# Properties

 Label 370.2.q.e.103.3 Level $370$ Weight $2$ Character 370.103 Analytic conductor $2.954$ Analytic rank $0$ Dimension $16$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.q (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$4$$ over $$\Q(\zeta_{12})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ Defining polynomial: $$x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} - 180 x^{7} + 358 x^{6} - 336 x^{5} + 390 x^{4} - 344 x^{3} + 164 x^{2} - 40 x + 4$$ x^16 - 4*x^15 + 12*x^14 - 48*x^13 + 67*x^12 - 24*x^11 + 118*x^10 - 176*x^9 + 351*x^8 - 180*x^7 + 358*x^6 - 336*x^5 + 390*x^4 - 344*x^3 + 164*x^2 - 40*x + 4 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 103.3 Root $$0.277956 + 0.213283i$$ of defining polynomial Character $$\chi$$ $$=$$ 370.103 Dual form 370.2.q.e.97.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 - 0.866025i) q^{2} +(-0.241181 - 0.900100i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.06776 - 0.851088i) q^{5} +(-0.658919 + 0.658919i) q^{6} +(-0.406803 - 1.51821i) q^{7} +1.00000 q^{8} +(1.84607 - 1.06583i) q^{9} +O(q^{10})$$ $$q+(-0.500000 - 0.866025i) q^{2} +(-0.241181 - 0.900100i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.06776 - 0.851088i) q^{5} +(-0.658919 + 0.658919i) q^{6} +(-0.406803 - 1.51821i) q^{7} +1.00000 q^{8} +(1.84607 - 1.06583i) q^{9} +(0.296818 + 2.21628i) q^{10} -2.93300i q^{11} +(0.900100 + 0.241181i) q^{12} +(-1.76057 + 3.04940i) q^{13} +(-1.11141 + 1.11141i) q^{14} +(-0.267359 + 2.06646i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-6.36287 + 3.67360i) q^{17} +(-1.84607 - 1.06583i) q^{18} +(-4.85828 + 1.30177i) q^{19} +(1.77095 - 1.36519i) q^{20} +(-1.26843 + 0.732327i) q^{21} +(-2.54005 + 1.46650i) q^{22} -5.62831 q^{23} +(-0.241181 - 0.900100i) q^{24} +(3.55130 + 3.51970i) q^{25} +3.52114 q^{26} +(-3.38134 - 3.38134i) q^{27} +(1.51821 + 0.406803i) q^{28} +(4.48819 - 4.48819i) q^{29} +(1.92329 - 0.801690i) q^{30} +(3.51267 + 3.51267i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-2.63999 + 0.707383i) q^{33} +(6.36287 + 3.67360i) q^{34} +(-0.450958 + 3.48553i) q^{35} +2.13165i q^{36} +(-2.51884 - 5.53674i) q^{37} +(3.55650 + 3.55650i) q^{38} +(3.16938 + 0.849232i) q^{39} +(-2.06776 - 0.851088i) q^{40} +(-5.22288 - 3.01543i) q^{41} +(1.26843 + 0.732327i) q^{42} +0.121960 q^{43} +(2.54005 + 1.46650i) q^{44} +(-4.72434 + 0.632712i) q^{45} +(2.81415 + 4.87426i) q^{46} +(6.92961 - 6.92961i) q^{47} +(-0.658919 + 0.658919i) q^{48} +(3.92271 - 2.26478i) q^{49} +(1.27250 - 4.83536i) q^{50} +(4.84121 + 4.84121i) q^{51} +(-1.76057 - 3.04940i) q^{52} +(-1.14500 + 4.27319i) q^{53} +(-1.23766 + 4.61900i) q^{54} +(-2.49624 + 6.06474i) q^{55} +(-0.406803 - 1.51821i) q^{56} +(2.34345 + 4.05897i) q^{57} +(-6.13098 - 1.64279i) q^{58} +(3.71354 - 13.8591i) q^{59} +(-1.65593 - 1.26477i) q^{60} +(-12.9225 + 3.46256i) q^{61} +(1.28573 - 4.79840i) q^{62} +(-2.36913 - 2.36913i) q^{63} +1.00000 q^{64} +(6.23575 - 4.80703i) q^{65} +(1.93261 + 1.93261i) q^{66} +(9.85764 - 2.64135i) q^{67} -7.34721i q^{68} +(1.35744 + 5.06604i) q^{69} +(3.24403 - 1.35222i) q^{70} +(-3.60184 + 6.23857i) q^{71} +(1.84607 - 1.06583i) q^{72} +(-4.65999 + 4.65999i) q^{73} +(-3.53553 + 4.94975i) q^{74} +(2.31158 - 4.04541i) q^{75} +(1.30177 - 4.85828i) q^{76} +(-4.45290 + 1.19315i) q^{77} +(-0.849232 - 3.16938i) q^{78} +(2.20734 - 0.591454i) q^{79} +(0.296818 + 2.21628i) q^{80} +(0.969450 - 1.67914i) q^{81} +6.03086i q^{82} +(3.38786 - 12.6437i) q^{83} -1.46465i q^{84} +(16.2835 - 2.18078i) q^{85} +(-0.0609800 - 0.105621i) q^{86} +(-5.12228 - 2.95735i) q^{87} -2.93300i q^{88} +(-1.58109 - 0.423653i) q^{89} +(2.91011 + 3.77504i) q^{90} +(5.34583 + 1.43241i) q^{91} +(2.81415 - 4.87426i) q^{92} +(2.31457 - 4.00894i) q^{93} +(-9.46602 - 2.53641i) q^{94} +(11.1537 + 1.44307i) q^{95} +(0.900100 + 0.241181i) q^{96} -10.5326i q^{97} +(-3.92271 - 2.26478i) q^{98} +(-3.12606 - 5.41450i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 4 q^{5} - 8 q^{6} + 16 q^{8} - 24 q^{9}+O(q^{10})$$ 16 * q - 8 * q^2 - 8 * q^3 - 8 * q^4 - 4 * q^5 - 8 * q^6 + 16 * q^8 - 24 * q^9 $$16 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 4 q^{5} - 8 q^{6} + 16 q^{8} - 24 q^{9} - 4 q^{10} + 16 q^{12} - 4 q^{13} + 8 q^{15} - 8 q^{16} + 24 q^{18} - 24 q^{19} + 8 q^{20} - 12 q^{21} - 8 q^{23} - 8 q^{24} + 32 q^{25} + 8 q^{26} + 16 q^{27} + 16 q^{29} - 4 q^{30} + 24 q^{31} - 8 q^{32} + 12 q^{33} - 20 q^{35} - 4 q^{40} - 36 q^{41} + 12 q^{42} - 16 q^{43} + 4 q^{45} + 4 q^{46} + 32 q^{47} - 8 q^{48} + 24 q^{49} - 16 q^{50} - 16 q^{51} - 4 q^{52} - 48 q^{53} - 8 q^{54} - 24 q^{55} + 20 q^{57} - 8 q^{58} - 8 q^{59} - 4 q^{60} + 8 q^{61} - 12 q^{62} + 16 q^{63} + 16 q^{64} + 24 q^{65} - 24 q^{66} - 8 q^{67} - 8 q^{69} + 28 q^{70} + 4 q^{71} - 24 q^{72} + 48 q^{73} - 36 q^{75} + 24 q^{76} - 60 q^{77} + 20 q^{79} - 4 q^{80} + 16 q^{81} + 24 q^{83} + 8 q^{85} + 8 q^{86} + 12 q^{87} - 8 q^{89} - 8 q^{90} - 8 q^{91} + 4 q^{92} + 36 q^{93} - 28 q^{94} + 28 q^{95} + 16 q^{96} - 24 q^{98} + 8 q^{99}+O(q^{100})$$ 16 * q - 8 * q^2 - 8 * q^3 - 8 * q^4 - 4 * q^5 - 8 * q^6 + 16 * q^8 - 24 * q^9 - 4 * q^10 + 16 * q^12 - 4 * q^13 + 8 * q^15 - 8 * q^16 + 24 * q^18 - 24 * q^19 + 8 * q^20 - 12 * q^21 - 8 * q^23 - 8 * q^24 + 32 * q^25 + 8 * q^26 + 16 * q^27 + 16 * q^29 - 4 * q^30 + 24 * q^31 - 8 * q^32 + 12 * q^33 - 20 * q^35 - 4 * q^40 - 36 * q^41 + 12 * q^42 - 16 * q^43 + 4 * q^45 + 4 * q^46 + 32 * q^47 - 8 * q^48 + 24 * q^49 - 16 * q^50 - 16 * q^51 - 4 * q^52 - 48 * q^53 - 8 * q^54 - 24 * q^55 + 20 * q^57 - 8 * q^58 - 8 * q^59 - 4 * q^60 + 8 * q^61 - 12 * q^62 + 16 * q^63 + 16 * q^64 + 24 * q^65 - 24 * q^66 - 8 * q^67 - 8 * q^69 + 28 * q^70 + 4 * q^71 - 24 * q^72 + 48 * q^73 - 36 * q^75 + 24 * q^76 - 60 * q^77 + 20 * q^79 - 4 * q^80 + 16 * q^81 + 24 * q^83 + 8 * q^85 + 8 * q^86 + 12 * q^87 - 8 * q^89 - 8 * q^90 - 8 * q^91 + 4 * q^92 + 36 * q^93 - 28 * q^94 + 28 * q^95 + 16 * q^96 - 24 * q^98 + 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 0.866025i −0.353553 0.612372i
$$3$$ −0.241181 0.900100i −0.139246 0.519673i −0.999944 0.0105575i $$-0.996639\pi$$
0.860698 0.509115i $$-0.170027\pi$$
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −2.06776 0.851088i −0.924732 0.380618i
$$6$$ −0.658919 + 0.658919i −0.269002 + 0.269002i
