$ −3.26621 0.875179i −0.333356 0.0893226i
$$97$$ 4.02372i 0.408547i −0.978914 0.204274i $$-0.934517\pi$$
0.978914 0.204274i $$-0.0654832\pi$$
$$98$$ 4.27496 + 2.46815i 0.431837 + 0.249321i
$$99$$ −14.7772 25.5949i −1.48517 2.57239i
$$100$$ 2.12154 4.52759i 0.212154 0.452759i
$$101$$ 4.01042i 0.399052i −0.979893 0.199526i $$-0.936060\pi$$
0.979893 0.199526i $$-0.0639402\pi$$
$$102$$ −0.850666 + 3.17473i −0.0842285 + 0.314345i
$$103$$ 10.6403i 1.04842i −0.851588 0.524212i $$-0.824360\pi$$
0.851588 0.524212i $$-0.175640\pi$$
$$104$$ −2.36301 + 4.09285i −0.231712 + 0.401337i
$$105$$ 5.82758 + 9.16633i 0.568714 + 0.894542i
$$106$$ −1.28129 + 0.343321i −0.124450 + 0.0333462i
$$107$$ 3.01308 + 11.2450i 0.291285 + 1.08709i 0.944123 + 0.329594i $$0.106912\pi$$
−0.652838 + 0.757498i $$0.726422\pi$$
$$108$$ −17.7488 + 4.75579i −1.70788 + 0.457626i
$$109$$ −0.0575535 + 0.214793i −0.00551263 + 0.0205734i −0.968627 0.248518i $$-0.920057\pi$$
0.963115 + 0.269091i $$0.0867233\pi$$
$$110$$ 4.20389 + 6.61238i 0.400825 + 0.630466i
$$111$$ −20.3264 3.14619i −1.92930 0.298623i
$$112$$ −1.01580 + 1.01580i −0.0959840 + 0.0959840i
$$113$$ 13.1272 7.57898i 1.23490 0.712971i 0.266854 0.963737i $$-0.414016\pi$$
0.968048 + 0.250767i $$0.0806826\pi$$
$$114$$ −4.96905 + 8.60664i −0.465394 + 0.806086i
$$115$$ 0.420299 + 9.83697i 0.0391931 + 0.917303i
$$116$$ 2.73899 + 10.2221i 0.254309 + 0.949095i
$$117$$ 39.8596i 3.68502i
$$118$$ 4.84063 1.29704i 0.445616 0.119402i
$$119$$ 0.987348 + 0.987348i 0.0905100 + 0.0905100i
$$120$$ 7.21328 2.26694i 0.658479 0.206943i
$$121$$ −1.27925 −0.116295
$$122$$ 0.941530 + 0.941530i 0.0852422 + 0.0852422i
$$123$$ 3.43515 12.8202i 0.309737 1.15595i
$$124$$ 5.00254 1.34043i 0.449241 0.120374i
$$125$$ 1.42830 + 11.0887i 0.127751 + 0.991806i
$$126$$ −3.13586 + 11.7032i −0.279365 + 1.04260i
$$127$$ 2.57326 + 0.689503i 0.228340 + 0.0611835i 0.371175 0.928563i $$-0.378955\pi$$
−0.142835 + 0.989747i $$0.545622\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ 1.79884 + 6.71335i 0.158379 + 0.591077i
$$130$$ −0.451109 10.5581i −0.0395648 0.926003i
$$131$$ −4.93208 + 18.4068i −0.430918 + 1.60821i 0.319733 + 0.947508i $$0.396407\pi$$
−0.750651 + 0.660699i $$0.770260\pi$$
$$132$$ −3.06678 + 11.4454i −0.266929 + 0.996193i
$$133$$ 2.11104 + 3.65642i 0.183050 + 0.317052i
$$134$$ 1.40180 + 1.40180i 0.121097 + 0.121097i
$$135$$ 27.7867 30.2671i 2.39150 2.60498i
$$136$$ 0.841769 0.485996i 0.0721811 0.0416738i
$$137$$ 3.56459 3.56459i 0.304544 0.304544i −0.538245 0.842789i $$-0.680912\pi$$
0.842789 + 0.538245i $$0.180912\pi$$
$$138$$ −10.5283 + 10.5283i −0.896228 + 0.896228i
$$139$$ −6.31257 10.9337i −0.535425 0.927383i −0.999143 0.0414002i $$-0.986818\pi$$
0.463718 0.885983i $$-0.346515\pi$$
$$140$$ 0.698181 3.13545i 0.0590070 0.264994i
$$141$$ −29.8050 17.2080i −2.51004 1.44917i
$$142$$ −7.67435 −0.644017
$$143$$ 14.3421 + 8.28039i 1.19934 + 0.692441i
$$144$$ 7.30413 + 4.21704i 0.608677 + 0.351420i
$$145$$ −17.4317 16.0031i −1.44762 1.32899i
$$146$$ −11.8799 3.18320i −0.983185 0.263444i
$$147$$ −11.8029 11.8029i −0.973484 0.973484i
$$148$$ 3.59263 + 4.90846i 0.295313 + 0.403473i
$$149$$ 3.54527i 0.290440i −0.989399 0.145220i $$-0.953611\pi$$
0.989399 0.145220i $$-0.0463890\pi$$
$$150$$ −10.8919 + 12.9313i −0.889316 + 1.05584i
$$151$$ −2.07856 1.20006i −0.169151 0.0976591i 0.413035 0.910715i $$-0.364469\pi$$
−0.582185 + 0.813056i $$0.697802\pi$$
$$152$$ 2.83888 0.760674i 0.230263 0.0616988i
$$153$$ 4.09892 7.09955i 0.331378 0.573964i
$$154$$ 3.55954 + 3.55954i 0.286836 + 0.286836i
$$155$$ −7.83171 + 8.53082i −0.629058 + 0.685212i
$$156$$ 11.3001 11.3001i 0.904729 0.904729i
$$157$$ −16.9559 4.54333i −1.35323 0.362597i −0.491904 0.870650i $$-0.663699\pi$$
−0.861326 + 0.508053i $$0.830365\pi$$
$$158$$ −1.72415 1.72415i −0.137166 0.137166i
$$159$$ 4.48543 0.355718
$$160$$ −1.98245 1.03435i −0.156727 0.0817726i
$$161$$ 1.63716 + 6.10997i 0.129026 + 0.481533i
$$162$$ 36.8314 2.89375
$$163$$ 1.35726 0.783615i 0.106309 0.0613775i −0.445903 0.895081i $$-0.647117\pi$$
0.552212 + 0.833704i $$0.313784\pi$$
$$164$$ −3.39922 + 1.96254i −0.265435 + 0.153249i
$$165$$ −7.94377 25.2766i −0.618421 1.96778i
$$166$$ 3.38863 0.907980i 0.263008 0.0704729i
$$167$$ 13.1746 + 7.60634i 1.01948 + 0.588596i 0.913953 0.405821i $$-0.133014\pi$$
0.105525 + 0.994417i $$0.466348\pi$$
$$168$$ 4.20682 2.42881i 0.324563 0.187387i
$$169$$ −4.66761 8.08453i −0.359047 0.621887i
$$170$$ −1.00538 + 1.92693i −0.0771091 + 0.147789i
$$171$$ 17.5277 17.5277i 1.34038 1.34038i
$$172$$ 1.02770 1.78002i 0.0783611 0.135725i
$$173$$ 20.4514 + 5.47994i 1.55489 + 0.416632i 0.931042 0.364912i $$-0.118901\pi$$
0.623850 + 0.781544i $$0.285568\pi$$
$$174$$ 35.7845i 2.71282i
$$175$$ 2.44406 + 6.75418i 0.184754 + 0.510568i
$$176$$ 3.03471 1.75209i 0.228750 0.132069i
