Properties

Label 370.2.q.c.97.2
Level $370$
Weight $2$
Character 370.97
Analytic conductor $2.954$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(97,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.q (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 97.2
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 370.97
Dual form 370.2.q.c.103.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.758819 - 2.83195i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.917738 - 2.03906i) q^{5} +(-2.07313 - 2.07313i) q^{6} +(-0.490870 + 1.83195i) q^{7} -1.00000 q^{8} +(-4.84607 - 2.79788i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(0.758819 - 2.83195i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.917738 - 2.03906i) q^{5} +(-2.07313 - 2.07313i) q^{6} +(-0.490870 + 1.83195i) q^{7} -1.00000 q^{8} +(-4.84607 - 2.79788i) q^{9} +(-1.30701 - 1.81431i) q^{10} +0.0963763i q^{11} +(-2.83195 + 0.758819i) q^{12} +(1.59077 + 2.75529i) q^{13} +(1.34108 + 1.34108i) q^{14} +(-5.07812 - 4.14626i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.73936 + 2.15892i) q^{17} +(-4.84607 + 2.79788i) q^{18} +(4.71209 + 1.26260i) q^{19} +(-2.22474 + 0.224745i) q^{20} +(4.81552 + 2.78024i) q^{21} +(0.0834643 + 0.0481882i) q^{22} +1.96713 q^{23} +(-0.758819 + 2.83195i) q^{24} +(-3.31552 - 3.74264i) q^{25} +3.18154 q^{26} +(-5.38134 + 5.38134i) q^{27} +(1.83195 - 0.490870i) q^{28} +(-3.50731 - 3.50731i) q^{29} +(-6.12983 + 2.32465i) q^{30} +(-3.04989 + 3.04989i) q^{31} +(0.500000 + 0.866025i) q^{32} +(0.272933 + 0.0731322i) q^{33} +(3.73936 - 2.15892i) q^{34} +(3.28497 + 2.68216i) q^{35} +5.59575i q^{36} +(-5.72620 + 2.05197i) q^{37} +(3.44949 - 3.44949i) q^{38} +(9.00997 - 2.41421i) q^{39} +(-0.917738 + 2.03906i) q^{40} +(7.68482 - 4.43684i) q^{41} +(4.81552 - 2.78024i) q^{42} -7.57749 q^{43} +(0.0834643 - 0.0481882i) q^{44} +(-10.1525 + 7.31369i) q^{45} +(0.983564 - 1.70358i) q^{46} +(-9.56288 - 9.56288i) q^{47} +(2.07313 + 2.07313i) q^{48} +(2.94709 + 1.70150i) q^{49} +(-4.89898 + 1.00000i) q^{50} +(8.95145 - 8.95145i) q^{51} +(1.59077 - 2.75529i) q^{52} +(-0.388390 - 1.44949i) q^{53} +(1.96971 + 7.35105i) q^{54} +(0.196517 + 0.0884482i) q^{55} +(0.490870 - 1.83195i) q^{56} +(7.15125 - 12.3863i) q^{57} +(-4.79107 + 1.28376i) q^{58} +(2.98174 + 11.1280i) q^{59} +(-1.05171 + 6.47091i) q^{60} +(9.90775 + 2.65477i) q^{61} +(1.11634 + 4.16622i) q^{62} +(7.50436 - 7.50436i) q^{63} +1.00000 q^{64} +(7.07812 - 0.715035i) q^{65} +(0.199801 - 0.199801i) q^{66} +(-6.88865 - 1.84581i) q^{67} -4.31784i q^{68} +(1.49269 - 5.57081i) q^{69} +(3.96530 - 1.50378i) q^{70} +(-0.958620 - 1.66038i) q^{71} +(4.84607 + 2.79788i) q^{72} +(4.62863 + 4.62863i) q^{73} +(-1.08604 + 5.98502i) q^{74} +(-13.1149 + 6.54939i) q^{75} +(-1.26260 - 4.71209i) q^{76} +(-0.176557 - 0.0473082i) q^{77} +(2.41421 - 9.00997i) q^{78} +(-2.89329 - 0.775255i) q^{79} +(1.30701 + 1.81431i) q^{80} +(2.76260 + 4.78497i) q^{81} -8.87367i q^{82} +(3.32377 + 12.4045i) q^{83} -5.56048i q^{84} +(7.83391 - 5.64344i) q^{85} +(-3.78875 + 6.56230i) q^{86} +(-12.5939 + 7.27111i) q^{87} -0.0963763i q^{88} +(4.69445 - 1.25787i) q^{89} +(1.25762 + 12.4491i) q^{90} +(-5.82843 + 1.56172i) q^{91} +(-0.983564 - 1.70358i) q^{92} +(6.32282 + 10.9514i) q^{93} +(-13.0631 + 3.50026i) q^{94} +(6.89898 - 8.44949i) q^{95} +(2.83195 - 0.758819i) q^{96} -17.6729i q^{97} +(2.94709 - 1.70150i) q^{98} +(0.269649 - 0.467046i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 4 q^{5} - 4 q^{6} + 12 q^{7} - 8 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 4 q^{5} - 4 q^{6} + 12 q^{7} - 8 q^{8} - 12 q^{9} - 4 q^{10} - 8 q^{12} - 4 q^{13} + 12 q^{14} - 4 q^{16} + 12 q^{17} - 12 q^{18} + 4 q^{19} - 8 q^{20} + 12 q^{21} - 12 q^{22} - 8 q^{23} - 4 q^{24} - 8 q^{26} - 8 q^{27} - 24 q^{29} - 12 q^{30} - 8 q^{31} + 4 q^{32} - 12 q^{33} + 12 q^{34} + 8 q^{38} + 16 q^{39} - 4 q^{40} + 12 q^{41} + 12 q^{42} + 16 q^{43} - 12 q^{44} - 12 q^{45} - 4 q^{46} - 8 q^{47} + 4 q^{48} + 36 q^{49} + 20 q^{51} - 4 q^{52} + 16 q^{53} - 4 q^{54} + 16 q^{55} - 12 q^{56} + 4 q^{57} - 24 q^{58} - 8 q^{59} - 12 q^{60} + 20 q^{62} - 4 q^{63} + 8 q^{64} + 16 q^{65} - 16 q^{67} + 16 q^{69} - 12 q^{70} - 4 q^{71} + 12 q^{72} + 16 q^{73} - 20 q^{75} + 4 q^{76} + 4 q^{77} + 8 q^{78} - 32 q^{79} + 4 q^{80} + 8 q^{81} + 16 q^{85} + 8 q^{86} - 36 q^{87} + 8 q^{89} + 24 q^{90} - 24 q^{91} + 4 q^{92} + 20 q^{93} - 16 q^{94} + 16 q^{95} + 8 q^{96} + 36 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.758819 2.83195i 0.438104 1.63503i −0.295422 0.955367i \(-0.595460\pi\)