$$7$$ −0.406803 1.51821i −0.153757 0.573829i −0.999209 0.0397771i $$-0.987335\pi$$
0.845451 0.534052i $$-0.179331\pi$$
$$8$$ 1.00000 0.353553
$$9$$ 1.84607 1.06583i 0.615355 0.355275i
$$10$$ 0.296818 + 2.21628i 0.0938620 + 0.700849i
$$11$$ 2.93300i 0.884331i −0.896933 0.442166i $$-0.854210\pi$$
0.896933 0.442166i $$-0.145790\pi$$
$$12$$ 0.900100 + 0.241181i 0.259836 + 0.0696229i
$$13$$ −1.76057 + 3.04940i −0.488294 + 0.845750i −0.999909 0.0134645i $$-0.995714\pi$$
0.511615 + 0.859215i $$0.329047\pi$$
$$14$$ −1.11141 + 1.11141i −0.297036 + 0.297036i
$$15$$ −0.267359 + 2.06646i −0.0690318 + 0.533558i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −6.36287 + 3.67360i −1.54322 + 0.890980i −0.544590 + 0.838702i $$0.683315\pi$$
−0.998633 + 0.0522774i $$0.983352\pi$$
$$18$$ −1.84607 1.06583i −0.435122 0.251218i
$$19$$ −4.85828 + 1.30177i −1.11456 + 0.298647i −0.768682 0.639631i $$-0.779087\pi$$
−0.345883 + 0.938278i $$0.612421\pi$$
$$20$$ 1.77095 1.36519i 0.395996 0.305266i
$$21$$ −1.26843 + 0.732327i −0.276793 + 0.159807i
$$22$$ −2.54005 + 1.46650i −0.541540 + 0.312658i
$$23$$ −5.62831 −1.17358 −0.586792 0.809738i $$-0.699609\pi$$
−0.586792 + 0.809738i $$0.699609\pi$$
$$24$$ −0.241181 0.900100i −0.0492309 0.183732i
$$25$$ 3.55130 + 3.51970i 0.710259 + 0.703940i
$$26$$ 3.52114 0.690552
$$27$$ −3.38134 3.38134i −0.650739 0.650739i
$$28$$ 1.51821 + 0.406803i 0.286915 + 0.0768786i
$$29$$ 4.48819 4.48819i 0.833436 0.833436i −0.154549 0.987985i $$-0.549392\pi$$
0.987985 + 0.154549i $$0.0493925\pi$$
$$30$$ 1.92329 0.801690i 0.351142 0.146368i
$$31$$ 3.51267 + 3.51267i 0.630895 + 0.630895i 0.948292 0.317398i $$-0.102809\pi$$
−0.317398 + 0.948292i $$0.602809\pi$$
$$32$$ −0.500000 + 0.866025i −0.0883883 + 0.153093i
$$33$$ −2.63999 + 0.707383i −0.459563 + 0.123139i
$$34$$ 6.36287 + 3.67360i 1.09122 + 0.630018i
$$35$$ −0.450958 + 3.48553i −0.0762258 + 0.589161i
$$36$$ 2.13165i 0.355275i
$$37$$ −2.51884 5.53674i −0.414095 0.910234i
$$38$$ 3.55650 + 3.55650i 0.576941 + 0.576941i
$$39$$ 3.16938 + 0.849232i 0.507506 + 0.135986i
$$40$$ −2.06776 0.851088i −0.326942 0.134569i
$$41$$ −5.22288 3.01543i −0.815677 0.470931i 0.0332466 0.999447i $$-0.489415\pi$$
−0.848923 + 0.528516i $$0.822749\pi$$
$$42$$ 1.26843 + 0.732327i 0.195723 + 0.113000i
$$43$$ 0.121960 0.0185987 0.00929937 0.999957i $$-0.497040\pi$$
0.00929937 + 0.999957i $$0.497040\pi$$
$$44$$ 2.54005 + 1.46650i 0.382927 + 0.221083i
$$45$$ −4.72434 + 0.632712i −0.704263 + 0.0943192i
$$46$$ 2.81415 + 4.87426i 0.414924 + 0.718670i
$$47$$ 6.92961 6.92961i 1.01079 1.01079i 0.0108458 0.999941i $$-0.496548\pi$$
0.999941 0.0108458i $$-0.00345241\pi$$
$$48$$ −0.658919 + 0.658919i −0.0951067 + 0.0951067i
$$49$$ 3.92271 2.26478i 0.560387 0.323539i
$$50$$ 1.27250 4.83536i 0.179959 0.683824i
$$51$$ 4.84121 + 4.84121i 0.677905 + 0.677905i
$$52$$ −1.76057 3.04940i −0.244147 0.422875i
$$53$$ −1.14500 + 4.27319i −0.157278 + 0.586968i 0.841622 + 0.540067i $$0.181601\pi$$
−0.998900 + 0.0469008i $$0.985066\pi$$
$$54$$ −1.23766 + 4.61900i −0.168424 + 0.628566i
$$55$$ −2.49624 + 6.06474i −0.336593 + 0.817770i
$$56$$ −0.406803 1.51821i −0.0543613 0.202879i
$$57$$ 2.34345 + 4.05897i 0.310397 + 0.537624i
$$58$$ −6.13098 1.64279i −0.805037 0.215709i
$$59$$ 3.71354 13.8591i 0.483461 1.80430i −0.103429 0.994637i $$-0.532982\pi$$
0.586891 0.809666i $$-0.300352\pi$$
$$60$$ −1.65593 1.26477i −0.213779 0.163281i
$$61$$ −12.9225 + 3.46256i −1.65455 + 0.443335i −0.960882 0.276959i $$-0.910673\pi$$
−0.693669 + 0.720294i $$0.744007\pi$$
$$62$$ 1.28573 4.79840i 0.163288 0.609397i
$$63$$ −2.36913 2.36913i −0.298483 0.298483i
$$64$$ 1.00000 0.125000
$$65$$ 6.23575 4.80703i 0.773449 0.596239i
$$66$$ 1.93261 + 1.93261i 0.237887 + 0.237887i
$$67$$ 9.85764 2.64135i 1.20430 0.322692i 0.399778 0.916612i $$-0.369087\pi$$
0.804524 + 0.593920i $$0.202420\pi$$
$$68$$ 7.34721i 0.890980i
$$69$$ 1.35744 + 5.06604i 0.163417 + 0.609879i
$$70$$ 3.24403 1.35222i 0.387736 0.161621i
$$71$$ −3.60184 + 6.23857i −0.427460 + 0.740383i −0.996647 0.0818258i $$-0.973925\pi$$
0.569187 + 0.822208i $$0.307258\pi$$
$$72$$ 1.84607 1.06583i 0.217561 0.125609i
$$73$$ −4.65999 + 4.65999i −0.545411 + 0.545411i −0.925110 0.379699i $$-0.876027\pi$$
0.379699 + 0.925110i $$0.376027\pi$$
$$74$$ −3.53553 + 4.94975i −0.410997 + 0.575396i
$$75$$ 2.31158 4.04541i 0.266918 0.467123i
$$76$$ 1.30177 4.85828i 0.149323 0.557282i
$$77$$ −4.45290 + 1.19315i −0.507455 + 0.135972i
$$78$$ −0.849232 3.16938i −0.0961565 0.358861i
$$79$$ 2.20734 0.591454i 0.248345 0.0665438i −0.132499 0.991183i $$-0.542300\pi$$
0.380844 + 0.924639i $$0.375634\pi$$
$$80$$ 0.296818 + 2.21628i 0.0331852 + 0.247788i
$$81$$ 0.969450 1.67914i 0.107717 0.186571i
$$82$$ 6.03086i 0.665997i
$$83$$ 3.38786 12.6437i 0.371866 1.38782i −0.486003 0.873957i $$-0.661546\pi$$
0.857870 0.513867i $$-0.171788\pi$$
$$84$$ 1.46465i 0.159807i
$$85$$ 16.2835 2.18078i 1.76619 0.236539i
$$86$$ −0.0609800 0.105621i −0.00657565 0.0113894i
$$87$$ −5.12228 2.95735i −0.549166 0.317061i
$$88$$ 2.93300i 0.312658i
$$89$$ −1.58109 0.423653i −0.167596 0.0449071i 0.174045 0.984738i $$-0.444316\pi$$
−0.341641 + 0.939831i $$0.610983\pi$$
$$90$$ 2.91011 + 3.77504i 0.306753 + 0.397924i
$$91$$ 5.34583 + 1.43241i 0.560395 + 0.150157i
$$92$$ 2.81415 4.87426i 0.293396 0.508177i
$$93$$ 2.31457 4.00894i 0.240009 0.415708i
$$94$$ −9.46602 2.53641i −0.976345 0.261611i
$$95$$ 11.1537 + 1.44307i 1.14434 + 0.148056i
$$96$$ 0.900100 + 0.241181i 0.0918660 + 0.0246154i
$$97$$ 10.5326i 1.06942i −0.845035 0.534712i $$-0.820420\pi$$
0.845035 0.534712i $$-0.179580\pi$$
$$98$$ −3.92271 2.26478i −0.396253 0.228777i
$$99$$ −3.12606 5.41450i −0.314181 0.544178i
$$100$$ −4.82380 + 1.31566i −0.482380 + 0.131566i
$$101$$ 5.63054i 0.560259i 0.959962 + 0.280130i $$0.0903775\pi$$
−0.959962 + 0.280130i $$0.909623\pi$$
$$102$$ 1.77201 6.61322i 0.175455 0.654806i
$$103$$ 9.11424i 0.898053i 0.893519 + 0.449026i $$0.148229\pi$$
−0.893519 + 0.449026i $$0.851771\pi$$
$$104$$ −1.76057 + 3.04940i −0.172638 + 0.299018i
$$105$$ 3.24608 0.434735i 0.316785 0.0424258i
$$106$$ 4.27319 1.14500i 0.415049 0.111212i
$$107$$ −4.07658 15.2140i −0.394098 1.47079i −0.823312 0.567589i $$-0.807876\pi$$
0.429214 0.903203i $$-0.358791\pi$$
$$108$$ 4.61900 1.23766i 0.444463 0.119094i