$$177$$ −16.9457 −1.27371
$$178$$ 2.18884 + 8.16888i 0.164061 + 0.612283i
$$179$$ −0.921605 + 0.921605i −0.0688840 + 0.0688840i −0.740709 0.671825i $$-0.765510\pi$$
0.671825 + 0.740709i $$0.265510\pi$$
$$180$$ −18.8420 + 0.805051i −1.40440 + 0.0600050i
$$181$$ −2.29210 + 3.97004i −0.170371 + 0.295091i −0.938549 0.345145i $$-0.887830\pi$$
0.768179 + 0.640235i $$0.221163\pi$$
$$182$$ −1.75717 6.55785i −0.130250 0.486100i
$$183$$ −2.25123 3.89925i −0.166416 0.288241i
$$184$$ 4.40324 0.324611
$$185$$ −12.6679 4.95226i −0.931361 0.364098i
$$186$$ −17.5125 −1.28408
$$187$$ −1.70301 2.94971i −0.124537 0.215704i
$$188$$ 2.63424 + 9.83111i 0.192121 + 0.717007i
$$189$$ 13.1983 22.8602i 0.960038 1.66283i
$$190$$ −4.44439 + 4.84113i −0.322430 + 0.351213i
$$191$$ −1.47776 + 1.47776i −0.106927 + 0.106927i −0.758546 0.651619i $$-0.774090\pi$$
0.651619 + 0.758546i $$0.274090\pi$$
$$192$$ −0.875179 3.26621i −0.0631606 0.235719i
$$193$$ −9.35362 −0.673288 −0.336644 0.941632i $$-0.609292\pi$$
−0.336644 + 0.941632i $$0.609292\pi$$
$$194$$ 3.48465 2.01186i 0.250183 0.144443i
$$195$$ −7.76677 + 34.8797i −0.556190 + 2.49778i
$$196$$ 4.93630i 0.352593i
$$197$$ 8.55452 + 2.29218i 0.609484 + 0.163311i 0.550343 0.834939i $$-0.314497\pi$$
0.0591415 + 0.998250i $$0.481164\pi$$
$$198$$ 14.7772 25.5949i 1.05017 1.81895i
$$199$$ 11.6194 11.6194i 0.823677 0.823677i −0.162956 0.986633i $$-0.552103\pi$$
0.986633 + 0.162956i $$0.0521029\pi$$
$$200$$ 4.98178 0.426486i 0.352265 0.0301571i
$$201$$ −3.35176 5.80542i −0.236415 0.409483i
$$202$$ 3.47312 2.00521i 0.244368 0.141086i
$$203$$ −13.1658 7.60130i −0.924061 0.533507i
$$204$$ −3.17473 + 0.850666i −0.222276 + 0.0595585i
$$205$$ 4.05991 7.78129i 0.283557 0.543469i
$$206$$ 9.21480 5.32017i 0.642026 0.370674i
$$207$$ 32.1618 18.5686i 2.23540 1.29061i
$$208$$ −4.72601 −0.327690
$$209$$ −2.66554 9.94792i −0.184379 0.688112i
$$210$$ −5.02448 + 9.63000i −0.346722 + 0.664533i
$$211$$ −3.02550 −0.208284 −0.104142 0.994562i $$-0.533210\pi$$
−0.104142 + 0.994562i $$0.533210\pi$$
$$212$$ −0.937969 0.937969i −0.0644200 0.0644200i
$$213$$ 25.0660 + 6.71642i 1.71750 + 0.460202i
$$214$$ −8.23188 + 8.23188i −0.562720 + 0.562720i
$$215$$ 0.196192 + 4.59181i 0.0133802 + 0.313159i
$$216$$ −12.9931 12.9931i −0.884066 0.884066i
$$217$$ −3.71997 + 6.44318i −0.252528 + 0.437391i
$$218$$ −0.214793 + 0.0575535i −0.0145476 + 0.00389802i
$$219$$ 36.0163 + 20.7940i 2.43376 + 1.40513i
$$220$$ −3.62455 + 6.94686i −0.244367 + 0.468357i
$$221$$ 4.59364i 0.309002i
$$222$$ −7.43852 19.1763i −0.499241 1.28703i
$$223$$ 12.3697 + 12.3697i 0.828335 + 0.828335i 0.987286 0.158951i $$-0.0508113\pi$$
−0.158951 + 0.987286i $$0.550811\pi$$
$$224$$ −1.38761 0.371808i −0.0927134 0.0248425i
$$225$$ 34.5890 24.1235i 2.30593 1.60823i
$$226$$ 13.1272 + 7.57898i 0.873207 + 0.504146i
$$227$$ −16.0391 9.26019i −1.06455 0.614621i −0.137866 0.990451i $$-0.544024\pi$$
−0.926688 + 0.375830i $$0.877358\pi$$
$$228$$ −9.93810 −0.658166
$$229$$ −3.04556 1.75836i −0.201257 0.116196i 0.395985 0.918257i $$-0.370403\pi$$
−0.597241 + 0.802061i $$0.703737\pi$$
$$230$$ −8.30892 + 5.28248i −0.547874 + 0.348316i
$$231$$ −8.51098 14.7414i −0.559981 0.969916i
$$232$$ −7.48307 + 7.48307i −0.491288 + 0.491288i
$$233$$ −10.4880 + 10.4880i −0.687091 + 0.687091i −0.961588 0.274497i $$-0.911489\pi$$
0.274497 + 0.961588i $$0.411489\pi$$
$$234$$ −34.5194 + 19.9298i −2.25660 + 1.30285i
$$235$$ −16.7650 15.3911i −1.09363 1.00400i
$$236$$ 3.54359 + 3.54359i 0.230668 + 0.230668i
$$237$$ 4.12250 + 7.14038i 0.267785 + 0.463818i
$$238$$ −0.361394 + 1.34874i −0.0234257 + 0.0874260i
$$239$$ −5.10887 + 19.0666i −0.330466 + 1.23331i 0.578236 + 0.815869i $$0.303741\pi$$
−0.908702 + 0.417445i $$0.862926\pi$$
$$240$$ 5.56987 + 5.11341i 0.359533 + 0.330069i
$$241$$ 1.10073 + 4.10799i 0.0709044 + 0.264619i 0.992273 0.124070i $$-0.0395948\pi$$
−0.921369 + 0.388689i $$0.872928\pi$$
$$242$$ −0.639625 1.10786i −0.0411166 0.0712161i
$$243$$ −67.0527 17.9667i −4.30143 1.15257i
$$244$$ −0.344624 + 1.28615i −0.0220623 + 0.0823376i
$$245$$ −5.92198 9.31481i −0.378341 0.595101i
$$246$$ 12.8202 3.43515i 0.817383 0.219017i
$$247$$ −3.59496 + 13.4166i −0.228742 + 0.853676i
$$248$$ 3.66211 + 3.66211i 0.232544 + 0.232544i
$$249$$ −11.8626 −0.751763
$$250$$ −8.88897 + 6.78131i −0.562188 + 0.428888i
$$251$$ 17.5003 + 17.5003i 1.10461 + 1.10461i 0.993847 + 0.110764i $$0.0353297\pi$$
0.110764 + 0.993847i $$0.464670\pi$$
$$252$$ −11.7032 + 3.13586i −0.737232 + 0.197541i
$$253$$ 15.4297i 0.970059i
$$254$$ 0.689503 + 2.57326i 0.0432633 + 0.161461i
$$255$$ 4.97019 5.41386i 0.311245 0.339029i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ 11.0066 6.35464i 0.686570 0.396391i −0.115756 0.993278i $$-0.536929\pi$$
0.802326 + 0.596886i $$0.203596\pi$$
$$258$$ −4.91451 + 4.91451i −0.305964 + 0.305964i