0.733526 0.679661i \(-0.237873\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.917738 2.03906i 0.410425 0.911894i
\(6\) −2.07313 2.07313i −0.846353 0.846353i
\(7\) −0.490870 + 1.83195i −0.185531 + 0.692412i 0.808985 + 0.587830i \(0.200017\pi\)
−0.994516 + 0.104583i \(0.966649\pi\)
\(8\) −1.00000 −0.353553
\(9\) −4.84607 2.79788i −1.61536 0.932626i
\(10\) −1.30701 1.81431i −0.413312 0.573736i
\(11\) 0.0963763i 0.0290586i 0.999894 + 0.0145293i \(0.00462498\pi\)
−0.999894 + 0.0145293i \(0.995375\pi\)
\(12\) −2.83195 + 0.758819i −0.817514 + 0.219052i
\(13\) 1.59077 + 2.75529i 0.441200 + 0.764181i 0.997779 0.0666137i \(-0.0212195\pi\)
−0.556579 + 0.830795i \(0.687886\pi\)
\(14\) 1.34108 + 1.34108i 0.358419 + 0.358419i
\(15\) −5.07812 4.14626i −1.31116 1.07056i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.73936 + 2.15892i 0.906927 + 0.523615i 0.879441 0.476008i \(-0.157916\pi\)
0.0274860 + 0.999622i \(0.491250\pi\)
\(18\) −4.84607 + 2.79788i −1.14223 + 0.659466i
\(19\) 4.71209 + 1.26260i 1.08103 + 0.289661i 0.755017 0.655705i \(-0.227629\pi\)
0.326011 + 0.945366i \(0.394295\pi\)
\(20\) −2.22474 + 0.224745i −0.497468 + 0.0502545i
\(21\) 4.81552 + 2.78024i 1.05083 + 0.606698i
\(22\) 0.0834643 + 0.0481882i 0.0177947 + 0.0102737i
\(23\) 1.96713 0.410175 0.205087 0.978744i \(-0.434252\pi\)
0.205087 + 0.978744i \(0.434252\pi\)
\(24\) −0.758819 + 2.83195i −0.154893 + 0.578070i
\(25\) −3.31552 3.74264i −0.663103 0.748528i
\(26\) 3.18154 0.623951
\(27\) −5.38134 + 5.38134i −1.03564 + 1.03564i
\(28\) 1.83195 0.490870i 0.346206 0.0927657i
\(29\) −3.50731 3.50731i −0.651290 0.651290i 0.302013 0.953304i \(-0.402341\pi\)
−0.953304 + 0.302013i \(0.902341\pi\)
\(30\) −6.12983 + 2.32465i −1.11915 + 0.424420i
\(31\) −3.04989 + 3.04989i −0.547776 + 0.547776i −0.925797 0.378021i \(-0.876605\pi\)
0.378021 + 0.925797i \(0.376605\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0.272933 + 0.0731322i 0.0475115 + 0.0127307i
\(34\) 3.73936 2.15892i 0.641294 0.370251i
\(35\) 3.28497 + 2.68216i 0.555260 + 0.453368i
\(36\) 5.59575i 0.932626i
\(37\) −5.72620 + 2.05197i −0.941382 + 0.337342i
\(38\) 3.44949 3.44949i 0.559581 0.559581i
\(39\) 9.00997 2.41421i 1.44275 0.386584i
\(40\) −0.917738 + 2.03906i −0.145107 + 0.322403i
\(41\) 7.68482 4.43684i 1.20017 0.692917i 0.239575 0.970878i \(-0.422992\pi\)
0.960593 + 0.277960i \(0.0896584\pi\)
\(42\) 4.81552 2.78024i 0.743050 0.429000i
\(43\) −7.57749 −1.15556 −0.577778 0.816194i \(-0.696080\pi\)
−0.577778 + 0.816194i \(0.696080\pi\)
\(44\) 0.0834643 0.0481882i 0.0125827 0.00726464i
\(45\) −10.1525 + 7.31369i −1.51344 + 1.09026i
\(46\) 0.983564 1.70358i 0.145019 0.251180i
\(47\) −9.56288 9.56288i −1.39489 1.39489i −0.813938 0.580952i \(-0.802681\pi\)
−0.580952 0.813938i \(-0.697319\pi\)
\(48\) 2.07313 + 2.07313i 0.299231 + 0.299231i
\(49\) 2.94709 + 1.70150i 0.421012 + 0.243072i
\(50\) −4.89898 + 1.00000i −0.692820 + 0.141421i
\(51\) 8.95145 8.95145i 1.25345 1.25345i
\(52\) 1.59077 2.75529i 0.220600 0.382091i
\(53\) −0.388390 1.44949i −0.0533494 0.199103i 0.934107 0.356992i \(-0.116198\pi\)
−0.987457 + 0.157889i \(0.949531\pi\)
\(54\) 1.96971 + 7.35105i 0.268043 + 1.00035i
\(55\) 0.196517 + 0.0884482i 0.0264983 + 0.0119263i
\(56\) 0.490870 1.83195i 0.0655952 0.244805i
\(57\) 7.15125 12.3863i 0.947206 1.64061i
\(58\) −4.79107 + 1.28376i −0.629098 + 0.168566i
\(59\) 2.98174 + 11.1280i 0.388189 + 1.44874i 0.833077 + 0.553156i \(0.186577\pi\)
−0.444888 + 0.895586i \(0.646756\pi\)