$$109$$ −0.0234842 + 0.0876443i −0.00224938 + 0.00839480i −0.967041 0.254619i $$-0.918050\pi$$
0.964792 + 0.263014i $$0.0847165\pi$$
$$110$$ 6.50034 0.870565i 0.619783 0.0830051i
$$111$$ −4.37612 + 3.60256i −0.415363 + 0.341940i
$$112$$ −1.11141 + 1.11141i −0.105018 + 0.105018i
$$113$$ 7.62291 4.40109i 0.717103 0.414020i −0.0965824 0.995325i $$-0.530791\pi$$
0.813686 + 0.581305i $$0.197458\pi$$
$$114$$ 2.34345 4.05897i 0.219484 0.380157i
$$115$$ 11.6380 + 4.79019i 1.08525 + 0.446687i
$$116$$ 1.64279 + 6.13098i 0.152529 + 0.569247i
$$117$$ 7.50584i 0.693916i
$$118$$ −13.8591 + 3.71354i −1.27583 + 0.341859i
$$119$$ 8.16574 + 8.16574i 0.748552 + 0.748552i
$$120$$ −0.267359 + 2.06646i −0.0244064 + 0.188641i
$$121$$ 2.39754 0.217958
$$122$$ 9.45989 + 9.45989i 0.856458 + 0.856458i
$$123$$ −1.45453 + 5.42838i −0.131150 + 0.489460i
$$124$$ −4.79840 + 1.28573i −0.430909 + 0.115462i
$$125$$ −4.34767 10.3004i −0.388867 0.921294i
$$126$$ −0.867163 + 3.23630i −0.0772530 + 0.288312i
$$127$$ −9.88326 2.64821i −0.876997 0.234991i −0.207886 0.978153i $$-0.566658\pi$$
−0.669111 + 0.743162i $$0.733325\pi$$
$$128$$ −0.500000 0.866025i −0.0441942 0.0765466i
$$129$$ −0.0294144 0.109776i −0.00258980 0.00966526i
$$130$$ −7.28088 2.99680i −0.638576 0.262837i
$$131$$ 3.67842 13.7281i 0.321385 1.19943i −0.596510 0.802605i $$-0.703447\pi$$
0.917896 0.396821i $$-0.129887\pi$$
$$132$$ 0.707383 2.63999i 0.0615697 0.229781i
$$133$$ 3.95272 + 6.84632i 0.342745 + 0.593651i
$$134$$ −7.21629 7.21629i −0.623393 0.623393i
$$135$$ 4.11400 + 9.86964i 0.354076 + 0.849443i
$$136$$ −6.36287 + 3.67360i −0.545612 + 0.315009i
$$137$$ −13.1082 + 13.1082i −1.11991 + 1.11991i −0.128152 + 0.991755i $$0.540904\pi$$
−0.991755 + 0.128152i $$0.959096\pi$$
$$138$$ 3.70860 3.70860i 0.315697 0.315697i
$$139$$ 1.41733 + 2.45489i 0.120216 + 0.208221i 0.919853 0.392263i $$-0.128308\pi$$
−0.799637 + 0.600484i $$0.794974\pi$$
$$140$$ −2.79307 2.13330i −0.236058 0.180297i
$$141$$ −7.90863 4.56605i −0.666026 0.384531i
$$142$$ 7.20369 0.604520
$$143$$ 8.94386 + 5.16374i 0.747923 + 0.431814i
$$144$$ −1.84607 1.06583i −0.153839 0.0888189i
$$145$$ −13.1004 + 5.46067i −1.08793 + 0.453484i
$$146$$ 6.36567 + 1.70567i 0.526826 + 0.141163i
$$147$$ −2.98461 2.98461i −0.246166 0.246166i
$$148$$ 6.05437 + 0.586988i 0.497666 + 0.0482502i
$$149$$ 7.08033i 0.580043i 0.957020 + 0.290021i $$0.0936624\pi$$
−0.957020 + 0.290021i $$0.906338\pi$$
$$150$$ −4.65921 + 0.0208194i −0.380423 + 0.00169990i
$$151$$ 1.73548 + 1.00198i 0.141232 + 0.0815402i 0.568951 0.822371i $$-0.307349\pi$$
−0.427719 + 0.903912i $$0.640683\pi$$
$$152$$ −4.85828 + 1.30177i −0.394058 + 0.105588i
$$153$$ −7.83085 + 13.5634i −0.633087 + 1.09654i
$$154$$ 3.25975 + 3.25975i 0.262678 + 0.262678i
$$155$$ −4.27378 10.2530i −0.343279 0.823539i
$$156$$ −2.32014 + 2.32014i −0.185760 + 0.185760i
$$157$$ 4.10221 + 1.09918i 0.327392 + 0.0877244i 0.418771 0.908092i $$-0.362461\pi$$
−0.0913794 + 0.995816i $$0.529128\pi$$
$$158$$ −1.61588 1.61588i −0.128553 0.128553i
$$159$$ 4.12245 0.326931
$$160$$ 1.77095 1.36519i 0.140006 0.107928i
$$161$$ 2.28961 + 8.54495i 0.180447 + 0.673437i
$$162$$ −1.93890 −0.152334
$$163$$ 14.1809 8.18736i 1.11074 0.641284i 0.171716 0.985147i $$-0.445069\pi$$
0.939020 + 0.343863i $$0.111736\pi$$
$$164$$ 5.22288 3.01543i 0.407838 0.235466i
$$165$$ 6.06092 + 0.784163i 0.471842 + 0.0610470i
$$166$$ −12.6437 + 3.38786i −0.981340 + 0.262949i
$$167$$ −0.770702 0.444965i −0.0596387 0.0344324i 0.469884 0.882728i $$-0.344296\pi$$
−0.529523 + 0.848296i $$0.677629\pi$$
$$168$$ −1.26843 + 0.732327i −0.0978613 + 0.0565002i
$$169$$ 0.300791 + 0.520985i 0.0231378 + 0.0400758i
$$170$$ −10.0304 13.0115i −0.769293 0.997937i
$$171$$ −7.58123 + 7.58123i −0.579751 + 0.579751i
$$172$$ −0.0609800 + 0.105621i −0.00464968 + 0.00805349i
$$173$$ −23.4259 6.27695i −1.78104 0.477228i −0.790266 0.612765i $$-0.790057\pi$$
−0.990772 + 0.135537i $$0.956724\pi$$
$$174$$ 5.91470i 0.448393i
$$175$$ 3.89897 6.82344i 0.294734 0.515803i
$$176$$ −2.54005 + 1.46650i −0.191463 + 0.110541i
$$177$$ −13.3702 −1.00497
$$178$$ 0.423653 + 1.58109i 0.0317541 + 0.118508i
$$179$$ 1.37366 1.37366i 0.102672 0.102672i −0.653905 0.756577i $$-0.726870\pi$$
0.756577 + 0.653905i $$0.226870\pi$$
$$180$$ 1.81422 4.40775i 0.135224 0.328535i
$$181$$ −4.19804 + 7.27122i −0.312038 + 0.540465i −0.978803 0.204802i $$-0.934345\pi$$
0.666766 + 0.745267i $$0.267678\pi$$
$$182$$ −1.43241 5.34583i −0.106177 0.396259i
$$183$$ 6.23330 + 10.7964i 0.460779 + 0.798092i
$$184$$ −5.62831 −0.414924
$$185$$ 0.496115 + 13.5924i 0.0364751 + 0.999335i
$$186$$ −4.62913 −0.339424
$$187$$ 10.7747 + 18.6623i 0.787921 + 1.36472i
$$188$$ 2.53641 + 9.46602i 0.184987 + 0.690380i
$$189$$ −3.75805 + 6.50913i −0.273358 + 0.473469i
$$190$$ −4.32711 10.3809i −0.313922 0.753111i
$$191$$ 10.3499 10.3499i 0.748891 0.748891i −0.225380 0.974271i $$-0.572362\pi$$
0.974271 + 0.225380i $$0.0723622\pi$$
$$192$$ −0.241181 0.900100i −0.0174057 0.0649591i
$$193$$ −7.34357 −0.528602 −0.264301 0.964440i $$-0.585141\pi$$
−0.264301 + 0.964440i $$0.585141\pi$$
$$194$$ −9.12150 + 5.26630i −0.654885 + 0.378098i
$$195$$ −5.83075 4.45343i −0.417549 0.318917i
$$196$$ 4.52955i 0.323539i
$$197$$ 0.216617 + 0.0580423i 0.0154333 + 0.00413535i 0.266527 0.963827i $$-0.414124\pi$$
−0.251094 + 0.967963i $$0.580790\pi$$
$$198$$ −3.12606 + 5.41450i −0.222160 + 0.384792i
$$199$$ 10.8061 10.8061i 0.766023 0.766023i −0.211381 0.977404i $$-0.567796\pi$$
0.977404 + 0.211381i $$0.0677960\pi$$
$$200$$ 3.55130 + 3.51970i 0.251115 + 0.248880i
$$201$$ −4.75495 8.23582i −0.335388 0.580910i
$$202$$ 4.87619 2.81527i 0.343087 0.198082i
$$203$$ −8.63982 4.98820i −0.606397 0.350103i
$$204$$ −6.61322 + 1.77201i −0.463018 + 0.124065i
$$205$$ 8.23328 + 10.6803i 0.575038 + 0.745947i
$$206$$ 7.89316 4.55712i 0.549943 0.317510i
$$207$$ −10.3902 + 5.99880i −0.722171 + 0.416945i
$$208$$ 3.52114 0.244147
$$209$$ 3.81809 + 14.2493i 0.264103 + 0.985645i
$$210$$ −1.99953 2.59382i −0.137981 0.178991i
$$211$$ −17.0413 −1.17317 −0.586585 0.809887i $$-0.699528\pi$$
−0.586585 + 0.809887i $$0.699528\pi$$
$$212$$ −3.12819 3.12819i −0.214845 0.214845i
$$213$$ 6.48403 + 1.73739i 0.444279 + 0.119044i
$$214$$ −11.1374 + 11.1374i −0.761338 + 0.761338i
$$215$$ −0.252185 0.103799i −0.0171988 0.00707902i