$$259$$ −8.63541 1.33662i −0.536578 0.0830534i
$$260$$ 8.91799 5.66970i 0.553070 0.351620i
$$261$$ −23.1009 + 86.2137i −1.42991 + 5.33649i
$$262$$ −18.4068 + 4.93208i −1.13717 + 0.304705i
$$263$$ −7.10198 26.5050i −0.437927 1.63437i −0.733963 0.679189i $$-0.762332\pi$$
0.296036 0.955177i $$-0.404335\pi$$
$$264$$ −11.4454 + 3.06678i −0.704414 + 0.188747i
$$265$$ 2.89521 + 0.644686i 0.177851 + 0.0396028i
$$266$$ −2.11104 + 3.65642i −0.129436 + 0.224190i
$$267$$ 28.5969i 1.75010i
$$268$$ −0.513096 + 1.91490i −0.0313423 + 0.116971i
$$269$$ 28.3433i 1.72812i 0.503388 + 0.864061i $$0.332087\pi$$
−0.503388 + 0.864061i $$0.667913\pi$$
$$270$$ 40.1054 + 8.93041i 2.44074 + 0.543487i
$$271$$ −8.06381 13.9669i −0.489842 0.848431i 0.510090 0.860121i $$-0.329612\pi$$
−0.999932 + 0.0116905i $$0.996279\pi$$
$$272$$ 0.841769 + 0.485996i 0.0510397 + 0.0294678i
$$273$$ 22.9572i 1.38943i
$$274$$ 4.86932 + 1.30473i 0.294167 + 0.0788217i
$$275$$ −1.49448 17.4570i −0.0901207 1.05270i
$$276$$ −14.3819 3.85362i −0.865690 0.231961i
$$277$$ −4.75297 + 8.23239i −0.285579 + 0.494637i −0.972749 0.231859i $$-0.925519\pi$$
0.687171 + 0.726496i $$0.258852\pi$$
$$278$$ 6.31257 10.9337i 0.378603 0.655759i
$$279$$ 42.1918 + 11.3053i 2.52596 + 0.676828i
$$280$$ 3.06447 0.963081i 0.183137 0.0575551i
$$281$$ 15.8741 + 4.25345i 0.946968 + 0.253739i 0.699075 0.715048i $$-0.253595\pi$$
0.247893 + 0.968787i $$0.420262\pi$$
$$282$$ 34.4159i 2.04944i
$$283$$ 5.46001 + 3.15234i 0.324564 + 0.187387i 0.653425 0.756991i $$-0.273332\pi$$
−0.328861 + 0.944378i $$0.606665\pi$$
$$284$$ −3.83717 6.64618i −0.227694 0.394378i
$$285$$ 18.7532 11.9225i 1.11084 0.706229i
$$286$$ 16.5608i 0.979260i
$$287$$ 1.45938 5.44648i 0.0861444 0.321495i
$$288$$ 8.43408i 0.496983i
$$289$$ −8.02762 + 13.9042i −0.472213 + 0.817896i
$$290$$ 5.14328 23.0978i 0.302024 1.35635i
$$291$$ −13.1423 + 3.52148i −0.770417 + 0.206433i
$$292$$ −3.18320 11.8799i −0.186283 0.695217i
$$293$$ 0.387665 0.103875i 0.0226476 0.00606841i −0.247477 0.968894i $$-0.579602\pi$$
0.270125 + 0.962825i $$0.412935\pi$$
$$294$$ 4.32015 16.1230i 0.251956 0.940313i
$$295$$ −10.9379 2.43558i −0.636830 0.141805i
$$296$$ −2.45454 + 5.56554i −0.142667 + 0.323491i
$$297$$ −45.5300 + 45.5300i −2.64192 + 2.64192i
$$298$$ 3.07030 1.77264i 0.177857 0.102686i
$$299$$ −10.4049 + 18.0218i −0.601731 + 1.04223i
$$300$$ −16.6448 2.96695i −0.960988 0.171297i
$$301$$ 0.764212 + 2.85208i 0.0440485 + 0.164391i
$$302$$ 2.40011i 0.138111i
$$303$$ −13.0989 + 3.50983i −0.752511 + 0.201635i
$$304$$ 2.07820 + 2.07820i 0.119193 + 0.119193i
$$305$$ −0.892667 2.84041i −0.0511139 0.162642i
$$306$$ 8.19785 0.468640
$$307$$ 20.6896 + 20.6896i 1.18082 + 1.18082i 0.979533 + 0.201285i $$0.0645118\pi$$
0.201285 + 0.979533i $$0.435488\pi$$
$$308$$ −1.30288 + 4.86242i −0.0742386 + 0.277062i
$$309$$ −34.7536 + 9.31220i −1.97706 + 0.529752i
$$310$$ −11.3038 2.51705i −0.642011 0.142959i
$$311$$ −2.04408 + 7.62862i −0.115909 + 0.432579i −0.999353 0.0359575i $$-0.988552\pi$$
0.883444 + 0.468537i $$0.155219\pi$$
$$312$$ 15.4362 + 4.13611i 0.873901 + 0.234161i
$$313$$ −14.1499 24.5084i −0.799802 1.38530i −0.919745 0.392517i $$-0.871605\pi$$
0.119943 0.992781i $$-0.461729\pi$$
$$314$$ −4.54333 16.9559i −0.256395 0.956878i
$$315$$ 18.3219 19.9574i 1.03232 1.12447i
$$316$$ 0.631083 2.35523i 0.0355012 0.132492i
$$317$$ 0.506204 1.88918i 0.0284312 0.106107i −0.950252 0.311482i $$-0.899175\pi$$
0.978683 + 0.205375i $$0.0658414\pi$$
$$318$$ 2.24272 + 3.88450i 0.125765 + 0.217832i
$$319$$ 26.2220 + 26.2220i 1.46815 + 1.46815i
$$320$$ −0.0954522 2.23403i −0.00533594 0.124886i
$$321$$ 34.0914 19.6827i 1.90280 1.09858i
$$322$$ −4.47281 + 4.47281i −0.249260 + 0.249260i
$$323$$ 2.01999 2.01999i 0.112395 0.112395i
$$324$$ 18.4157 + 31.8970i 1.02310 + 1.77205i
$$325$$ −10.0264 + 21.3975i −0.556166 + 1.18692i
$$326$$ 1.35726 + 0.783615i 0.0751717 + 0.0434004i
$$327$$ 0.751928 0.0415817
$$328$$ −3.39922 1.96254i −0.187691 0.108363i
$$329$$ −12.6623 7.31058i −0.698095 0.403045i
$$330$$ 17.9183 19.5178i 0.986369 1.07442i
$$331$$ 6.03742 + 1.61772i 0.331846 + 0.0889180i 0.420895 0.907109i $$-0.361716\pi$$
−0.0890487 + 0.996027i $$0.528383\pi$$
$$332$$ 2.48065 + 2.48065i 0.136143 + 0.136143i
$$333$$ 5.54187 + 51.0023i 0.303693 + 2.79491i
$$334$$ 15.2127i 0.832400i
$$335$$ −1.32905 4.22897i −0.0726139 0.231053i
$$336$$ 4.20682 + 2.42881i 0.229501 + 0.132502i
$$337$$ 15.8708 4.25257i 0.864537 0.231652i 0.200813 0.979630i $$-0.435642\pi$$
0.663724 + 0.747977i $$0.268975\pi$$
$$338$$ 4.66761 8.08453i 0.253884 0.439741i
$$339$$ −36.2432 36.2432i −1.96846 1.96846i
$$340$$ −2.17146 + 0.0927787i −0.117764 + 0.00503163i
$$341$$ 12.8327 12.8327i 0.694929 0.694929i
$$342$$ 23.9433 + 6.41559i 1.29471 + 0.346915i
$$343$$ −12.1249 12.1249i −0.654682 0.654682i
$$344$$ 2.05539 0.110819
$$345$$ 31.7618 9.98190i 1.71000 0.537407i