\(60\) −1.05171 + 6.47091i −0.135775 + 0.835391i
\(61\) 9.90775 + 2.65477i 1.26856 + 0.339909i 0.829478 0.558540i \(-0.188638\pi\)
0.439079 + 0.898448i \(0.355305\pi\)
\(62\) 1.11634 + 4.16622i 0.141775 + 0.529111i
\(63\) 7.50436 7.50436i 0.945461 0.945461i
\(64\) 1.00000 0.125000
\(65\) 7.07812 0.715035i 0.877932 0.0886892i
\(66\) 0.199801 0.199801i 0.0245938 0.0245938i
\(67\) −6.88865 1.84581i −0.841582 0.225501i −0.187822 0.982203i \(-0.560143\pi\)
−0.653760 + 0.756702i \(0.726809\pi\)
\(68\) 4.31784i 0.523615i
\(69\) 1.49269 5.57081i 0.179699 0.670647i
\(70\) 3.96530 1.50378i 0.473944 0.179736i
\(71\) −0.958620 1.66038i −0.113767 0.197051i 0.803519 0.595279i \(-0.202958\pi\)
−0.917286 + 0.398228i \(0.869625\pi\)
\(72\) 4.84607 + 2.79788i 0.571114 + 0.329733i
\(73\) 4.62863 + 4.62863i 0.541740 + 0.541740i 0.924039 0.382299i \(-0.124868\pi\)
−0.382299 + 0.924039i \(0.624868\pi\)
\(74\) −1.08604 + 5.98502i −0.126250 + 0.695745i
\(75\) −13.1149 + 6.54939i −1.51437 + 0.756258i
\(76\) −1.26260 4.71209i −0.144830 0.540514i
\(77\) −0.176557 0.0473082i −0.0201205 0.00539127i
\(78\) 2.41421 9.00997i 0.273356 1.02018i
\(79\) −2.89329 0.775255i −0.325521 0.0872230i 0.0923579 0.995726i \(-0.470560\pi\)
−0.417879 + 0.908503i \(0.637226\pi\)
\(80\) 1.30701 + 1.81431i 0.146128 + 0.202846i
\(81\) 2.76260 + 4.78497i 0.306956 + 0.531663i
\(82\) 8.87367i 0.979933i
\(83\) 3.32377 + 12.4045i 0.364831 + 1.36157i 0.867650 + 0.497175i \(0.165629\pi\)
−0.502820 + 0.864391i \(0.667704\pi\)
\(84\) 5.56048i 0.606698i
\(85\) 7.83391 5.64344i 0.849707 0.612117i
\(86\) −3.78875 + 6.56230i −0.408551 + 0.707631i
\(87\) −12.5939 + 7.27111i −1.35021 + 0.779545i
\(88\) 0.0963763i 0.0102737i
\(89\) 4.69445 1.25787i 0.497611 0.133334i −0.00128006 0.999999i \(-0.500407\pi\)
0.498891 + 0.866665i \(0.333741\pi\)
\(90\) 1.25762 + 12.4491i 0.132564 + 1.31225i
\(91\) −5.82843 + 1.56172i −0.610985 + 0.163713i
\(92\) −0.983564 1.70358i −0.102544 0.177611i
\(93\) 6.32282 + 10.9514i 0.655646 + 1.13561i
\(94\) −13.0631 + 3.50026i −1.34736 + 0.361024i
\(95\) 6.89898 8.44949i 0.707820 0.866899i
\(96\) 2.83195 0.758819i 0.289035 0.0774466i
\(97\) 17.6729i 1.79441i −0.441616 0.897204i \(-0.645595\pi\)
0.441616 0.897204i \(-0.354405\pi\)
\(98\) 2.94709 1.70150i 0.297701 0.171878i
\(99\) 0.269649 0.467046i 0.0271008 0.0469399i
\(100\) −1.58346 + 4.74264i −0.158346 + 0.474264i
\(101\) 7.17914i 0.714351i −0.934037 0.357175i \(-0.883740\pi\)
0.934037 0.357175i \(-0.116260\pi\)
\(102\) −3.27646 12.2279i −0.324418 1.21074i
\(103\) 8.90190i 0.877130i 0.898699 + 0.438565i \(0.144513\pi\)
−0.898699 + 0.438565i \(0.855487\pi\)
\(104\) −1.59077 2.75529i −0.155988 0.270179i
\(105\) 10.0884 7.26758i 0.984532 0.709244i
\(106\) −1.44949 0.388390i −0.140787 0.0377237i
\(107\) −3.19041 + 11.9068i −0.308429 + 1.15107i 0.621525 + 0.783395i \(0.286514\pi\)
−0.929953 + 0.367677i \(0.880153\pi\)
\(108\) 7.35105 + 1.96971i 0.707355 + 0.189535i
\(109\) 1.44659 + 5.39874i 0.138558 + 0.517105i 0.999958 + 0.00917807i \(0.00292151\pi\)
−0.861400 + 0.507927i \(0.830412\pi\)
\(110\) 0.174857 0.125965i 0.0166719 0.0120102i
\(111\) 1.46593 + 17.7734i 0.139140 + 1.68698i
\(112\) −1.34108 1.34108i −0.126720 0.126720i
\(113\) 13.6766 + 7.89621i 1.28659 + 0.742813i 0.978044 0.208397i \(-0.0668245\pi\)
0.308546 + 0.951210i \(0.400158\pi\)
\(114\) −7.15125 12.3863i −0.669776 1.16009i
\(115\) 1.80531 4.01109i 0.168346 0.374036i
\(116\) −1.28376 + 4.79107i −0.119194 + 0.444840i
\(117\) 17.8031i 1.64590i
\(118\) 11.1280 + 2.98174i 1.02442 + 0.274491i
\(119\) −5.79057 + 5.79057i −0.530821 + 0.530821i
\(120\) 5.07812 + 4.14626i 0.463566 + 0.378500i
\(121\) 10.9907 0.999156
\(122\) 7.25297 7.25297i 0.656653 0.656653i
\(123\) −6.73351 25.1298i −0.607140 2.26588i
\(124\) 4.16622 + 1.11634i 0.374138 + 0.100250i
\(125\) −10.6742 + 3.32577i −0.954733 + 0.297465i
\(126\) −2.74679 10.2511i −0.244703 0.913245i
\(127\) −8.94364 + 2.39644i −0.793620 + 0.212650i −0.632781 0.774331i \(-0.718087\pi\)
−0.160839 + 0.986981i \(0.551420\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −5.74995 + 21.4591i −0.506255 + 1.88937i