$$216$$ −3.38134 3.38134i −0.230071 0.230071i
$$217$$ 3.90401 6.76194i 0.265021 0.459030i
$$218$$ 0.0876443 0.0234842i 0.00593602 0.00159055i
$$219$$ 5.31836 + 3.07055i 0.359381 + 0.207489i
$$220$$ −4.00410 5.19418i −0.269956 0.350191i
$$221$$ 25.8705i 1.74024i
$$222$$ 5.30797 + 1.98855i 0.356248 + 0.133463i
$$223$$ 12.1035 + 12.1035i 0.810508 + 0.810508i 0.984710 0.174202i $$-0.0557346\pi$$
−0.174202 + 0.984710i $$0.555735\pi$$
$$224$$ 1.51821 + 0.406803i 0.101440 + 0.0271807i
$$225$$ 10.3073 + 2.71253i 0.687154 + 0.180835i
$$226$$ −7.62291 4.40109i −0.507068 0.292756i
$$227$$ 18.0722 + 10.4340i 1.19949 + 0.692528i 0.960442 0.278479i $$-0.0898304\pi$$
0.239051 + 0.971007i $$0.423164\pi$$
$$228$$ −4.68689 −0.310397
$$229$$ −19.2477 11.1127i −1.27192 0.734346i −0.296575 0.955010i $$-0.595844\pi$$
−0.975350 + 0.220664i $$0.929178\pi$$
$$230$$ −1.67058 12.4739i −0.110155 0.822505i
$$231$$ 2.14791 + 3.72029i 0.141322 + 0.244777i
$$232$$ 4.48819 4.48819i 0.294664 0.294664i
$$233$$ 10.7402 10.7402i 0.703612 0.703612i −0.261572 0.965184i $$-0.584241\pi$$
0.965184 + 0.261572i $$0.0842409\pi$$
$$234$$ 6.50025 3.75292i 0.424935 0.245336i
$$235$$ −20.2265 + 8.43108i −1.31943 + 0.549983i
$$236$$ 10.1456 + 10.1456i 0.660421 + 0.660421i
$$237$$ −1.06474 1.84418i −0.0691620 0.119792i
$$238$$ 2.98887 11.1546i 0.193739 0.723046i
$$239$$ −4.57456 + 17.0725i −0.295904 + 1.10433i 0.644593 + 0.764526i $$0.277027\pi$$
−0.940497 + 0.339802i $$0.889640\pi$$
$$240$$ 1.92329 0.801690i 0.124148 0.0517489i
$$241$$ −3.16072 11.7960i −0.203600 0.759844i −0.989872 0.141964i $$-0.954658\pi$$
0.786272 0.617880i $$-0.212008\pi$$
$$242$$ −1.19877 2.07633i −0.0770599 0.133472i
$$243$$ −15.6022 4.18060i −1.00088 0.268185i
$$244$$ 3.46256 12.9225i 0.221668 0.827275i
$$245$$ −10.0388 + 1.34445i −0.641352 + 0.0858938i
$$246$$ 5.42838 1.45453i 0.346101 0.0927374i
$$247$$ 4.58372 17.1067i 0.291655 1.08847i
$$248$$ 3.51267 + 3.51267i 0.223055 + 0.223055i
$$249$$ −12.1977 −0.772995
$$250$$ −6.74656 + 8.91538i −0.426690 + 0.563858i
$$251$$ −4.64149 4.64149i −0.292968 0.292968i 0.545283 0.838252i $$-0.316422\pi$$
−0.838252 + 0.545283i $$0.816422\pi$$
$$252$$ 3.23630 0.867163i 0.203867 0.0546261i
$$253$$ 16.5078i 1.03784i
$$254$$ 2.64821 + 9.88326i 0.166164 + 0.620131i
$$255$$ −5.89019 14.1308i −0.368858 0.884904i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ 5.17253 2.98636i 0.322653 0.186284i −0.329921 0.944008i $$-0.607022\pi$$
0.652575 + 0.757724i $$0.273689\pi$$
$$258$$ −0.0803618 + 0.0803618i −0.00500310 + 0.00500310i
$$259$$ −7.38125 + 6.07649i −0.458649 + 0.377575i
$$260$$ 1.04514 + 7.80383i 0.0648166 + 0.483973i
$$261$$ 3.50186 13.0691i 0.216760 0.808958i
$$262$$ −13.7281 + 3.67842i −0.848123 + 0.227254i
$$263$$ 4.25599 + 15.8836i 0.262435 + 0.979423i 0.963801 + 0.266621i $$0.0859072\pi$$
−0.701366 + 0.712801i $$0.747426\pi$$
$$264$$ −2.63999 + 0.707383i −0.162480 + 0.0435364i
$$265$$ 6.00445 7.86145i 0.368850 0.482925i
$$266$$ 3.95272 6.84632i 0.242357 0.419775i
$$267$$ 1.52532i 0.0933480i
$$268$$ −2.64135 + 9.85764i −0.161346 + 0.602151i
$$269$$ 23.9358i 1.45939i 0.683772 + 0.729696i $$0.260338\pi$$
−0.683772 + 0.729696i $$0.739662\pi$$
$$270$$ 6.49036 8.49764i 0.394991 0.517150i
$$271$$ 2.74456 + 4.75371i 0.166720 + 0.288767i 0.937265 0.348618i $$-0.113349\pi$$
−0.770545 + 0.637386i $$0.780016\pi$$
$$272$$ 6.36287 + 3.67360i 0.385806 + 0.222745i
$$273$$ 5.15725i 0.312131i
$$274$$ 17.9061 + 4.79792i 1.08175 + 0.289853i
$$275$$ 10.3233 10.4159i 0.622516 0.628105i
$$276$$ −5.06604 1.35744i −0.304940 0.0817084i
$$277$$ 3.21490 5.56838i 0.193165 0.334571i −0.753133 0.657869i $$-0.771458\pi$$
0.946297 + 0.323297i $$0.104791\pi$$
$$278$$ 1.41733 2.45489i 0.0850059 0.147234i
$$279$$ 10.2285 + 2.74072i 0.612366 + 0.164083i
$$280$$ −0.450958 + 3.48553i −0.0269499 + 0.208300i
$$281$$ 9.19576 + 2.46400i 0.548573 + 0.146990i 0.522451 0.852669i $$-0.325018\pi$$
0.0261216 + 0.999659i $$0.491684\pi$$
$$282$$ 9.13209i 0.543808i
$$283$$ −3.83387 2.21349i −0.227900 0.131578i 0.381703 0.924285i $$-0.375338\pi$$
−0.609603 + 0.792707i $$0.708671\pi$$
$$284$$ −3.60184 6.23857i −0.213730 0.370191i
$$285$$ −1.39115 10.3875i −0.0824048 0.615301i
$$286$$ 10.3275i 0.610677i
$$287$$ −2.45337 + 9.15611i −0.144818 + 0.540468i
$$288$$ 2.13165i 0.125609i
$$289$$ 18.4907 32.0269i 1.08769 1.88394i
$$290$$ 11.2793 + 8.61491i 0.662341 + 0.505885i
$$291$$ −9.48039 + 2.54026i −0.555750 + 0.148913i
$$292$$ −1.70567 6.36567i −0.0998171 0.372522i
$$293$$ 10.6757 2.86054i 0.623679 0.167114i 0.0668794 0.997761i $$-0.478696\pi$$
0.556800 + 0.830647i $$0.312029\pi$$
$$294$$ −1.09244 + 4.07705i −0.0637125 + 0.237778i
$$295$$ −19.4741 + 25.4968i −1.13382 + 1.48448i
$$296$$ −2.51884 5.53674i −0.146405 0.321816i
$$297$$ −9.91746 + 9.91746i −0.575469 + 0.575469i
$$298$$ 6.13174 3.54016i 0.355202 0.205076i
$$299$$ 9.90903 17.1629i 0.573054 0.992559i
$$300$$ 2.34764 + 4.02459i 0.135541 + 0.232360i
$$301$$ −0.0496137 0.185161i −0.00285969 0.0106725i
$$302$$ 2.00397i 0.115315i
$$303$$ 5.06804 1.35798i 0.291151 0.0780138i
$$304$$ 3.55650 + 3.55650i 0.203980 + 0.203980i
$$305$$ 29.6675 + 3.83839i 1.69876 + 0.219786i
$$306$$ 15.6617 0.895320
$$307$$ 1.21213 + 1.21213i 0.0691797 + 0.0691797i 0.740850 0.671670i $$-0.234423\pi$$
−0.671670 + 0.740850i $$0.734423\pi$$
$$308$$ 1.19315 4.45290i 0.0679861 0.253728i
$$309$$ 8.20372 2.19818i 0.466693 0.125050i
$$310$$ −6.74244 + 8.82769i −0.382945 + 0.501379i
$$311$$ −4.94798 + 18.4661i −0.280574 + 1.04712i 0.671439 + 0.741060i $$0.265677\pi$$
−0.952013 + 0.306057i $$0.900990\pi$$
$$312$$ 3.16938 + 0.849232i 0.179431 + 0.0480783i
$$313$$ 3.96998 + 6.87620i 0.224396 + 0.388666i 0.956138 0.292916i $$-0.0946256\pi$$
−0.731742 + 0.681582i $$0.761292\pi$$
$$314$$ −1.09918 4.10221i −0.0620305 0.231501i
$$315$$ 2.88247 + 6.91515i 0.162409 + 0.389625i
$$316$$ −0.591454 + 2.20734i −0.0332719 + 0.124172i
$$317$$ −1.43710 + 5.36333i −0.0807156 + 0.301235i −0.994468 0.105036i $$-0.966504\pi$$
0.913753 + 0.406270i $$0.133171\pi$$
$$318$$ −2.06122 3.57014i −0.115588 0.200204i
$$319$$ −13.1638 13.1638i −0.737033 0.737033i
$$320$$ −2.06776 0.851088i −0.115592 0.0475773i
$$321$$ −12.7109 + 7.33865i −0.709454 + 0.409604i
$$322$$ 6.25534 6.25534i 0.348597 0.348597i
$$323$$ 26.1304 26.1304i 1.45393 1.45393i