$$346$$ 5.47994 + 20.4514i 0.294603 + 1.09947i
$$347$$ −34.0867 −1.82987 −0.914934 0.403603i $$-0.867758\pi$$
−0.914934 + 0.403603i $$0.867758\pi$$
$$348$$ 30.9903 17.8923i 1.66126 0.959127i
$$349$$ 10.0882 5.82443i 0.540009 0.311774i −0.205073 0.978747i $$-0.565743\pi$$
0.745083 + 0.666972i $$0.232410\pi$$
$$350$$ −4.62726 + 5.49371i −0.247338 + 0.293651i
$$351$$ 83.8813 22.4759i 4.47725 1.19968i
$$352$$ 3.03471 + 1.75209i 0.161750 + 0.0933866i
$$353$$ −5.24895 + 3.03048i −0.279373 + 0.161296i −0.633140 0.774038i $$-0.718234\pi$$
0.353766 + 0.935334i $$0.384901\pi$$
$$354$$ −8.47283 14.6754i −0.450326 0.779987i
$$355$$ 15.2140 + 7.93797i 0.807477 + 0.421303i
$$356$$ −5.98003 + 5.98003i −0.316941 + 0.316941i
$$357$$ 2.36078 4.08899i 0.124946 0.216412i
$$358$$ −1.25894 0.337331i −0.0665368 0.0178285i
$$359$$ 31.9848i 1.68809i 0.536269 + 0.844047i $$0.319833\pi$$
−0.536269 + 0.844047i $$0.680167\pi$$
$$360$$ −10.1182 15.9151i −0.533275 0.838800i
$$361$$ −8.97389 + 5.18108i −0.472310 + 0.272688i
$$362$$ −4.58420 −0.240940
$$363$$ 1.11957 + 4.17830i 0.0587623 + 0.219304i
$$364$$ 4.80068 4.80068i 0.251624 0.251624i
$$365$$ 20.2587 + 18.5985i 1.06039 + 0.973490i
$$366$$ 2.25123 3.89925i 0.117674 0.203817i
$$367$$ −3.40191 12.6961i −0.177578 0.662732i −0.996098 0.0882533i $$-0.971872\pi$$
0.818520 0.574479i $$-0.194795\pi$$
$$368$$ 2.20162 + 3.81332i 0.114767 + 0.198783i
$$369$$ −33.1045 −1.72335
$$370$$ −2.04515 13.4468i −0.106322 0.699068i
$$371$$ 1.90558 0.0989326
$$372$$ −8.75623 15.1662i −0.453989 0.786333i
$$373$$ 5.94197 + 22.1757i 0.307664 + 1.14822i 0.930628 + 0.365966i $$0.119261\pi$$
−0.622964 + 0.782250i $$0.714072\pi$$
$$374$$ 1.70301 2.94971i 0.0880608 0.152526i
$$375$$ 34.9681 14.3698i 1.80575 0.742052i
$$376$$ −7.19687 + 7.19687i −0.371150 + 0.371150i
$$377$$ −12.9445 48.3096i −0.666677 2.48807i
$$378$$ 26.3967 1.35770
$$379$$ −9.34232 + 5.39379i −0.479883 + 0.277061i −0.720368 0.693592i $$-0.756027\pi$$
0.240485 + 0.970653i $$0.422694\pi$$
$$380$$ −6.41474 1.42839i −0.329069 0.0732750i
$$381$$ 9.00825i 0.461507i
$$382$$ −2.01865 0.540896i −0.103283 0.0276746i
$$383$$ 14.5452 25.1931i 0.743227 1.28731i −0.207792 0.978173i $$-0.566628\pi$$
0.951019 0.309134i $$-0.100039\pi$$
$$384$$ 2.39103 2.39103i 0.122017 0.122017i
$$385$$ −3.37481 10.7384i −0.171996 0.547281i
$$386$$ −4.67681 8.10047i −0.238043 0.412303i
$$387$$ 15.0129 8.66767i 0.763146 0.440603i
$$388$$ 3.48465 + 2.01186i 0.176906 + 0.102137i
$$389$$ 17.3546 4.65014i 0.879911 0.235771i 0.209542 0.977800i $$-0.432803\pi$$
0.670369 + 0.742028i $$0.266136\pi$$
$$390$$ −34.0901 + 10.7136i −1.72622 + 0.542504i
$$391$$ 3.70651 2.13996i 0.187446 0.108222i
$$392$$ −4.27496 + 2.46815i −0.215918 + 0.124660i
$$393$$ 64.4369 3.25041
$$394$$ 2.29218 + 8.55452i 0.115478 + 0.430971i
$$395$$ 1.63467 + 5.20143i 0.0822492 + 0.261712i
$$396$$ 29.5545 1.48517
$$397$$ 15.8249 + 15.8249i 0.794231 + 0.794231i 0.982179 0.187948i $$-0.0601837\pi$$
−0.187948 + 0.982179i $$0.560184\pi$$
$$398$$ 15.8724 + 4.25300i 0.795611 + 0.213183i
$$399$$ 10.0951 10.0951i 0.505388 0.505388i
$$400$$ 2.86024 + 4.10110i 0.143012 + 0.205055i
$$401$$ −7.74231 7.74231i −0.386632 0.386632i 0.486852 0.873484i $$-0.338145\pi$$
−0.873484 + 0.486852i $$0.838145\pi$$
$$402$$ 3.35176 5.80542i 0.167171 0.289548i
$$403$$ −23.6421 + 6.33487i −1.17770 + 0.315563i
$$404$$ 3.47312 + 2.00521i 0.172794 + 0.0997629i
$$405$$ −73.0166 38.0966i −3.62822 1.89304i
$$406$$ 15.2026i 0.754492i
$$407$$ 19.5026 + 8.60112i 0.966710 + 0.426342i
$$408$$ −2.32406 2.32406i −0.115058 0.115058i
$$409$$ 36.7385 + 9.84406i 1.81660 + 0.486757i 0.996359 0.0852560i $$-0.0271708\pi$$
0.820244 + 0.572013i $$0.193837\pi$$
$$410$$ 8.76875 0.374658i 0.433058 0.0185030i
$$411$$ −14.7624 8.52306i −0.728174 0.420411i
$$412$$ 9.21480 + 5.32017i 0.453981 + 0.262106i
$$413$$ −7.19914 −0.354247
$$414$$ 32.1618 + 18.5686i 1.58067 + 0.912599i
$$415$$ −7.65696 1.70500i −0.375865 0.0836952i
$$416$$ −2.36301 4.09285i −0.115856 0.200668i
$$417$$ −30.1871 + 30.1871i −1.47827 + 1.47827i
$$418$$ 7.28238 7.28238i 0.356193 0.356193i
$$419$$ 17.6534 10.1922i 0.862425 0.497921i −0.00239880 0.999997i $$-0.500764\pi$$
0.864824 + 0.502076i $$0.167430\pi$$
$$420$$ −10.8521 + 0.463671i −0.529527 + 0.0226248i
$$421$$ −1.29404 1.29404i −0.0630678 0.0630678i 0.674869 0.737937i $$-0.264200\pi$$
−0.737937 + 0.674869i $$0.764200\pi$$
$$422$$ −1.51275 2.62016i −0.0736396 0.127548i
$$423$$ −22.2174 + 82.9163i −1.08024 + 4.03153i
$$424$$ 0.343321 1.28129i 0.0166731 0.0622249i
$$425$$ 3.98624 2.78012i 0.193361 0.134856i
$$426$$ 6.71642 + 25.0660i 0.325412 + 1.21445i
$$427$$ −0.956406 1.65654i −0.0462837 0.0801658i
$$428$$ −11.2450 3.01308i −0.543546 0.145643i
$$429$$ 14.4936 54.0910i 0.699760 2.61154i
$$430$$ −3.87853 + 2.46581i −0.187039 + 0.118912i