\(130\) 2.91982 6.48735i 0.256085 0.568978i
\(131\) −2.10124 7.84192i −0.183586 0.685152i −0.994929 0.100581i \(-0.967930\pi\)
0.811343 0.584570i \(-0.198737\pi\)
\(132\) −0.0731322 0.272933i −0.00636534 0.0237558i
\(133\) −4.62605 + 8.01255i −0.401129 + 0.694776i
\(134\) −5.04284 + 5.04284i −0.435635 + 0.435635i
\(135\) 6.03421 + 15.9115i 0.519342 + 1.36945i
\(136\) −3.73936 2.15892i −0.320647 0.185126i
\(137\) 14.7296 + 14.7296i 1.25844 + 1.25844i 0.951839 + 0.306597i \(0.0991904\pi\)
0.306597 + 0.951839i \(0.400810\pi\)
\(138\) −4.07812 4.07812i −0.347152 0.347152i
\(139\) 1.81734 3.14772i 0.154145 0.266986i −0.778603 0.627517i \(-0.784071\pi\)
0.932747 + 0.360531i \(0.117404\pi\)
\(140\) 0.680339 4.18594i 0.0574991 0.353777i
\(141\) −34.3381 + 19.8251i −2.89179 + 1.66958i
\(142\) −1.91724 −0.160891
\(143\) −0.265545 + 0.153313i −0.0222060 + 0.0128206i
\(144\) 4.84607 2.79788i 0.403839 0.233156i
\(145\) −10.3704 + 3.93281i −0.861214 + 0.326602i
\(146\) 6.32282 1.69419i 0.523280 0.140213i
\(147\) 7.05487 7.05487i 0.581876 0.581876i
\(148\) 4.64016 + 3.93305i 0.381419 + 0.323295i
\(149\) 13.9060i 1.13923i 0.821913 + 0.569613i \(0.192907\pi\)
−0.821913 + 0.569613i \(0.807093\pi\)
\(150\) −0.885488 + 14.6325i −0.0722998 + 1.19474i
\(151\) 3.54504 2.04673i 0.288491 0.166560i −0.348770 0.937208i \(-0.613401\pi\)
0.637261 + 0.770648i \(0.280067\pi\)
\(152\) −4.71209 1.26260i −0.382201 0.102410i
\(153\) −12.0808 20.9245i −0.976673 1.69165i
\(154\) −0.129248 + 0.129248i −0.0104151 + 0.0104151i
\(155\) 3.41990 + 9.01790i 0.274693 + 0.724335i
\(156\) −6.59575 6.59575i −0.528083 0.528083i
\(157\) −17.5716 + 4.70831i −1.40237 + 0.375764i −0.879195 0.476461i \(-0.841919\pi\)
−0.523175 + 0.852225i \(0.675253\pi\)
\(158\) −2.11804 + 2.11804i −0.168502 + 0.168502i
\(159\) −4.39960 −0.348911
\(160\) 2.22474 0.224745i 0.175882 0.0177676i
\(161\) −0.965604 + 3.60368i −0.0761002 + 0.284010i
\(162\) 5.52520 0.434101
\(163\) −5.45854 3.15149i −0.427546 0.246844i 0.270755 0.962648i \(-0.412727\pi\)
−0.698301 + 0.715805i \(0.746060\pi\)
\(164\) −7.68482 4.43684i −0.600084 0.346459i
\(165\) 0.399602 0.489410i 0.0311089 0.0381005i
\(166\) 12.4045 + 3.32377i 0.962773 + 0.257974i
\(167\) 3.65634 2.11099i 0.282936 0.163353i −0.351816 0.936069i \(-0.614436\pi\)
0.634752 + 0.772716i \(0.281102\pi\)
\(168\) −4.81552 2.78024i −0.371525 0.214500i
\(169\) 1.43890 2.49225i 0.110685 0.191711i
\(170\) −0.970412 9.60609i −0.0744272 0.736753i
\(171\) −19.3025 19.3025i −1.47610 1.47610i
\(172\) 3.78875 + 6.56230i 0.288889 + 0.500371i
\(173\) −3.03079 + 0.812098i −0.230427 + 0.0617427i −0.372185 0.928159i \(-0.621391\pi\)
0.141758 + 0.989901i \(0.454725\pi\)
\(174\) 14.5422i 1.10244i
\(175\) 8.48382 4.23671i 0.641317 0.320265i
\(176\) −0.0834643 0.0481882i −0.00629136 0.00363232i
\(177\) 33.7766 2.53880
\(178\) 1.25787 4.69445i 0.0942817 0.351864i
\(179\) −9.42053 9.42053i −0.704124 0.704124i 0.261169 0.965293i \(-0.415892\pi\)
−0.965293 + 0.261169i \(0.915892\pi\)
\(180\) 11.4101 + 5.13543i 0.850456 + 0.382773i
\(181\) −7.22853 12.5202i −0.537292 0.930617i −0.999049 0.0436106i \(-0.986114\pi\)
0.461756 0.887007i \(-0.347219\pi\)
\(182\) −1.56172 + 5.82843i −0.115763 + 0.432032i
\(183\) 15.0364 26.0438i 1.11152 1.92521i
\(184\) −1.96713 −0.145019
\(185\) −1.07107 + 13.5592i −0.0787465 + 0.996895i
\(186\) 12.6456 0.927223
\(187\) −0.208069 + 0.360385i −0.0152155 + 0.0263540i
\(188\) −3.50026 + 13.0631i −0.255283 + 0.952727i
\(189\) −7.21682 12.4999i −0.524946 0.909233i
\(190\) −3.86798 10.1994i −0.280613 0.739945i
\(191\) 8.61143 + 8.61143i 0.623102 + 0.623102i 0.946323 0.323222i \(-0.104766\pi\)
−0.323222 + 0.946323i \(0.604766\pi\)
\(192\) 0.758819 2.83195i 0.0547630 0.204378i
\(193\) −22.3791 −1.61088 −0.805441 0.592675i \(-0.798072\pi\)
−0.805441 + 0.592675i \(0.798072\pi\)
\(194\) −15.3052 8.83644i −1.09885 0.634419i
\(195\) 3.34607 20.5875i 0.239617 1.47430i
\(196\) 3.40300i 0.243072i