$$324$$ 0.969450 + 1.67914i 0.0538583 + 0.0932854i
$$325$$ −16.9853 + 4.63263i −0.942173 + 0.256972i
$$326$$ −14.1809 8.18736i −0.785409 0.453456i
$$327$$ 0.0845525 0.00467577
$$328$$ −5.22288 3.01543i −0.288385 0.166499i
$$329$$ −13.3396 7.70161i −0.735435 0.424604i
$$330$$ −2.35135 5.64099i −0.129438 0.310526i
$$331$$ −4.85442 1.30074i −0.266823 0.0714950i 0.122927 0.992416i $$-0.460772\pi$$
−0.389750 + 0.920921i $$0.627439\pi$$
$$332$$ 9.25582 + 9.25582i 0.507979 + 0.507979i
$$333$$ −10.5511 7.53653i −0.578199 0.412999i
$$334$$ 0.889930i 0.0486948i
$$335$$ −22.6313 2.92804i −1.23648 0.159976i
$$336$$ 1.26843 + 0.732327i 0.0691984 + 0.0399517i
$$337$$ −4.19085 + 1.12294i −0.228290 + 0.0611702i −0.371151 0.928573i $$-0.621037\pi$$
0.142860 + 0.989743i $$0.454370\pi$$
$$338$$ 0.300791 0.520985i 0.0163609 0.0283379i
$$339$$ −5.79992 5.79992i −0.315008 0.315008i
$$340$$ −6.25312 + 15.1923i −0.339123 + 0.823918i
$$341$$ 10.3027 10.3027i 0.557920 0.557920i
$$342$$ 10.3562 + 2.77492i 0.559997 + 0.150051i
$$343$$ −12.8140 12.8140i −0.691892 0.691892i
$$344$$ 0.121960 0.00657565
$$345$$ 1.50478 11.6307i 0.0810146 0.626175i
$$346$$ 6.27695 + 23.4259i 0.337451 + 1.25938i
$$347$$ −15.0208 −0.806357 −0.403178 0.915121i $$-0.632095\pi$$
−0.403178 + 0.915121i $$0.632095\pi$$
$$348$$ 5.12228 2.95735i 0.274583 0.158531i
$$349$$ 28.7916 16.6228i 1.54118 0.889799i 0.542413 0.840112i $$-0.317511\pi$$
0.998765 0.0496875i $$-0.0158225\pi$$
$$350$$ −7.85875 + 0.0351163i −0.420068 + 0.00187705i
$$351$$ 16.2641 4.35796i 0.868115 0.232611i
$$352$$ 2.54005 + 1.46650i 0.135385 + 0.0781646i
$$353$$ 8.41266 4.85705i 0.447761 0.258515i −0.259123 0.965844i $$-0.583434\pi$$
0.706884 + 0.707329i $$0.250100\pi$$
$$354$$ 6.68511 + 11.5789i 0.355309 + 0.615414i
$$355$$ 12.7573 9.83441i 0.677089 0.521956i
$$356$$ 1.15744 1.15744i 0.0613443 0.0613443i
$$357$$ 5.38056 9.31940i 0.284769 0.493235i
$$358$$ −1.87646 0.502795i −0.0991737 0.0265735i
$$359$$ 30.7678i 1.62386i −0.583755 0.811930i $$-0.698417\pi$$
0.583755 0.811930i $$-0.301583\pi$$
$$360$$ −4.72434 + 0.632712i −0.248995 + 0.0333469i
$$361$$ 5.45375 3.14872i 0.287039 0.165722i
$$362$$ 8.39608 0.441288
$$363$$ −0.578241 2.15802i −0.0303498 0.113267i
$$364$$ −3.91342 + 3.91342i −0.205119 + 0.205119i
$$365$$ 13.6018 5.66970i 0.711952 0.296766i
$$366$$ 6.23330 10.7964i 0.325820 0.564336i
$$367$$ 0.846545 + 3.15935i 0.0441893 + 0.164917i 0.984494 0.175416i $$-0.0561270\pi$$
−0.940305 + 0.340333i $$0.889460\pi$$
$$368$$ 2.81415 + 4.87426i 0.146698 + 0.254088i
$$369$$ −12.8557 −0.669241
$$370$$ 11.5233 7.22586i 0.599069 0.375654i
$$371$$ 6.95339 0.361002
$$372$$ 2.31457 + 4.00894i 0.120005 + 0.207854i
$$373$$ −2.56350 9.56710i −0.132733 0.495366i 0.867264 0.497848i $$-0.165876\pi$$
−0.999997 + 0.00248270i $$0.999210\pi$$
$$374$$ 10.7747 18.6623i 0.557145 0.965003i
$$375$$ −8.22279 + 6.39759i −0.424623 + 0.330370i
$$376$$ 6.92961 6.92961i 0.357367 0.357367i
$$377$$ 5.78450 + 21.5880i 0.297917 + 1.11184i
$$378$$ 7.51609 0.386586
$$379$$ 3.81839 2.20455i 0.196137 0.113240i −0.398715 0.917075i $$-0.630544\pi$$
0.594852 + 0.803835i $$0.297210\pi$$
$$380$$ −6.82658 + 8.93785i −0.350196 + 0.458502i
$$381$$ 9.53461i 0.488473i
$$382$$ −14.1382 3.78832i −0.723374 0.193827i
$$383$$ −0.466482 + 0.807970i −0.0238361 + 0.0412853i −0.877697 0.479215i $$-0.840921\pi$$
0.853861 + 0.520501i $$0.174255\pi$$
$$384$$ −0.658919 + 0.658919i −0.0336253 + 0.0336253i
$$385$$ 10.2230 + 1.32266i 0.521014 + 0.0674089i
$$386$$ 3.67179 + 6.35972i 0.186889 + 0.323701i
$$387$$ 0.225146 0.129988i 0.0114448 0.00660767i
$$388$$ 9.12150 + 5.26630i 0.463074 + 0.267356i
$$389$$ −20.4346 + 5.47544i −1.03608 + 0.277616i −0.736487 0.676452i $$-0.763517\pi$$
−0.299590 + 0.954068i $$0.596850\pi$$
$$390$$ −0.941408 + 7.27629i −0.0476701 + 0.368449i
$$391$$ 35.8122 20.6762i 1.81110 1.04564i
$$392$$ 3.92271 2.26478i 0.198127 0.114388i
$$393$$ −13.2438 −0.668061
$$394$$ −0.0580423 0.216617i −0.00292413 0.0109130i
$$395$$ −5.06763 0.655652i −0.254980 0.0329894i
$$396$$ 6.25213 0.314181
$$397$$ 19.1197 + 19.1197i 0.959591 + 0.959591i 0.999215 0.0396237i $$-0.0126159\pi$$
−0.0396237 + 0.999215i $$0.512616\pi$$
$$398$$ −14.7614 3.95530i −0.739922 0.198261i
$$399$$ 5.20905 5.20905i 0.260778 0.260778i
$$400$$ 1.27250 4.83536i 0.0636251 0.241768i
$$401$$ 6.34778 + 6.34778i 0.316993 + 0.316993i 0.847611 0.530618i $$-0.178040\pi$$
−0.530618 + 0.847611i $$0.678040\pi$$
$$402$$ −4.75495 + 8.23582i −0.237155 + 0.410765i
$$403$$ −16.8958 + 4.52722i −0.841641 + 0.225517i
$$404$$ −4.87619 2.81527i −0.242599 0.140065i
$$405$$ −3.43369 + 2.64697i −0.170621 + 0.131529i
$$406$$ 9.97641i 0.495121i
$$407$$ −16.2392 + 7.38775i −0.804948 + 0.366197i
$$408$$ 4.84121 + 4.84121i 0.239676 + 0.239676i
$$409$$ 19.4346 + 5.20748i 0.960977 + 0.257493i 0.705014 0.709193i $$-0.250941\pi$$
0.255963 + 0.966687i $$0.417607\pi$$
$$410$$ 5.13280 12.4704i 0.253491 0.615869i
$$411$$ 14.9601 + 8.63721i 0.737927 + 0.426042i
$$412$$ −7.89316 4.55712i −0.388868 0.224513i
$$413$$ −22.5517 −1.10970
$$414$$ 10.3902 + 5.99880i 0.510652 + 0.294825i
$$415$$ −17.7662 + 23.2608i −0.872108 + 1.14183i
$$416$$ −1.76057 3.04940i −0.0863190 0.149509i
$$417$$ 1.86781 1.86781i 0.0914671 0.0914671i
$$418$$ 10.4312 10.4312i 0.510207 0.510207i
$$419$$ −30.3057 + 17.4970i −1.48053 + 0.854784i −0.999757 0.0220619i $$-0.992977\pi$$
−0.480772 + 0.876846i $$0.659644\pi$$
$$420$$ −1.24655 + 3.02856i −0.0608254 + 0.147778i
$$421$$ −27.2704 27.2704i −1.32908 1.32908i −0.906173 0.422907i $$-0.861010\pi$$
−0.422907 0.906173i $$-0.638990\pi$$
$$422$$ 8.52065 + 14.7582i 0.414779 + 0.718417i
$$423$$ 5.40675 20.1783i 0.262885 0.981101i
$$424$$ −1.14500 + 4.27319i −0.0556060 + 0.207524i
$$425$$ −35.5264 9.34933i −1.72328 0.453509i
$$426$$ −1.73739 6.48403i −0.0841769 0.314152i
$$427$$ 10.5138 + 18.2104i 0.508798 + 0.881264i
$$428$$ 15.2140 + 4.07658i 0.735396 + 0.197049i
$$429$$ 2.49079 9.29576i 0.120257 0.448804i
$$430$$ 0.0361999 + 0.270298i 0.00174571 + 0.0130349i
$$431$$ −14.6906 + 3.93634i −0.707622 + 0.189607i −0.594642 0.803991i $$-0.702706\pi$$
−0.112980 + 0.993597i $$0.536040\pi$$
$$432$$ −1.23766 + 4.61900i −0.0595468 + 0.222232i
$$433$$ 17.9868 + 17.9868i 0.864391 + 0.864391i 0.991845 0.127454i $$-0.0406805\pi$$