$$431$$ −11.0058 + 2.94898i −0.530129 + 0.142048i −0.513948 0.857821i $$-0.671817\pi$$
−0.0161811 + 0.999869i $$0.505151\pi$$
$$432$$ 4.75579 17.7488i 0.228813 0.853942i
$$433$$ −21.0723 21.0723i −1.01267 1.01267i −0.999919 0.0127495i $$-0.995942\pi$$
−0.0127495 0.999919i $$-0.504058\pi$$
$$434$$ −7.43994 −0.357129
$$435$$ −37.0138 + 70.9412i −1.77467 + 3.40137i
$$436$$ −0.157239 0.157239i −0.00753039 0.00753039i
$$437$$ 12.5003 3.34943i 0.597968 0.160225i
$$438$$ 41.5880i 1.98715i
$$439$$ 0.403179 + 1.50468i 0.0192427 + 0.0718146i 0.974880 0.222733i $$-0.0714978\pi$$
−0.955637 + 0.294547i $$0.904831\pi$$
$$440$$ −7.82843 + 0.334481i −0.373206 + 0.0159458i
$$441$$ −20.8166 + 36.0554i −0.991266 + 1.71692i
$$442$$ −3.97821 + 2.29682i −0.189224 + 0.109249i
$$443$$ 1.05231 1.05231i 0.0499967 0.0499967i −0.681666 0.731663i $$-0.738744\pi$$
0.731663 + 0.681666i $$0.238744\pi$$
$$444$$ 12.8879 16.0301i 0.611632 0.760754i
$$445$$ 4.11021 18.4584i 0.194842 0.875014i
$$446$$ −4.52762 + 16.8973i −0.214389 + 0.800110i
$$447$$ −11.5796 + 3.10275i −0.547697 + 0.146755i
$$448$$ −0.371808 1.38761i −0.0175663 0.0655583i
$$449$$ −5.25870 + 1.40906i −0.248173 + 0.0664979i −0.380761 0.924673i $$-0.624338\pi$$
0.132588 + 0.991171i $$0.457671\pi$$
$$450$$ 38.1860 + 17.8932i 1.80011 + 0.843495i
$$451$$ −6.87709 + 11.9115i −0.323830 + 0.560889i
$$452$$ 15.1580i 0.712971i
$$453$$ −2.10053 + 7.83927i −0.0986913 + 0.368321i
$$454$$ 18.5204i 0.869205i
$$455$$ −3.29961 + 14.8182i −0.154688 + 0.694686i
$$456$$ −4.96905 8.60664i −0.232697 0.403043i
$$457$$ −7.53632 4.35110i −0.352534 0.203536i 0.313267 0.949665i $$-0.398577\pi$$
−0.665801 + 0.746129i $$0.731910\pi$$
$$458$$ 3.51672i 0.164325i
$$459$$ −17.2517 4.62259i −0.805242 0.215764i
$$460$$ −8.72922 4.55450i −0.407002 0.212355i
$$461$$ −2.50982 0.672506i −0.116894 0.0313217i 0.199898 0.979817i $$-0.435939\pi$$
−0.316792 + 0.948495i $$0.602606\pi$$
$$462$$ 8.51098 14.7414i 0.395966 0.685834i
$$463$$ −10.4928 + 18.1740i −0.487641 + 0.844618i −0.999899 0.0142131i $$-0.995476\pi$$
0.512258 + 0.858831i $$0.328809\pi$$
$$464$$ −10.2221 2.73899i −0.474548 0.127155i
$$465$$ 34.7176 + 18.1140i 1.60999 + 0.840018i
$$466$$ −14.3269 3.83887i −0.663679 0.177832i
$$467$$ 18.2736i 0.845603i 0.906222 + 0.422801i $$0.138953\pi$$
−0.906222 + 0.422801i $$0.861047\pi$$
$$468$$ −34.5194 19.9298i −1.59566 0.921255i
$$469$$ −1.42395 2.46636i −0.0657520 0.113886i
$$470$$ 4.94656 22.2144i 0.228168 1.02468i
$$471$$ 59.3578i 2.73507i
$$472$$ −1.29704 + 4.84063i −0.0597012 + 0.222808i
$$473$$ 7.20246i 0.331169i
$$474$$ −4.12250 + 7.14038i −0.189353 + 0.327969i
$$475$$ 13.8182 5.00025i 0.634024 0.229427i
$$476$$ −1.34874 + 0.361394i −0.0618195 + 0.0165645i
$$477$$ −2.89559 10.8065i −0.132580 0.494796i
$$478$$ −19.0666 + 5.10887i −0.872085 + 0.233674i
$$479$$ −2.37853 + 8.87679i −0.108678 + 0.405591i −0.998736 0.0502551i $$-0.983997\pi$$
0.890059 + 0.455846i $$0.150663\pi$$
$$480$$ −1.64341 + 7.38035i −0.0750110 + 0.336865i
$$481$$ −16.9788 23.1975i −0.774168 1.05771i
$$482$$ −3.00726 + 3.00726i −0.136977 + 0.136977i
$$483$$ 18.5237 10.6946i 0.842856 0.486623i
$$484$$ 0.639625 1.10786i 0.0290738 0.0503574i
$$485$$ −8.98912 + 0.384073i −0.408175 + 0.0174399i
$$486$$ −17.9667 67.0527i −0.814987 3.04157i
$$487$$ 29.0662i 1.31711i −0.752531 0.658557i $$-0.771167\pi$$
0.752531 0.658557i $$-0.228833\pi$$
$$488$$ −1.28615 + 0.344624i −0.0582215 + 0.0156004i
$$489$$ −3.74730 3.74730i −0.169459 0.169459i
$$490$$ 5.10587 9.78599i 0.230660 0.442086i
$$491$$ 13.6903 0.617836 0.308918 0.951089i $$-0.400033\pi$$
0.308918 + 0.951089i $$0.400033\pi$$
$$492$$ 9.38501 + 9.38501i 0.423109 + 0.423109i
$$493$$ −2.66228 + 9.93576i −0.119903 + 0.447484i
$$494$$ −13.4166 + 3.59496i −0.603640 + 0.161745i
$$495$$ −55.7693 + 35.4559i −2.50665 + 1.59362i
$$496$$ −1.34043 + 5.00254i −0.0601869 + 0.224621i
$$497$$ 10.6490 + 2.85339i 0.477672 + 0.127992i
$$498$$ −5.93131 10.2733i −0.265788 0.460359i
$$499$$ −3.66772 13.6881i −0.164190 0.612765i −0.998142 0.0609282i $$-0.980594\pi$$
0.833952 0.551836i $$-0.186073\pi$$
$$500$$ −10.3173 4.30742i −0.461403 0.192634i
$$501$$ 13.3138 49.6878i 0.594817 2.21989i
$$502$$ −6.40556 + 23.9059i −0.285894 + 1.06697i
$$503$$ −9.38391 16.2534i −0.418408 0.724704i 0.577372 0.816482i $$-0.304078\pi$$
−0.995780 + 0.0917777i $$0.970745\pi$$
$$504$$ −8.56733 8.56733i −0.381619 0.381619i
$$505$$ −8.95939 + 0.382803i −0.398688 + 0.0170345i
$$506$$ 13.3625 7.71487i 0.594038 0.342968i
$$507$$ −22.3208 + 22.3208i −0.991302 + 0.991302i
$$508$$ −1.88376 + 1.88376i −0.0835782 + 0.0835782i
$$509$$ −12.9359 22.4056i −0.573372 0.993110i −0.996216 0.0869073i $$-0.972302\pi$$
0.422844 0.906202i $$-0.361032\pi$$
$$510$$ 7.17364 + 1.59738i 0.317654 + 0.0707331i
$$511$$ 15.3011 + 8.83407i 0.676879 + 0.390796i
$$512$$ −1.00000 −0.0441942