\(197\) 17.7868 4.76595i 1.26725 0.339560i 0.438276 0.898840i \(-0.355589\pi\)
0.828978 + 0.559281i \(0.188923\pi\)
\(198\) −0.269649 0.467046i −0.0191631 0.0331915i
\(199\) −5.85267 5.85267i −0.414885 0.414885i 0.468552 0.883436i \(-0.344776\pi\)
−0.883436 + 0.468552i \(0.844776\pi\)
\(200\) 3.31552 + 3.74264i 0.234442 + 0.264645i
\(201\) −10.4545 + 18.1077i −0.737402 + 1.27722i
\(202\) −6.21731 3.58957i −0.437449 0.252561i
\(203\) 8.14684 4.70358i 0.571796 0.330127i
\(204\) −12.2279 3.27646i −0.856125 0.229398i
\(205\) −1.99431 19.7417i −0.139289 1.37882i
\(206\) 7.70927 + 4.45095i 0.537130 + 0.310112i
\(207\) −9.53283 5.50378i −0.662577 0.382539i
\(208\) −3.18154 −0.220600
\(209\) −0.121685 + 0.454134i −0.00841712 + 0.0314131i
\(210\) −1.24969 12.3706i −0.0862367 0.853656i
\(211\) −0.0376802 −0.00259401 −0.00129701 0.999999i \(-0.500413\pi\)
−0.00129701 + 0.999999i \(0.500413\pi\)
\(212\) −1.06110 + 1.06110i −0.0728767 + 0.0728767i
\(213\) −5.42953 + 1.45484i −0.372025 + 0.0996839i
\(214\) 8.71637 + 8.71637i 0.595839 + 0.595839i
\(215\) −6.95415 + 15.4509i −0.474269 + 1.05375i
\(216\) 5.38134 5.38134i 0.366154 0.366154i
\(217\) −4.09015 7.08434i −0.277657 0.480917i
\(218\) 5.39874 + 1.44659i 0.365649 + 0.0979753i
\(219\) 16.6203 9.59575i 1.12310 0.648421i
\(220\) −0.0216601 0.214413i −0.00146032 0.0144557i
\(221\) 13.7374i 0.924076i
\(222\) 16.1252 + 7.61717i 1.08225 + 0.511231i
\(223\) 2.83565 2.83565i 0.189889 0.189889i −0.605759 0.795648i \(-0.707130\pi\)
0.795648 + 0.605759i \(0.207130\pi\)
\(224\) −1.83195 + 0.490870i −0.122402 + 0.0327976i
\(225\) 5.59575 + 27.4135i 0.373050 + 1.82757i
\(226\) 13.6766 7.89621i 0.909756 0.525248i
\(227\) −21.1047 + 12.1848i −1.40077 + 0.808735i −0.994472 0.105005i \(-0.966514\pi\)
−0.406299 + 0.913740i \(0.633181\pi\)
\(228\) −14.3025 −0.947206
\(229\) −17.7854 + 10.2684i −1.17529 + 0.678556i −0.954921 0.296859i \(-0.904061\pi\)
−0.220373 + 0.975416i \(0.570727\pi\)
\(230\) −2.57105 3.56899i −0.169530 0.235332i
\(231\) −0.267949 + 0.464102i −0.0176298 + 0.0305356i
\(232\) 3.50731 + 3.50731i 0.230266 + 0.230266i
\(233\) −20.8817 20.8817i −1.36801 1.36801i −0.863280 0.504725i \(-0.831594\pi\)
−0.504725 0.863280i \(-0.668406\pi\)
\(234\) −15.4180 8.90156i −1.00790 0.581913i
\(235\) −28.2755 + 10.7231i −1.84449 + 0.699495i
\(236\) 8.14626 8.14626i 0.530277 0.530277i
\(237\) −4.39097 + 7.60538i −0.285224 + 0.494023i
\(238\) 2.11950 + 7.91007i 0.137387 + 0.512734i
\(239\) −1.62459 6.06304i −0.105086 0.392185i 0.893269 0.449522i \(-0.148406\pi\)
−0.998355 + 0.0573368i \(0.981739\pi\)
\(240\) 6.12983 2.32465i 0.395679 0.150055i
\(241\) −4.30632 + 16.0714i −0.277394 + 1.03525i 0.676825 + 0.736144i \(0.263355\pi\)
−0.954220 + 0.299107i \(0.903311\pi\)
\(242\) 5.49536 9.51824i 0.353255 0.611855i
\(243\) −6.40605 + 1.71649i −0.410948 + 0.110113i
\(244\) −2.65477 9.90775i −0.169954 0.634278i
\(245\) 6.17411 4.44775i 0.394449 0.284156i
\(246\) −25.1298 6.73351i −1.60222 0.429313i
\(247\) 4.01702 + 14.9917i 0.255597 + 0.953899i
\(248\) 3.04989 3.04989i 0.193668 0.193668i
\(249\) 37.6510 2.38603
\(250\) −2.45692 + 10.9070i −0.155389 + 0.689822i
\(251\) 12.5472 12.5472i 0.791972 0.791972i −0.189842 0.981815i \(-0.560798\pi\)
0.981815 + 0.189842i \(0.0607977\pi\)
\(252\) −10.2511 2.74679i −0.645762 0.173031i
\(253\) 0.189585i 0.0119191i
\(254\) −2.39644 + 8.94364i −0.150366 + 0.561174i
\(255\) −10.0374 26.4676i −0.628569 1.65747i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −12.5632 7.25335i −0.783669 0.452451i 0.0540602 0.998538i \(-0.482784\pi\)
−0.837729 + 0.546086i \(0.816117\pi\)
\(258\) 15.7091 + 15.7091i 0.978009 + 0.978009i
\(259\) −0.948288 11.4974i −0.0589237 0.714412i
\(260\) −4.15830 5.77231i −0.257887 0.357984i
\(261\) 7.18362 + 26.8096i 0.444655 + 1.65948i
\(262\) −7.84192 2.10124i −0.484475 0.129815i
\(263\) −3.64822 + 13.6153i −0.224959 + 0.839558i 0.757462 + 0.652879i \(0.226439\pi\)
−0.982421 + 0.186679i \(0.940228\pi\)
\(264\) −0.272933 0.0731322i −0.0167979 0.00450097i
\(265\) −3.31203 0.538302i −0.203457 0.0330677i