−0.127454 + 0.991845i $$0.540680\pi$$
$$434$$ −7.80802 −0.374797
$$435$$ 8.07471 + 10.4746i 0.387153 + 0.502220i
$$436$$ −0.0641601 0.0641601i −0.00307271 0.00307271i
$$437$$ 27.3439 7.32677i 1.30804 0.350487i
$$438$$ 6.14111i 0.293434i
$$439$$ 2.26417 + 8.45001i 0.108063 + 0.403297i 0.998675 0.0514678i $$-0.0163900\pi$$
−0.890612 + 0.454765i $$0.849723\pi$$
$$440$$ −2.49624 + 6.06474i −0.119003 + 0.289125i
$$441$$ 4.82771 8.36185i 0.229891 0.398183i
$$442$$ −22.4045 + 12.9353i −1.06568 + 0.615268i
$$443$$ 8.16811 8.16811i 0.388078 0.388078i −0.485923 0.874002i $$-0.661517\pi$$
0.874002 + 0.485923i $$0.161517\pi$$
$$444$$ −0.931852 5.59111i −0.0442237 0.265342i
$$445$$ 2.90876 + 2.22166i 0.137889 + 0.105317i
$$446$$ 4.43018 16.5336i 0.209775 0.782891i
$$447$$ 6.37300 1.70764i 0.301432 0.0807686i
$$448$$ −0.406803 1.51821i −0.0192196 0.0717287i
$$449$$ −29.6170 + 7.93585i −1.39771 + 0.374516i −0.877523 0.479535i $$-0.840805\pi$$
−0.520190 + 0.854051i $$0.674139\pi$$
$$450$$ −2.80454 10.2827i −0.132207 0.484729i
$$451$$ −8.84424 + 15.3187i −0.416459 + 0.721328i
$$452$$ 8.80218i 0.414020i
$$453$$ 0.483318 1.80377i 0.0227083 0.0847484i
$$454$$ 20.8680i 0.979382i
$$455$$ −9.83480 7.51166i −0.461063 0.352152i
$$456$$ 2.34345 + 4.05897i 0.109742 + 0.190079i
$$457$$ 4.70033 + 2.71374i 0.219872 + 0.126943i 0.605891 0.795548i $$-0.292817\pi$$
−0.386019 + 0.922491i $$0.626150\pi$$
$$458$$ 22.2253i 1.03852i
$$459$$ 33.9367 + 9.09332i 1.58403 + 0.424440i
$$460$$ −9.96743 + 7.68372i −0.464734 + 0.358255i
$$461$$ 31.0217 + 8.31225i 1.44483 + 0.387140i 0.894221 0.447626i $$-0.147730\pi$$
0.550605 + 0.834766i $$0.314397\pi$$
$$462$$ 2.14791 3.72029i 0.0999298 0.173084i
$$463$$ −0.398756 + 0.690666i −0.0185318 + 0.0320980i −0.875143 0.483865i $$-0.839233\pi$$
0.856611 + 0.515963i $$0.172566\pi$$
$$464$$ −6.13098 1.64279i −0.284624 0.0762647i
$$465$$ −8.19794 + 6.31965i −0.380170 + 0.293067i
$$466$$ −14.6713 3.93118i −0.679637 0.182108i
$$467$$ 13.7789i 0.637610i 0.947820 + 0.318805i $$0.103282\pi$$
−0.947820 + 0.318805i $$0.896718\pi$$
$$468$$ −6.50025 3.75292i −0.300474 0.173479i
$$469$$ −8.02024 13.8915i −0.370340 0.641448i
$$470$$ 17.4148 + 13.3011i 0.803284 + 0.613535i
$$471$$ 3.95750i 0.182352i
$$472$$ 3.71354 13.8591i 0.170929 0.637917i
$$473$$ 0.357708i 0.0164474i
$$474$$ −1.06474 + 1.84418i −0.0489049 + 0.0847058i
$$475$$ −21.8350 12.4767i −1.00186 0.572470i
$$476$$ −11.1546 + 2.98887i −0.511270 + 0.136995i
$$477$$ 2.44074 + 9.10896i 0.111754 + 0.417070i
$$478$$ 17.0725 4.57456i 0.780878 0.209236i
$$479$$ −6.36828 + 23.7667i −0.290974 + 1.08593i 0.653388 + 0.757023i $$0.273347\pi$$
−0.944362 + 0.328907i $$0.893320\pi$$
$$480$$ −1.65593 1.26477i −0.0755824 0.0577286i
$$481$$ 21.3183 + 2.06687i 0.972030 + 0.0942411i
$$482$$ −8.63524 + 8.63524i −0.393324 + 0.393324i
$$483$$ 7.13910 4.12176i 0.324840 0.187547i
$$484$$ −1.19877 + 2.07633i −0.0544895 + 0.0943787i
$$485$$ −8.96417 + 21.7789i −0.407042 + 0.988930i
$$486$$ 4.18060 + 15.6022i 0.189636 + 0.707730i
$$487$$ 2.56582i 0.116268i −0.998309 0.0581342i $$-0.981485\pi$$
0.998309 0.0581342i $$-0.0185151\pi$$
$$488$$ −12.9225 + 3.46256i −0.584972 + 0.156743i
$$489$$ −10.7896 10.7896i −0.487923 0.487923i
$$490$$ 6.18371 + 8.02159i 0.279351 + 0.362379i
$$491$$ −13.1617 −0.593977 −0.296989 0.954881i $$-0.595982\pi$$
−0.296989 + 0.954881i $$0.595982\pi$$
$$492$$ −3.97385 3.97385i −0.179155 0.179155i
$$493$$ −12.0699 + 45.0456i −0.543602 + 2.02875i
$$494$$ −17.1067 + 4.58372i −0.769665 + 0.206231i
$$495$$ 1.85574 + 13.8565i 0.0834094 + 0.622802i
$$496$$ 1.28573 4.79840i 0.0577309 0.215455i
$$497$$ 10.9367 + 2.93048i 0.490578 + 0.131450i
$$498$$ 6.09883 + 10.5635i 0.273295 + 0.473361i
$$499$$ −4.40607 16.4437i −0.197243 0.736121i −0.991675 0.128767i $$-0.958898\pi$$
0.794432 0.607353i $$-0.207769\pi$$
$$500$$ 11.0942 + 1.38500i 0.496149 + 0.0619390i
$$501$$ −0.214634 + 0.801025i −0.00958914 + 0.0357872i
$$502$$ −1.69890 + 6.34039i −0.0758258 + 0.282986i
$$503$$ −18.0966 31.3442i −0.806887 1.39757i −0.915010 0.403432i $$-0.867817\pi$$
0.108123 0.994138i $$-0.465516\pi$$
$$504$$ −2.36913 2.36913i −0.105530 0.105530i
$$505$$ 4.79208 11.6426i 0.213245 0.518090i
$$506$$ 14.2962 8.25390i 0.635543 0.366931i
$$507$$ 0.396394 0.396394i 0.0176045 0.0176045i
$$508$$ 7.23505 7.23505i 0.321003 0.321003i
$$509$$ −2.37361 4.11122i −0.105208 0.182226i 0.808615 0.588338i $$-0.200218\pi$$
−0.913823 + 0.406112i $$0.866884\pi$$
$$510$$ −9.29253 + 12.1664i −0.411480 + 0.538739i
$$511$$ 8.97054 + 5.17914i 0.396833 + 0.229112i
$$512$$ 1.00000 0.0441942
$$513$$ 20.8292 + 12.0258i 0.919633 + 0.530950i
$$514$$ −5.17253 2.98636i −0.228150 0.131723i
$$515$$ 7.75702 18.8461i 0.341815 0.830458i
$$516$$ 0.109776 + 0.0294144i 0.00483263 + 0.00129490i
$$517$$ −20.3245 20.3245i −0.893871 0.893871i
$$518$$ 8.95302 + 3.35411i 0.393373 + 0.147371i
$$519$$ 22.5995i 0.992009i
$$520$$ 6.23575 4.80703i 0.273456 0.210802i
$$521$$ −10.3720 5.98827i −0.454405 0.262351i 0.255284 0.966866i $$-0.417831\pi$$
−0.709689 + 0.704515i $$0.751164\pi$$
$$522$$ −13.0691 + 3.50186i −0.572020 + 0.153272i
$$523$$ 11.5801 20.0573i 0.506361 0.877044i −0.493612 0.869683i $$-0.664324\pi$$
0.999973 0.00736112i $$-0.00234314\pi$$
$$524$$ 10.0496 + 10.0496i 0.439021 + 0.439021i
$$525$$ −7.08213 1.86377i −0.309090 0.0813417i
$$526$$ 11.6276 11.6276i 0.506986 0.506986i
$$527$$ −35.2548 9.44651i −1.53573 0.411496i
$$528$$ 1.93261 + 1.93261i 0.0841058 + 0.0841058i
$$529$$ 8.67787 0.377299
$$530$$ −9.81044 1.26928i −0.426138 0.0551339i
$$531$$ −7.91597 29.5428i −0.343524 1.28205i
$$532$$ −7.90545 −0.342745
$$533$$ 18.3905 10.6178i 0.796580 0.459906i
$$534$$ 1.32096 0.762659i 0.0571637 0.0330035i
$$535$$ −4.51905 + 34.9285i −0.195376 + 1.51009i
$$536$$ 9.85764 2.64135i 0.425785 0.114089i
$$537$$ −1.56773 0.905131i −0.0676526 0.0390593i
$$538$$ 20.7290 11.9679i 0.893692 0.515973i
$$539$$ −6.64257 11.5053i −0.286116 0.495567i
$$540$$ −10.6044 1.37199i −0.456339 0.0590412i
$$541$$ 3.65214 3.65214i 0.157018 0.157018i −0.624226 0.781244i $$-0.714586\pi$$
0.781244 + 0.624226i $$0.214586\pi$$
$$542$$ 2.74456 4.75371i 0.117889 0.204189i
$$543$$ 7.55731 + 2.02497i 0.324315 + 0.0868999i
$$544$$ 7.34721i 0.315009i
$$545$$ 0.123153 0.161241i 0.00527529 0.00690679i
$$546$$ −4.46631 + 2.57862i −0.191140 + 0.110355i