$$513$$ −46.7692 27.0022i −2.06491 1.19218i
$$514$$ 11.0066 + 6.35464i 0.485478 + 0.280291i
$$515$$ −23.7708 + 1.01564i −1.04747 + 0.0447546i
$$516$$ −6.71335 1.79884i −0.295539 0.0791894i
$$517$$ 25.2191 + 25.2191i 1.10913 + 1.10913i
$$518$$ −3.16016 8.14679i −0.138849 0.357949i
$$519$$ 71.5946i 3.14265i
$$520$$ 9.36910 + 4.88836i 0.410862 + 0.214369i
$$521$$ −27.8533 16.0811i −1.22027 0.704525i −0.255297 0.966863i $$-0.582173\pi$$
−0.964976 + 0.262337i $$0.915507\pi$$
$$522$$ −86.2137 + 23.1009i −3.77347 + 1.01110i
$$523$$ 0.986968 1.70948i 0.0431571 0.0747503i −0.843640 0.536909i $$-0.819592\pi$$
0.886797 + 0.462159i $$0.152925\pi$$
$$524$$ −13.4747 13.4747i −0.588645 0.588645i
$$525$$ 19.9216 13.8939i 0.869450 0.606381i
$$526$$ 19.4030 19.4030i 0.846010 0.846010i
$$527$$ 4.86242 + 1.30288i 0.211810 + 0.0567544i
$$528$$ −8.37860 8.37860i −0.364632 0.364632i
$$529$$ −3.61146 −0.157020
$$530$$ 0.889290 + 2.82967i 0.0386283 + 0.122913i
$$531$$ 10.9394 + 40.8262i 0.474728 + 1.77171i
$$532$$ −4.22207 −0.183050
$$533$$ 16.0648 9.27500i 0.695843 0.401745i
$$534$$ 24.7657 14.2985i 1.07171 0.618755i
$$535$$ 24.8340 7.80466i 1.07367 0.337425i
$$536$$ −1.91490 + 0.513096i −0.0827111 + 0.0221624i
$$537$$ 3.81673 + 2.20359i 0.164704 + 0.0950919i
$$538$$ −24.5460 + 14.1716i −1.05825 + 0.610983i
$$539$$ 8.64884 + 14.9802i 0.372532 + 0.645244i
$$540$$ 12.3187 + 39.1975i 0.530114 + 1.68679i
$$541$$ 18.3493 18.3493i 0.788896 0.788896i −0.192417 0.981313i $$-0.561633\pi$$
0.981313 + 0.192417i $$0.0616326\pi$$
$$542$$ 8.06381 13.9669i 0.346370 0.599931i
$$543$$ 14.9730 + 4.01200i 0.642552 + 0.172171i
$$544$$ 0.971991i 0.0416738i
$$545$$ 0.485347 + 0.108074i 0.0207900 + 0.00462938i
$$546$$ −19.8815 + 11.4786i −0.850850 + 0.491238i
$$547$$ 25.4508 1.08820 0.544100 0.839021i $$-0.316871\pi$$
0.544100 + 0.839021i $$0.316871\pi$$
$$548$$ 1.30473 + 4.86932i 0.0557354 + 0.208007i
$$549$$ −7.94094 + 7.94094i −0.338911 + 0.338911i
$$550$$ 14.3710 10.0228i 0.612781 0.427372i
$$551$$ −15.5513 + 26.9357i −0.662509 + 1.14750i
$$552$$ −3.85362 14.3819i −0.164021 0.612135i
$$553$$ 1.75139 + 3.03350i 0.0744768 + 0.128998i
$$554$$ −9.50595 −0.403869
$$555$$ −5.08848 + 45.7101i −0.215994 + 1.94028i
$$556$$ 12.6251 0.535425
$$557$$ −3.24385 5.61851i −0.137446 0.238064i 0.789083 0.614287i $$-0.210556\pi$$
−0.926529 + 0.376223i $$0.877223\pi$$
$$558$$ 11.3053 + 42.1918i 0.478590 + 1.78612i
$$559$$ −4.85691 + 8.41241i −0.205425 + 0.355807i
$$560$$ 2.36629 + 2.17237i 0.0999938 + 0.0917992i
$$561$$ −8.14393 + 8.14393i −0.343837 + 0.343837i
$$562$$ 4.25345 + 15.8741i 0.179421 + 0.669607i
$$563$$ 42.7468 1.80156 0.900781 0.434274i $$-0.142995\pi$$
0.900781 + 0.434274i $$0.142995\pi$$
$$564$$ 29.8050 17.2080i 1.25502 0.724586i
$$565$$ −18.1847 28.6031i −0.765036 1.20334i
$$566$$ 6.30467i 0.265005i
$$567$$ −51.1076 13.6942i −2.14632 0.575104i
$$568$$ 3.83717 6.64618i 0.161004 0.278867i
$$569$$ 14.2239 14.2239i 0.596296 0.596296i −0.343029 0.939325i $$-0.611453\pi$$
0.939325 + 0.343029i $$0.111453\pi$$
$$570$$ 19.7018 + 10.2795i 0.825218 + 0.430560i
$$571$$ 3.21182 + 5.56303i 0.134410 + 0.232806i 0.925372 0.379060i $$-0.123753\pi$$
−0.790962 + 0.611866i $$0.790419\pi$$
$$572$$ −14.3421 + 8.28039i −0.599672 + 0.346221i
$$573$$ 6.11996 + 3.53336i 0.255665 + 0.147608i
$$574$$ 5.44648 1.45938i 0.227332 0.0609133i
$$575$$ 21.9360 1.87792i 0.914793 0.0783148i
$$576$$ −7.30413 + 4.21704i −0.304339 + 0.175710i
$$577$$ 13.0854 7.55484i 0.544751 0.314512i −0.202251 0.979334i $$-0.564826\pi$$
0.747002 + 0.664821i $$0.231492\pi$$
$$578$$ −16.0552 −0.667810
$$579$$ 8.18609 + 30.5509i 0.340202 + 1.26965i
$$580$$ 22.5750 7.09471i 0.937374 0.294592i
$$581$$ −5.03968 −0.209081
$$582$$ −9.62085 9.62085i −0.398797 0.398797i
$$583$$ −4.48986 1.20306i −0.185951 0.0498255i
$$584$$ 8.69667 8.69667i 0.359871 0.359871i
$$585$$ 89.0475 3.80468i 3.68166 0.157304i
$$586$$ 0.283790 + 0.283790i 0.0117233 + 0.0117233i
$$587$$ 2.10966 3.65404i 0.0870751 0.150818i −0.819198 0.573510i $$-0.805581\pi$$
0.906274 + 0.422692i $$0.138915\pi$$
$$588$$ 16.1230 4.32015i 0.664902 0.178160i
$$589$$ 13.1820 + 7.61061i 0.543153 + 0.313590i
$$590$$ −3.35968 10.6903i −0.138316 0.440113i
$$591$$ 29.9469i 1.23185i
$$592$$ −6.04717 + 0.657081i −0.248537 + 0.0270058i
$$593$$ −19.1963 19.1963i −0.788298 0.788298i 0.192917 0.981215i $$-0.438205\pi$$
−0.981215 + 0.192917i $$0.938205\pi$$
$$594$$ −62.1951 16.6651i −2.55190 0.683778i
$$595$$ 2.11152 2.30001i 0.0865639 0.0942912i
$$596$$ 3.07030 + 1.77264i 0.125764 + 0.0726100i
$$597$$ −48.1205 27.7824i −1.96944 1.13706i
$$598$$ −20.8098 −0.850976
$$599$$ 2.18083 + 1.25910i 0.0891062 + 0.0514455i 0.543891 0.839156i $$-0.316950\pi$$
−0.454785 + 0.890601i $$0.650284\pi$$
$$600$$ −5.75294 15.8983i −0.234863 0.649045i