\(266\) 4.62605 + 8.01255i 0.283641 + 0.491281i
\(267\) 14.2490i 0.872022i
\(268\) 1.84581 + 6.88865i 0.112751 + 0.420791i
\(269\) 20.3266i 1.23933i 0.784866 + 0.619666i \(0.212732\pi\)
−0.784866 + 0.619666i \(0.787268\pi\)
\(270\) 16.7969 + 2.72999i 1.02223 + 0.166142i
\(271\) −1.66685 + 2.88706i −0.101254 + 0.175377i −0.912201 0.409742i \(-0.865619\pi\)
0.810948 + 0.585119i \(0.198952\pi\)
\(272\) −3.73936 + 2.15892i −0.226732 + 0.130904i
\(273\) 17.6909i 1.07070i
\(274\) 20.1210 5.39142i 1.21556 0.325707i
\(275\) 0.360702 0.319537i 0.0217511 0.0192688i
\(276\) −5.57081 + 1.49269i −0.335323 + 0.0898496i
\(277\) 3.34523 + 5.79410i 0.200995 + 0.348134i 0.948849 0.315729i \(-0.102249\pi\)
−0.747854 + 0.663863i \(0.768916\pi\)
\(278\) −1.81734 3.14772i −0.108997 0.188788i
\(279\) 23.3132 6.24674i 1.39572 0.373983i
\(280\) −3.28497 2.68216i −0.196314 0.160290i
\(281\) 17.2969 4.63469i 1.03185 0.276482i 0.297116 0.954842i \(-0.403975\pi\)
0.734730 + 0.678359i \(0.237309\pi\)
\(282\) 39.6502i 2.36114i
\(283\) 6.82785 3.94206i 0.405873 0.234331i −0.283142 0.959078i \(-0.591377\pi\)
0.689015 + 0.724747i \(0.258043\pi\)
\(284\) −0.958620 + 1.66038i −0.0568836 + 0.0985253i
\(285\) −18.6935 25.9492i −1.10731 1.53710i
\(286\) 0.306625i 0.0181311i
\(287\) 4.35582 + 16.2561i 0.257116 + 0.959569i
\(288\) 5.59575i 0.329733i
\(289\) 0.821859 + 1.42350i 0.0483447 + 0.0837354i
\(290\) −1.77928 + 10.9474i −0.104483 + 0.642855i
\(291\) −50.0487 13.4105i −2.93391 0.786138i
\(292\) 1.69419 6.32282i 0.0991453 0.370015i
\(293\) 16.4168 + 4.39886i 0.959077 + 0.256984i 0.704210 0.709992i \(-0.251302\pi\)
0.254867 + 0.966976i \(0.417968\pi\)
\(294\) −2.58226 9.63713i −0.150601 0.562049i
\(295\) 25.4271 + 4.13265i 1.48042 + 0.240612i
\(296\) 5.72620 2.05197i 0.332829 0.119268i
\(297\) −0.518634 0.518634i −0.0300942 0.0300942i
\(298\) 12.0430 + 6.95301i 0.697631 + 0.402777i
\(299\) 3.12925 + 5.42002i 0.180969 + 0.313448i
\(300\) 12.2294 + 8.08310i 0.706063 + 0.466678i
\(301\) 3.71956 13.8816i 0.214392 0.800122i
\(302\) 4.09346i 0.235552i
\(303\) −20.3310 5.44767i −1.16798 0.312960i
\(304\) −3.44949 + 3.44949i −0.197842 + 0.197842i
\(305\) 14.5059 17.7661i 0.830608 1.01728i
\(306\) −24.1616 −1.38122
\(307\) −13.8251 + 13.8251i −0.789041 + 0.789041i −0.981337 0.192296i \(-0.938407\pi\)
0.192296 + 0.981337i \(0.438407\pi\)
\(308\) 0.0473082 + 0.176557i 0.00269564 + 0.0100603i
\(309\) 25.2097 + 6.75493i 1.43413 + 0.384275i
\(310\) 9.51968 + 1.54723i 0.540681 + 0.0878765i
\(311\) −1.99132 7.43169i −0.112917 0.421413i 0.886205 0.463292i \(-0.153332\pi\)
−0.999123 + 0.0418797i \(0.986665\pi\)
\(312\) −9.00997 + 2.41421i −0.510089 + 0.136678i
\(313\) 11.7922 20.4246i 0.666533 1.15447i −0.312335 0.949972i \(-0.601111\pi\)
0.978867 0.204496i \(-0.0655556\pi\)
\(314\) −4.70831 + 17.5716i −0.265705 + 0.991625i
\(315\) −8.41479 22.1889i −0.474120 1.25020i
\(316\) 0.775255 + 2.89329i 0.0436115 + 0.162760i
\(317\) 4.04316 + 15.0893i 0.227087 + 0.847499i 0.981558 + 0.191166i \(0.0612267\pi\)
−0.754471 + 0.656333i \(0.772107\pi\)
\(318\) −2.19980 + 3.81017i −0.123359 + 0.213664i
\(319\) 0.338021 0.338021i 0.0189256 0.0189256i
\(320\) 0.917738 2.03906i 0.0513031 0.113987i
\(321\) 31.2985 + 18.0702i 1.74691 + 1.00858i
\(322\) 2.63808 + 2.63808i 0.147014 + 0.147014i
\(323\) 14.8943 + 14.8943i 0.828743 + 0.828743i
\(324\) 2.76260 4.78497i 0.153478 0.265831i
\(325\) 5.03786 15.0889i 0.279450 0.836982i
\(326\) −5.45854 + 3.15149i −0.302320 + 0.174545i
\(327\) 16.3867 0.906185
\(328\) −7.68482 + 4.43684i −0.424323 + 0.244983i
\(329\) 22.2129 12.8246i 1.22463 0.707043i
\(330\) −0.224041 0.590770i −0.0123330 0.0325208i
\(331\) 22.6157 6.05986i 1.24307 0.333080i 0.423415 0.905936i \(-0.360831\pi\)
0.819656 + 0.572856i \(0.194165\pi\)
\(332\) 9.08070 9.08070i 0.498368 0.498368i
\(333\) 33.4907 + 6.07724i 1.83528 + 0.333030i
\(334\) 4.22198i 0.231016i
\(335\) −10.0857 + 12.3524i −0.551040 + 0.674883i
\(336\) −4.81552 + 2.78024i −0.262708 + 0.151674i
\(337\) −6.69117 1.79289i −0.364491 0.0976651i 0.0719250 0.997410i \(-0.477086\pi\)