$$547$$ −0.0217461 −0.000929794 −0.000464897 1.00000i $$-0.500148\pi$$
−0.000464897 1.00000i $$0.500148\pi$$
$$548$$ −4.79792 17.9061i −0.204957 0.764910i
$$549$$ −20.1652 + 20.1652i −0.860630 + 0.860630i
$$550$$ −14.1821 3.73224i −0.604727 0.159143i
$$551$$ −15.9623 + 27.6475i −0.680015 + 1.17782i
$$552$$ 1.35744 + 5.06604i 0.0577765 + 0.215625i
$$553$$ −1.79590 3.11060i −0.0763696 0.132276i
$$554$$ −6.42981 −0.273176
$$555$$ 12.1149 3.72479i 0.514248 0.158108i
$$556$$ −2.83466 −0.120216
$$557$$ −7.29764 12.6399i −0.309211 0.535569i 0.668979 0.743281i $$-0.266732\pi$$
−0.978190 + 0.207712i $$0.933398\pi$$
$$558$$ −2.74072 10.2285i −0.116024 0.433008i
$$559$$ −0.214719 + 0.371904i −0.00908165 + 0.0157299i
$$560$$ 3.24403 1.35222i 0.137085 0.0571418i
$$561$$ 14.1993 14.1993i 0.599493 0.599493i
$$562$$ −2.46400 9.19576i −0.103937 0.387900i
$$563$$ −37.7602 −1.59140 −0.795701 0.605689i $$-0.792898\pi$$
−0.795701 + 0.605689i $$0.792898\pi$$
$$564$$ 7.90863 4.56605i 0.333013 0.192265i
$$565$$ −19.5081 + 2.61264i −0.820712 + 0.109915i
$$566$$ 4.42698i 0.186080i
$$567$$ −2.94366 0.788750i −0.123622 0.0331244i
$$568$$ −3.60184 + 6.23857i −0.151130 + 0.261765i
$$569$$ −15.3159 + 15.3159i −0.642078 + 0.642078i −0.951066 0.308988i $$-0.900010\pi$$
0.308988 + 0.951066i $$0.400010\pi$$
$$570$$ −8.30024 + 6.39851i −0.347659 + 0.268004i
$$571$$ 7.22739 + 12.5182i 0.302457 + 0.523871i 0.976692 0.214646i $$-0.0688598\pi$$
−0.674235 + 0.738517i $$0.735526\pi$$
$$572$$ −8.94386 + 5.16374i −0.373962 + 0.215907i
$$573$$ −11.8121 6.81973i −0.493458 0.284898i
$$574$$ 9.15611 2.45337i 0.382169 0.102402i
$$575$$ −19.9878 19.8100i −0.833549 0.826133i
$$576$$ 1.84607 1.06583i 0.0769194 0.0444094i
$$577$$ 23.3137 13.4602i 0.970561 0.560354i 0.0711536 0.997465i $$-0.477332\pi$$
0.899407 + 0.437112i $$0.143999\pi$$
$$578$$ −36.9815 −1.53823
$$579$$ 1.77113 + 6.60995i 0.0736056 + 0.274700i
$$580$$ 1.82110 14.0756i 0.0756172 0.584457i
$$581$$ −20.5740 −0.853551
$$582$$ 6.94012 + 6.94012i 0.287677 + 0.287677i
$$583$$ 12.5332 + 3.35827i 0.519074 + 0.139085i
$$584$$ −4.65999 + 4.65999i −0.192832 + 0.192832i
$$585$$ 6.38814 15.5203i 0.264117 0.641686i
$$586$$ −7.81513 7.81513i −0.322840 0.322840i
$$587$$ −2.44024 + 4.22662i −0.100720 + 0.174451i −0.911981 0.410232i $$-0.865448\pi$$
0.811262 + 0.584683i $$0.198781\pi$$
$$588$$ 4.07705 1.09244i 0.168135 0.0450515i
$$589$$ −21.6382 12.4928i −0.891588 0.514758i
$$590$$ 31.8179 + 4.11661i 1.30992 + 0.169478i
$$591$$ 0.208976i 0.00859610i
$$592$$ −3.53553 + 4.94975i −0.145310 + 0.203433i
$$593$$ 23.1112 + 23.1112i 0.949065 + 0.949065i 0.998764 0.0496992i $$-0.0158263\pi$$
−0.0496992 + 0.998764i $$0.515826\pi$$
$$594$$ 13.5475 + 3.63004i 0.555861 + 0.148942i
$$595$$ −9.93505 23.8346i −0.407297 0.977123i
$$596$$ −6.13174 3.54016i −0.251166 0.145011i
$$597$$ −12.3328 7.12033i −0.504747 0.291416i
$$598$$ −19.8181 −0.810421
$$599$$ 12.9840 + 7.49632i 0.530512 + 0.306291i 0.741225 0.671257i $$-0.234245\pi$$
−0.210713 + 0.977548i $$0.567578\pi$$
$$600$$ 2.31158 4.04541i 0.0943697 0.165153i
$$601$$ −22.8349 39.5511i −0.931453 1.61332i −0.780840 0.624731i $$-0.785208\pi$$
−0.150613 0.988593i $$-0.548125\pi$$
$$602$$ −0.135547 + 0.135547i −0.00552449 + 0.00552449i
$$603$$ 15.3826 15.3826i 0.626429 0.626429i
$$604$$ −1.73548 + 1.00198i −0.0706159 + 0.0407701i
$$605$$ −4.95755 2.04052i −0.201553 0.0829589i
$$606$$ −3.71006 3.71006i −0.150711 0.150711i
$$607$$ −11.3723 19.6974i −0.461588 0.799495i 0.537452 0.843294i $$-0.319387\pi$$
−0.999040 + 0.0437998i $$0.986054\pi$$
$$608$$ 1.30177 4.85828i 0.0527938 0.197029i
$$609$$ −2.40612 + 8.97976i −0.0975009 + 0.363878i
$$610$$ −11.5096 27.6120i −0.466011 1.11798i
$$611$$ 8.93106 + 33.3312i 0.361312 + 1.34843i
$$612$$ −7.83085 13.5634i −0.316543 0.548269i
$$613$$ 22.7510 + 6.09611i 0.918904 + 0.246219i 0.687117 0.726547i $$-0.258876\pi$$
0.231787 + 0.972767i $$0.425543\pi$$
$$614$$ 0.443669 1.65579i 0.0179050 0.0668224i
$$615$$ 7.62765 9.98667i 0.307577 0.402701i
$$616$$ −4.45290 + 1.19315i −0.179413 + 0.0480734i
$$617$$ −4.76975 + 17.8010i −0.192023 + 0.716640i 0.800994 + 0.598672i $$0.204305\pi$$
−0.993017 + 0.117968i $$0.962362\pi$$
$$618$$ −6.00554 6.00554i −0.241578 0.241578i
$$619$$ −18.4779 −0.742690 −0.371345 0.928495i $$-0.621103\pi$$
−0.371345 + 0.928495i $$0.621103\pi$$
$$620$$ 11.0162 + 1.42528i 0.442422 + 0.0572407i
$$621$$ 19.0312 + 19.0312i 0.763697 + 0.763697i
$$622$$ 18.4661 4.94798i 0.740424 0.198396i
$$623$$ 2.57278i 0.103076i
$$624$$ −0.849232 3.16938i −0.0339965 0.126877i
$$625$$ 0.223417 + 24.9990i 0.00893670 + 0.999960i
$$626$$ 3.96998 6.87620i 0.158672 0.274828i
$$627$$ 11.9049 6.87332i 0.475437 0.274494i
$$628$$ −3.00302 + 3.00302i −0.119834 + 0.119834i
$$629$$ 36.3668 + 25.9763i 1.45004 + 1.03574i
$$630$$ 4.54746 5.95386i 0.181175 0.237208i
$$631$$ 2.71340 10.1266i 0.108019 0.403132i −0.890651 0.454687i $$-0.849751\pi$$
0.998670 + 0.0515551i $$0.0164178\pi$$
$$632$$ 2.20734 0.591454i 0.0878032 0.0235268i
$$633$$ 4.11003 + 15.3389i 0.163359 + 0.609665i
$$634$$ 5.36333 1.43710i 0.213005 0.0570745i
$$635$$ 18.1824 + 13.8874i 0.721546 + 0.551105i
$$636$$ −2.06122 + 3.57014i −0.0817329 + 0.141565i
$$637$$ 15.9492i 0.631929i
$$638$$ −4.81830 + 17.9821i −0.190758 + 0.711920i
$$639$$ 15.3558i 0.607464i
$$640$$ 0.296818 + 2.21628i 0.0117328 + 0.0876062i
$$641$$ 14.5032 + 25.1202i 0.572841 + 0.992190i 0.996272 + 0.0862619i $$0.0274922\pi$$
−0.423431 + 0.905928i $$0.639174\pi$$
$$642$$ 12.7109 + 7.33865i 0.501660 + 0.289633i
$$643$$ 18.3641i 0.724208i −0.932138 0.362104i $$-0.882058\pi$$
0.932138 0.362104i $$-0.117942\pi$$
$$644$$ −8.54495 2.28961i −0.336718 0.0902234i
$$645$$ −0.0326071 + 0.252026i −0.00128390 + 0.00992350i
$$646$$ −35.6948 9.56438i −1.40439 0.376306i
$$647$$ −5.56903 + 9.64584i −0.218941 + 0.379217i −0.954484 0.298261i $$-0.903594\pi$$
0.735543 + 0.677478i $$0.236927\pi$$
$$648$$ 0.969450 1.67914i 0.0380836 0.0659627i
$$649$$ −40.6487 10.8918i −1.59560 0.427540i
$$650$$ 12.5046 + 12.3934i 0.490471 + 0.486107i
$$651$$ −7.02799 1.88314i −0.275449 0.0738063i
$$652$$ 16.3747i 0.641284i
$$653$$ −15.3702 8.87397i −0.601481 0.347265i 0.168143 0.985763i $$-0.446223\pi$$
−0.769624 + 0.638497i $$0.779556\pi$$
$$654$$ −0.0422763 0.0732246i −0.00165313 0.00286331i