$$601$$ 9.51906 + 16.4875i 0.388291 + 0.672539i 0.992220 0.124499i $$-0.0397324\pi$$
−0.603929 + 0.797038i $$0.706399\pi$$
$$602$$ −2.08787 + 2.08787i −0.0850951 + 0.0850951i
$$603$$ −11.8229 + 11.8229i −0.481467 + 0.481467i
$$604$$ 2.07856 1.20006i 0.0845753 0.0488296i
$$605$$ 0.122107 + 2.85788i 0.00496436 + 0.116189i
$$606$$ −9.58904 9.58904i −0.389528 0.389528i
$$607$$ −9.01879 15.6210i −0.366061 0.634037i 0.622884 0.782314i $$-0.285961\pi$$
−0.988946 + 0.148277i $$0.952627\pi$$
$$608$$ −0.760674 + 2.83888i −0.0308494 + 0.115132i
$$609$$ −13.3050 + 49.6549i −0.539146 + 2.01212i
$$610$$ 2.01354 2.19328i 0.0815257 0.0888032i
$$611$$ −12.4494 46.4620i −0.503651 1.87965i
$$612$$ 4.09892 + 7.09955i 0.165689 + 0.286982i
$$613$$ 5.21096 + 1.39627i 0.210469 + 0.0563949i 0.362513 0.931979i $$-0.381919\pi$$
−0.152044 + 0.988374i $$0.548586\pi$$
$$614$$ −7.57292 + 28.2625i −0.305618 + 1.14058i
$$615$$ −28.9685 6.45052i −1.16812 0.260110i
$$616$$ −4.86242 + 1.30288i −0.195913 + 0.0524946i
$$617$$ 3.09849 11.5637i 0.124741 0.465538i −0.875090 0.483961i $$-0.839198\pi$$
0.999830 + 0.0184227i $$0.00586446\pi$$
$$618$$ −25.4414 25.4414i −1.02340 1.02340i
$$619$$ 30.2107 1.21427 0.607135 0.794598i $$-0.292319\pi$$
0.607135 + 0.794598i $$0.292319\pi$$
$$620$$ −3.47206 11.0479i −0.139441 0.443693i
$$621$$ −57.2116 57.2116i −2.29582 2.29582i
$$622$$ −7.62862 + 2.04408i −0.305880 + 0.0819602i
$$623$$ 12.1490i 0.486741i
$$624$$ 4.13611 + 15.4362i 0.165577 + 0.617941i
$$625$$ 24.6362 4.24932i 0.985449 0.169973i
$$626$$ 14.1499 24.5084i 0.565545 0.979553i
$$627$$ −30.1592 + 17.4124i −1.20444 + 0.695385i
$$628$$ 12.4126 12.4126i 0.495316 0.495316i
$$629$$ 0.638677 + 5.87779i 0.0254657 + 0.234363i
$$630$$ 26.4446 + 5.88851i 1.05358 + 0.234604i
$$631$$ 0.702127 2.62037i 0.0279512 0.104315i −0.950541 0.310599i $$-0.899470\pi$$
0.978492 + 0.206284i $$0.0661370\pi$$
$$632$$ 2.35523 0.631083i 0.0936862 0.0251031i
$$633$$ 2.64786 + 9.88194i 0.105243 + 0.392772i
$$634$$ 1.88918 0.506204i 0.0750289 0.0201039i
$$635$$ 1.29475 5.81455i 0.0513804 0.230743i
$$636$$ −2.24272 + 3.88450i −0.0889294 + 0.154030i
$$637$$ 23.3290i 0.924330i
$$638$$ −9.59792 + 35.8199i −0.379985 + 1.41812i
$$639$$ 64.7260i 2.56052i
$$640$$ 1.88700 1.19968i 0.0745902 0.0474215i
$$641$$ 22.6822 + 39.2868i 0.895895 + 1.55174i 0.832693 + 0.553734i $$0.186798\pi$$
0.0632015 + 0.998001i $$0.479869\pi$$
$$642$$ 34.0914 + 19.6827i 1.34548 + 0.776814i
$$643$$ 39.8599i 1.57192i −0.618276 0.785961i $$-0.712168\pi$$
0.618276 0.785961i $$-0.287832\pi$$
$$644$$ −6.10997 1.63716i −0.240767 0.0645132i
$$645$$ 14.8261 4.65946i 0.583778 0.183466i
$$646$$ 2.75936 + 0.739369i 0.108566 + 0.0290901i
$$647$$ −6.86778 + 11.8953i −0.270000 + 0.467654i −0.968862 0.247603i $$-0.920357\pi$$
0.698861 + 0.715257i $$0.253690\pi$$
$$648$$ −18.4157 + 31.8970i −0.723438 + 1.25303i
$$649$$ 16.9624 + 4.54506i 0.665833 + 0.178409i
$$650$$ −23.5440 + 2.01558i −0.923470 + 0.0790575i
$$651$$ 24.3004 + 6.51128i 0.952409 + 0.255197i
$$652$$ 1.56723i 0.0613775i
$$653$$ 42.4731 + 24.5219i 1.66210 + 0.959614i 0.971710 + 0.236178i $$0.0758947\pi$$
0.690391 + 0.723437i $$0.257439\pi$$
$$654$$ 0.375964 + 0.651189i 0.0147014 + 0.0254635i
$$655$$ 41.5921 + 9.26145i 1.62514 + 0.361875i
$$656$$ 3.92508i 0.153249i
$$657$$ 26.8474 100.196i 1.04742 3.90901i
$$658$$ 14.6212i 0.569992i
$$659$$ 12.3022 21.3080i 0.479226 0.830043i −0.520491 0.853867i $$-0.674251\pi$$
0.999716 + 0.0238243i $$0.00758424\pi$$
$$660$$ 25.8621 + 5.75879i 1.00668 + 0.224161i
$$661$$ 27.3954 7.34058i 1.06556 0.285515i 0.316891 0.948462i $$-0.397361\pi$$
0.748667 + 0.662947i $$0.230694\pi$$
$$662$$ 1.61772 + 6.03742i 0.0628745 + 0.234651i
$$663$$ 15.0038 4.02026i 0.582700 0.156134i
$$664$$ −0.907980 + 3.38863i −0.0352364 + 0.131504i
$$665$$ 7.96705 5.06513i 0.308949 0.196417i
$$666$$ −41.3983 + 30.3005i −1.60415 + 1.17412i
$$667$$ −32.9498 + 32.9498i −1.27582 + 1.27582i
$$668$$ −13.1746 + 7.60634i −0.509739 + 0.294298i
$$669$$ 29.5763 51.2277i 1.14349 1.98058i
$$670$$ 2.99787 3.26548i 0.115818 0.126156i
$$671$$ 1.20762 + 4.50691i 0.0466198 + 0.173987i
$$672$$ 4.85762i 0.187387i
$$673$$ −38.3933 + 10.2874i −1.47995 + 0.396552i −0.906331 0.422569i $$-0.861128\pi$$
−0.573621 + 0.819121i $$0.694462\pi$$
$$674$$ 11.6182 + 11.6182i 0.447518 + 0.447518i
$$675$$ −70.2699 59.1872i −2.70469 2.27812i
$$676$$ 9.33521 0.359047
$$677$$ −32.3047 32.3047i −1.24157 1.24157i −0.959349 0.282222i $$-0.908929\pi$$
−0.282222 0.959349i $$-0.591071\pi$$
$$678$$ 13.2659 49.5091i 0.509475 1.90139i
$$679$$ −5.58335 + 1.49605i −0.214269 + 0.0574133i
$$680$$ −1.16608 1.83415i −0.0447170 0.0703364i
$$681$$ −16.2086 + 60.4915i −0.621117 + 2.31804i
$$682$$ 17.5298 + 4.69709i 0.671250 + 0.179861i
$$683$$ 0.929575 + 1.61007i 0.0355692 + 0.0616077i 0.883262 0.468880i $$-0.155342\pi$$
−0.847693 + 0.530487i $$0.822009\pi$$