−0.436416 + 0.899745i \(0.643752\pi\)
\(338\) −1.43890 2.49225i −0.0782658 0.135560i
\(339\) 32.7398 32.7398i 1.77818 1.77818i
\(340\) −8.80432 3.96264i −0.477481 0.214904i
\(341\) −0.293937 0.293937i −0.0159176 0.0159176i
\(342\) −26.3677 + 7.06520i −1.42580 + 0.382042i
\(343\) −13.9513 + 13.9513i −0.753298 + 0.753298i
\(344\) 7.57749 0.408551
\(345\) −9.98930 8.15623i −0.537806 0.439117i
\(346\) −0.812098 + 3.03079i −0.0436586 + 0.162936i
\(347\) 15.8483 0.850783 0.425391 0.905009i \(-0.360136\pi\)
0.425391 + 0.905009i \(0.360136\pi\)
\(348\) 12.5939 + 7.27111i 0.675106 + 0.389772i
\(349\) −19.6627 11.3523i −1.05252 0.607672i −0.129165 0.991623i \(-0.541230\pi\)
−0.923353 + 0.383951i \(0.874563\pi\)
\(350\) 0.572810 9.46556i 0.0306180 0.505956i
\(351\) −23.3877 6.26670i −1.24834 0.334492i
\(352\) −0.0834643 + 0.0481882i −0.00444866 + 0.00256844i
\(353\) −12.4888 7.21039i −0.664710 0.383770i 0.129359 0.991598i \(-0.458708\pi\)
−0.794069 + 0.607827i \(0.792041\pi\)
\(354\) 16.8883 29.2514i 0.897602 1.55469i
\(355\) −4.26537 + 0.430890i −0.226382 + 0.0228693i
\(356\) −3.43658 3.43658i −0.182138 0.182138i
\(357\) 12.0046 + 20.7926i 0.635352 + 1.10046i
\(358\) −12.8687 + 3.44815i −0.680131 + 0.182241i
\(359\) 4.52860i 0.239010i 0.992834 + 0.119505i \(0.0381308\pi\)
−0.992834 + 0.119505i \(0.961869\pi\)
\(360\) 10.1525 7.31369i 0.535081 0.385465i
\(361\) 4.15515 + 2.39898i 0.218692 + 0.126262i
\(362\) −14.4571 −0.759846
\(363\) 8.33996 31.1252i 0.437734 1.63365i
\(364\) 4.26670 + 4.26670i 0.223636 + 0.223636i
\(365\) 13.6859 5.19017i 0.716353 0.271666i
\(366\) −15.0364 26.0438i −0.785964 1.36133i
\(367\) −8.43746 + 31.4890i −0.440432 + 1.64371i 0.287292 + 0.957843i \(0.407245\pi\)
−0.727724 + 0.685870i \(0.759422\pi\)
\(368\) −0.983564 + 1.70358i −0.0512718 + 0.0888054i
\(369\) −49.6549 −2.58493
\(370\) 11.2071 + 7.70719i 0.582630 + 0.400678i
\(371\) 2.84604 0.147759
\(372\) 6.32282 10.9514i 0.327823 0.567806i
\(373\) −5.49800 + 20.5188i −0.284676 + 1.06242i 0.664400 + 0.747377i \(0.268687\pi\)
−0.949076 + 0.315047i \(0.897980\pi\)
\(374\) 0.208069 + 0.360385i 0.0107590 + 0.0186351i
\(375\) 1.31859 + 32.7526i 0.0680918 + 1.69134i
\(376\) 9.56288 + 9.56288i 0.493168 + 0.493168i
\(377\) 4.08434 15.2430i 0.210354 0.785053i
\(378\) −14.4336 −0.742386
\(379\) −3.13757 1.81148i −0.161166 0.0930493i 0.417248 0.908793i \(-0.362995\pi\)
−0.578414 + 0.815744i \(0.696328\pi\)
\(380\) −10.7670 1.74995i −0.552334 0.0897704i
\(381\) 27.1464i 1.39075i
\(382\) 11.7634 3.15200i 0.601870 0.161271i
\(383\) −17.1198 29.6524i −0.874783 1.51517i −0.856994 0.515326i \(-0.827671\pi\)
−0.0177887 0.999842i \(-0.505663\pi\)
\(384\) −2.07313 2.07313i −0.105794 0.105794i
\(385\) −0.258497 + 0.316593i −0.0131742 + 0.0161351i
\(386\) −11.1896 + 19.3809i −0.569533 + 0.986460i
\(387\) 36.7210 + 21.2009i 1.86663 + 1.07770i
\(388\) −15.3052 + 8.83644i −0.777002 + 0.448602i
\(389\) −6.94098 1.85983i −0.351922 0.0942971i 0.0785275 0.996912i \(-0.474978\pi\)
−0.430449 + 0.902615i \(0.641645\pi\)
\(390\) −16.1562 13.1915i −0.818103 0.667978i
\(391\) 7.35579 + 4.24687i 0.371998 + 0.214773i
\(392\) −2.94709 1.70150i −0.148850 0.0859388i
\(393\) −23.8024 −1.20067
\(394\) 4.76595 17.7868i 0.240105 0.896084i
\(395\) −4.23607 + 5.18811i −0.213140 + 0.261042i
\(396\) −0.539298 −0.0271008
\(397\) 11.2418 11.2418i 0.564208 0.564208i −0.366292 0.930500i \(-0.619373\pi\)
0.930500 + 0.366292i \(0.119373\pi\)
\(398\) −7.99489 + 2.14222i −0.400748 + 0.107380i
\(399\) 19.1808 + 19.1808i 0.960242 + 0.960242i
\(400\) 4.89898 1.00000i 0.244949 0.0500000i
\(401\) −5.06226 + 5.06226i −0.252797 + 0.252797i −0.822116 0.569319i \(-0.807207\pi\)
0.569319 + 0.822116i \(0.307207\pi\)
\(402\) 10.4545 + 18.1077i 0.521422 + 0.903129i
\(403\) −13.2550 3.55167i −0.660279 0.176921i
\(404\) −6.21731 + 3.58957i −0.309323 + 0.178588i
\(405\) 12.2922 1.24176i 0.610803 0.0617036i
\(406\) 9.40717i 0.466870i
\(407\) −0.197761 0.551871i −0.00980266 0.0273552i
\(408\) −8.95145 + 8.95145i −0.443163 + 0.443163i