$$655$$ −19.2899 + 25.2557i −0.753719 + 0.986823i
$$656$$ 6.03086i 0.235466i
$$657$$ −3.63591 + 13.5694i −0.141850 + 0.529392i
$$658$$ 15.4032i 0.600480i
$$659$$ 11.2361 19.4615i 0.437696 0.758111i −0.559816 0.828617i $$-0.689128\pi$$
0.997511 + 0.0705059i $$0.0224614\pi$$
$$660$$ −3.70956 + 4.85683i −0.144395 + 0.189052i
$$661$$ 5.13903 1.37700i 0.199885 0.0535590i −0.157487 0.987521i $$-0.550339\pi$$
0.357372 + 0.933962i $$0.383673\pi$$
$$662$$ 1.30074 + 4.85442i 0.0505546 + 0.188672i
$$663$$ −23.2861 + 6.23948i −0.904356 + 0.242321i
$$664$$ 3.38786 12.6437i 0.131475 0.490670i
$$665$$ −2.34648 17.5207i −0.0909925 0.679423i
$$666$$ −1.25126 + 12.9058i −0.0484852 + 0.500090i
$$667$$ −25.2609 + 25.2609i −0.978107 + 0.978107i
$$668$$ 0.770702 0.444965i 0.0298193 0.0172162i
$$669$$ 7.97520 13.8134i 0.308339 0.534059i
$$670$$ 8.77989 + 21.0633i 0.339197 + 0.813746i
$$671$$ 10.1557 + 37.9015i 0.392055 + 1.46317i
$$672$$ 1.46465i 0.0565002i
$$673$$ 31.8646 8.53810i 1.22829 0.329120i 0.414377 0.910105i $$-0.363999\pi$$
0.813914 + 0.580986i $$0.197333\pi$$
$$674$$ 3.06792 + 3.06792i 0.118172 + 0.118172i
$$675$$ −0.106838 23.9095i −0.00411219 0.920275i
$$676$$ −0.601582 −0.0231378
$$677$$ 19.9842 + 19.9842i 0.768054 + 0.768054i 0.977764 0.209710i $$-0.0672519\pi$$
−0.209710 + 0.977764i $$0.567252\pi$$
$$678$$ −2.12292 + 7.92284i −0.0815302 + 0.304275i
$$679$$ −15.9907 + 4.28469i −0.613666 + 0.164431i
$$680$$ 16.2835 2.18078i 0.624443 0.0836292i
$$681$$ 5.03296 18.7832i 0.192863 0.719776i
$$682$$ −14.0737 3.77103i −0.538909 0.144400i
$$683$$ 7.03614 + 12.1870i 0.269231 + 0.466321i 0.968663 0.248377i $$-0.0798973\pi$$
−0.699433 + 0.714698i $$0.746564\pi$$
$$684$$ −2.77492 10.3562i −0.106102 0.395977i
$$685$$ 38.2608 15.9484i 1.46187 0.609357i
$$686$$ −4.69026 + 17.5043i −0.179075 + 0.668316i
$$687$$ −5.36033 + 20.0050i −0.204509 + 0.763239i
$$688$$ −0.0609800 0.105621i −0.00232484 0.00402674i
$$689$$ −11.0148 11.0148i −0.419630 0.419630i
$$690$$ −10.8249 + 4.51216i −0.412095 + 0.171775i
$$691$$ −2.58337 + 1.49151i −0.0982761 + 0.0567398i −0.548333 0.836260i $$-0.684737\pi$$
0.450056 + 0.893000i $$0.351404\pi$$
$$692$$ 17.1489 17.1489i 0.651905 0.651905i
$$693$$ −6.94866 + 6.94866i −0.263958 + 0.263958i
$$694$$ 7.51038 + 13.0084i 0.285090 + 0.493791i
$$695$$ −0.841378 6.28241i −0.0319153 0.238305i
$$696$$ −5.12228 2.95735i −0.194160 0.112098i
$$697$$ 44.3100 1.67836
$$698$$ −28.7916 16.6228i −1.08978 0.629183i
$$699$$ −12.2575 7.07690i −0.463623 0.267673i
$$700$$ 3.95979 + 6.78832i 0.149666 + 0.256574i
$$701$$ 29.7954 + 7.98366i 1.12536 + 0.301539i 0.773050 0.634345i $$-0.218730\pi$$
0.352308 + 0.935884i $$0.385397\pi$$
$$702$$ −11.9062 11.9062i −0.449370 0.449370i
$$703$$ 19.4448 + 23.6200i 0.733374 + 0.890847i
$$704$$ 2.93300i 0.110541i
$$705$$ 12.4671 + 16.1724i 0.469537 + 0.609090i
$$706$$ −8.41266 4.85705i −0.316615 0.182798i
$$707$$ 8.54833 2.29052i 0.321493 0.0861438i
$$708$$ 6.68511 11.5789i 0.251242 0.435163i
$$709$$ 16.6390 + 16.6390i 0.624890 + 0.624890i 0.946778 0.321888i $$-0.104317\pi$$
−0.321888 + 0.946778i $$0.604317\pi$$
$$710$$ −14.8955 6.13097i −0.559019 0.230091i
$$711$$ 3.44450 3.44450i 0.129179 0.129179i
$$712$$ −1.58109 0.423653i −0.0592540 0.0158771i
$$713$$ −19.7704 19.7704i −0.740408 0.740408i
$$714$$ −10.7611 −0.402725
$$715$$ −14.0990 18.2894i −0.527273 0.683985i
$$716$$ 0.502795 + 1.87646i 0.0187903 + 0.0701264i
$$717$$ 16.4703 0.615093
$$718$$ −26.6457 + 15.3839i −0.994407 + 0.574121i
$$719$$ 25.6555 14.8122i 0.956788 0.552402i 0.0616050 0.998101i $$-0.480378\pi$$
0.895183 + 0.445699i $$0.147045\pi$$
$$720$$ 2.91011 + 3.77504i 0.108454 + 0.140688i
$$721$$ 13.8373 3.70770i 0.515329 0.138082i
$$722$$ −5.45375 3.14872i −0.202968 0.117183i
$$723$$ −9.85523 + 5.68992i −0.366520 + 0.211610i
$$724$$ −4.19804 7.27122i −0.156019 0.270233i
$$725$$ 31.7360 0.141810i 1.17864 0.00526670i
$$726$$ −1.57978 + 1.57978i −0.0586313 + 0.0586313i
$$727$$ 5.22531 9.05050i 0.193796 0.335664i −0.752709 0.658353i $$-0.771253\pi$$
0.946505 + 0.322689i $$0.104587\pi$$
$$728$$ 5.34583 + 1.43241i 0.198130 + 0.0530887i
$$729$$ 9.23511i 0.342041i
$$730$$ −11.7110 8.94468i −0.433444 0.331057i
$$731$$ −0.776016 + 0.448033i −0.0287020 + 0.0165711i
$$732$$ −12.4666 −0.460779
$$733$$ 3.22387 + 12.0317i 0.119077 + 0.444400i 0.999560 0.0296781i $$-0.00944823\pi$$
−0.880483 + 0.474078i $$0.842782\pi$$
$$734$$ 2.31280 2.31280i 0.0853672 0.0853672i
$$735$$ 3.63130 + 8.71162i 0.133942 + 0.321333i
$$736$$ 2.81415 4.87426i 0.103731 0.179668i
$$737$$ −7.74706 28.9124i −0.285367 1.06500i
$$738$$ 6.42785 + 11.1334i 0.236612 + 0.409825i
$$739$$ 40.2537 1.48075 0.740377 0.672191i $$-0.234647\pi$$
0.740377 + 0.672191i $$0.234647\pi$$
$$740$$ −12.0194 6.36656i −0.441843 0.234039i
$$741$$ −16.5032 −0.606260
$$742$$ −3.47669 6.02181i −0.127633 0.221068i
$$743$$ 5.98149 + 22.3232i 0.219440 + 0.818960i 0.984556 + 0.175068i $$0.0560147\pi$$
−0.765117 + 0.643892i $$0.777319\pi$$
$$744$$ 2.31457 4.00894i 0.0848561 0.146975i
$$745$$ 6.02598 14.6404i 0.220775 0.536384i
$$746$$ −7.00360 + 7.00360i −0.256420 + 0.256420i
$$747$$ −7.22175 26.9519i −0.264230 0.986120i
$$748$$ −21.5493 −0.787921
$$749$$ −21.4397 + 12.3782i −0.783388 + 0.452290i
$$750$$ 9.65187 + 3.92235i 0.352436 + 0.143224i
$$751$$ 50.6072i 1.84668i −0.383978 0.923342i $$-0.625446\pi$$
0.383978 0.923342i $$-0.374554\pi$$
$$752$$ −9.46602 2.53641i −0.345190 0.0924934i
$$753$$ −3.05836 + 5.29724i −0.111453 + 0.193042i
$$754$$ 15.8035 15.8035i 0.575531 0.575531i
$$755$$ −2.73580 3.54891i −0.0995659 0.129158i
$$756$$ −3.75805 6.50913i −0.136679 0.236735i
$$757$$ 24.9161 14.3853i 0.905592 0.522844i 0.0265820 0.999647i $$-0.491538\pi$$
0.879010 + 0.476803i $$0.158204\pi$$
$$758$$ −3.81839 2.20455i −0.138690 0.0800727i
$$759$$ 14.8587 3.98137i 0.539335 0.144515i
$$760$$ 11.1537 + 1.44307i 0.404587 + 0.0523455i
$$761$$ −44.7436 + 25.8327i −1.62195 + 0.936435i −0.635555 + 0.772055i $$0.719229\pi$$
−0.986397 + 0.164380i $$0.947438\pi$$
$$762$$ 8.25722 4.76731i 0.299127 0.172701i
$$763$$ 0.142616 0.00516304
$$764$$ 3.78832 + 14.1382i 0.137057 + 0.511502i
$$765$$ 27.7360 21.3812i 1.00280 0.773040i
$$766$$ 0.932963 0.0337093
$$767$$ 35.7240 + 35.7240i 1.28992 + 1.28992i
$$768$$ 0.900100 + 0.241181i 0.0324795 + 0.00870287i