$$684$$ 6.41559 + 23.9433i 0.245306 + 0.915495i
$$685$$ −8.30365 7.62316i −0.317266 0.291266i
$$686$$ 4.43802 16.5629i 0.169444 0.632375i
$$687$$ −3.07775 + 11.4863i −0.117424 + 0.438231i
$$688$$ 1.02770 + 1.78002i 0.0391806 + 0.0678627i
$$689$$ 4.43286 + 4.43286i 0.168878 + 0.168878i
$$690$$ 24.5255 + 22.5156i 0.933669 + 0.857154i
$$691$$ 3.86457 2.23121i 0.147015 0.0848793i −0.424688 0.905340i $$-0.639616\pi$$
0.571703 + 0.820460i $$0.306283\pi$$
$$692$$ −14.9715 + 14.9715i −0.569130 + 0.569130i
$$693$$ −30.0214 + 30.0214i −1.14042 + 1.14042i
$$694$$ −17.0433 29.5199i −0.646956 1.12056i
$$695$$ −23.8236 + 15.1461i −0.903682 + 0.574525i
$$696$$ 30.9903 + 17.8923i 1.17469 + 0.678205i
$$697$$ −3.81515 −0.144509
$$698$$ 10.0882 + 5.82443i 0.381844 + 0.220458i
$$699$$ 43.4349 + 25.0771i 1.64286 + 0.948504i
$$700$$ −7.07132 1.26047i −0.267271 0.0476413i
$$701$$ −20.2624 5.42929i −0.765300 0.205061i −0.145006 0.989431i $$-0.546320\pi$$
−0.620294 + 0.784369i $$0.712987\pi$$
$$702$$ 61.4054 + 61.4054i 2.31760 + 2.31760i
$$703$$ −2.73456 + 17.6670i −0.103136 + 0.666323i
$$704$$ 3.50418i 0.132069i
$$705$$ −35.5981 + 68.2279i −1.34070 + 2.56961i
$$706$$ −5.24895 3.03048i −0.197547 0.114054i
$$707$$ −5.56489 + 1.49111i −0.209289 + 0.0560788i
$$708$$ 8.47283 14.6754i 0.318428 0.551534i
$$709$$ −29.2845 29.2845i −1.09980 1.09980i −0.994433 0.105371i $$-0.966397\pi$$
−0.105371 0.994433i $$-0.533603\pi$$
$$710$$ 0.732533 + 17.1447i 0.0274915 + 0.643430i
$$711$$ 14.5416 14.5416i 0.545354 0.545354i
$$712$$ −8.16888 2.18884i −0.306142 0.0820304i
$$713$$ 16.1252 + 16.1252i 0.603892 + 0.603892i
$$714$$ 4.72156 0.176700
$$715$$ 17.1297 32.8310i 0.640613 1.22781i
$$716$$ −0.337331 1.25894i −0.0126066 0.0470487i
$$717$$ 66.7467 2.49270
$$718$$ −27.6997 + 15.9924i −1.03374 + 0.596831i
$$719$$ −27.3472 + 15.7889i −1.01988 + 0.588826i −0.914068 0.405560i $$-0.867077\pi$$
−0.105809 + 0.994386i $$0.533743\pi$$
$$720$$ 8.72379 16.7202i 0.325117 0.623124i
$$721$$ −14.7646 + 3.95617i −0.549863 + 0.147335i
$$722$$ −8.97389 5.18108i −0.333974 0.192820i
$$723$$ 12.4542 7.19045i 0.463177 0.267416i
$$724$$ −2.29210 3.97004i −0.0851853 0.147545i
$$725$$ −34.0876 + 40.4704i −1.26598 + 1.50303i
$$726$$ −3.05873 + 3.05873i −0.113520 + 0.113520i
$$727$$ −25.0660 + 43.4156i −0.929647 + 1.61020i −0.145734 + 0.989324i $$0.546554\pi$$
−0.783912 + 0.620872i $$0.786779\pi$$
$$728$$ 6.55785 + 1.75717i 0.243050 + 0.0651251i
$$729$$ 124.238i 4.60141i
$$730$$ −5.97741 + 26.8438i −0.221234 + 0.993534i
$$731$$ 1.73017 0.998912i 0.0639925 0.0369461i
$$732$$ 4.50246 0.166416
$$733$$ −7.99651 29.8434i −0.295358 1.10229i −0.940933 0.338594i $$-0.890049\pi$$
0.645575 0.763697i $$-0.276618\pi$$
$$734$$ 9.29420 9.29420i 0.343055 0.343055i
$$735$$ −25.2413 + 27.4946i −0.931041 + 1.01415i
$$736$$ −2.20162 + 3.81332i −0.0811528 + 0.140561i
$$737$$ 1.79798 + 6.71015i 0.0662294 + 0.247171i
$$738$$ −16.5522 28.6693i −0.609296 1.05533i
$$739$$ 12.6410 0.465008 0.232504 0.972595i $$-0.425308\pi$$
0.232504 + 0.972595i $$0.425308\pi$$
$$740$$ 10.6227 8.49457i 0.390499 0.312267i
$$741$$ 46.9676 1.72540
$$742$$ 0.952788 + 1.65028i 0.0349780 + 0.0605836i
$$743$$ −6.29439 23.4910i −0.230919 0.861801i −0.979946 0.199262i $$-0.936146\pi$$
0.749027 0.662539i $$-0.230521\pi$$
$$744$$ 8.75623 15.1662i 0.321019 0.556021i
$$745$$ −7.92024 + 0.338404i −0.290175 + 0.0123982i
$$746$$ −16.2338 + 16.2338i −0.594361 + 0.594361i
$$747$$ 7.65797 + 28.5799i 0.280190 + 1.04568i
$$748$$ 3.40603 0.124537
$$749$$ 14.4833 8.36194i 0.529209 0.305539i
$$750$$ 29.9286 + 23.0984i 1.09284 + 0.843434i
$$751$$ 2.01126i 0.0733919i −0.999326 0.0366959i $$-0.988317\pi$$
0.999326 0.0366959i $$-0.0116833\pi$$
$$752$$ −9.83111 2.63424i −0.358504 0.0960607i
$$753$$ 41.8438 72.4757i 1.52487 2.64116i
$$754$$ 35.3651 35.3651i 1.28792 1.28792i
$$755$$ −2.48256 + 4.75811i −0.0903495 + 0.173165i
$$756$$ 13.1983 + 22.8602i 0.480019 + 0.831417i
$$757$$ 23.6621 13.6613i 0.860014 0.496529i −0.00400317 0.999992i $$-0.501274\pi$$
0.864017 + 0.503463i $$0.167941\pi$$
$$758$$ −9.34232 5.39379i −0.339328 0.195911i
$$759$$ −50.3968 + 13.5038i −1.82929 + 0.490156i
$$760$$ −1.97035 6.26952i −0.0714720 0.227420i
$$761$$ −4.73002 + 2.73088i −0.171463 + 0.0989942i −0.583275 0.812274i $$-0.698229\pi$$
0.411813 + 0.911269i $$0.364896\pi$$
$$762$$ 7.80137 4.50412i 0.282614 0.163167i
$$763$$ 0.319447 0.0115648
$$764$$ −0.540896 2.01865i −0.0195689 0.0730322i
$$765$$ −16.2518 8.47945i −0.587587 0.306575i
$$766$$ 29.0905 1.05108
$$767$$ −16.7470 16.7470i −0.604700 0.604700i
$$768$$ 3.26621 + 0.875179i 0.117859 + 0.0315803i
$$769$$ −24.5717 + 24.5717i −0.886078 + 0.886078i −0.994144 0.108065i $$-0.965534\pi$$
0.108065 + 0.994144i $$0.465534\pi$$
$$770$$ 7.61235 8.29188i 0.274330 0.298819i
$$771$$ −30.3883 30.3883i −1.09441 1.09441i
$$772$$