\(409\) 19.0336 5.10003i 0.941150 0.252180i 0.244547 0.969637i \(-0.421361\pi\)
0.696603 + 0.717457i \(0.254694\pi\)
\(410\) −18.0939 8.14370i −0.893596 0.402189i
\(411\) 52.8907 30.5365i 2.60891 1.50625i
\(412\) 7.70927 4.45095i 0.379809 0.219283i
\(413\) −21.8496 −1.07515
\(414\) −9.53283 + 5.50378i −0.468513 + 0.270496i
\(415\) 28.3438 + 4.60669i 1.39134 + 0.226134i
\(416\) −1.59077 + 2.75529i −0.0779939 + 0.135089i
\(417\) −7.53517 7.53517i −0.368999 0.368999i
\(418\) 0.332449 + 0.332449i 0.0162606 + 0.0162606i
\(419\) 25.6113 + 14.7867i 1.25119 + 0.722377i 0.971346 0.237668i \(-0.0763830\pi\)
0.279847 + 0.960045i \(0.409716\pi\)
\(420\) −11.3381 5.10306i −0.553244 0.249004i
\(421\) 15.5966 15.5966i 0.760133 0.760133i −0.216213 0.976346i \(-0.569371\pi\)
0.976346 + 0.216213i \(0.0693705\pi\)
\(422\) −0.0188401 + 0.0326320i −0.000917122 + 0.00158850i
\(423\) 19.5866 + 73.0981i 0.952332 + 3.55415i
\(424\) 0.388390 + 1.44949i 0.0188619 + 0.0703934i
\(425\) −4.31784 21.1530i −0.209446 1.02607i
\(426\) −1.45484 + 5.42953i −0.0704871 + 0.263062i
\(427\) −9.72683 + 16.8474i −0.470714 + 0.815301i
\(428\) 11.9068 3.19041i 0.575536 0.154214i
\(429\) 0.232673 + 0.868348i 0.0112336 + 0.0419242i
\(430\) 9.90384 + 13.7479i 0.477606 + 0.662985i
\(431\) −12.0203 3.22083i −0.578997 0.155142i −0.0425776 0.999093i \(-0.513557\pi\)
−0.536420 + 0.843951i \(0.680224\pi\)
\(432\) −1.96971 7.35105i −0.0947676 0.353678i
\(433\) 9.59505 9.59505i 0.461109 0.461109i −0.437910 0.899019i \(-0.644281\pi\)
0.899019 + 0.437910i \(0.144281\pi\)
\(434\) −8.18030 −0.392667
\(435\) 3.26829 + 32.3527i 0.156702 + 1.55119i
\(436\) 3.95215 3.95215i 0.189274 0.189274i
\(437\) 9.26928 + 2.48370i 0.443410 + 0.118811i
\(438\) 19.1915i 0.917006i
\(439\) 4.63361 17.2929i 0.221150 0.825344i −0.762760 0.646681i \(-0.776156\pi\)
0.983910 0.178662i \(-0.0571769\pi\)
\(440\) −0.196517 0.0884482i −0.00936858 0.00421660i
\(441\) −9.52118 16.4912i −0.453390 0.785294i
\(442\) 11.8969 + 6.86869i 0.565879 + 0.326710i
\(443\) −12.5352 12.5352i −0.595564 0.595564i 0.343565 0.939129i \(-0.388365\pi\)
−0.939129 + 0.343565i \(0.888365\pi\)
\(444\) 14.6593 10.1562i 0.695698 0.481993i
\(445\) 1.74340 10.7267i 0.0826449 0.508492i
\(446\) −1.03792 3.87357i −0.0491470 0.183419i
\(447\) 39.3812 + 10.5522i 1.86267 + 0.499100i
\(448\) −0.490870 + 1.83195i −0.0231914 + 0.0865516i
\(449\) 20.7823 + 5.56859i 0.980776 + 0.262798i 0.713372 0.700786i \(-0.247167\pi\)
0.267405 + 0.963584i \(0.413834\pi\)
\(450\) 26.5387 + 8.86068i 1.25104 + 0.417696i
\(451\) 0.427606 + 0.740635i 0.0201352 + 0.0348751i
\(452\) 15.7924i 0.742813i
\(453\) −3.10619 11.5925i −0.145942 0.544662i
\(454\) 24.3696i 1.14372i
\(455\) −2.16452 + 13.3178i −0.101474 + 0.624346i
\(456\) −7.15125 + 12.3863i −0.334888 + 0.580043i
\(457\) −21.8233 + 12.5997i −1.02085 + 0.589387i −0.914350 0.404926i \(-0.867297\pi\)
−0.106499 + 0.994313i \(0.533964\pi\)
\(458\) 20.5368i 0.959624i
\(459\) −31.7406 + 8.50488i −1.48153 + 0.396974i
\(460\) −4.37636 + 0.442102i −0.204049 + 0.0206131i
\(461\) −16.2115 + 4.34385i −0.755043 + 0.202313i −0.615754 0.787938i \(-0.711148\pi\)
−0.139289 + 0.990252i \(0.544482\pi\)
\(462\) 0.267949 + 0.464102i 0.0124661 + 0.0215920i
\(463\) 14.6067 + 25.2995i 0.678829 + 1.17577i 0.975334 + 0.220735i \(0.0708457\pi\)
−0.296504 + 0.955031i \(0.595821\pi\)
\(464\) 4.79107 1.28376i 0.222420 0.0595972i
\(465\) 28.1333 2.84204i 1.30465 0.131797i
\(466\) −28.5249 + 7.64323i −1.32139 + 0.354066i
\(467\) 28.4561i 1.31679i −0.752673 0.658395i \(-0.771236\pi\)
0.752673 0.658395i \(-0.228764\pi\)
\(468\) −15.4180 + 8.90156i −0.712695 + 0.411475i
\(469\) 6.76286 11.7136i 0.312280 0.540884i
\(470\) −4.85131 + 29.8488i −0.223774 + 1.37682i
\(471\) 53.3348i 2.45754i
\(472\) −2.98174 11.1280i −0.137246 0.512208i
\(473\) 0.730291i 0.0335788i
\(474\) 4.39097 + 7.60538i 0.201684 + 0.349327i
\(475\) −10.8975 21.8218i −0.500014 1.00125i
\(476\) 7.91007 + 2.11950i 0.362557 + 0.0971469i
\(477\) −2.17333 + 8.11099i −0.0995101 + 0.371377i
\(478\) −6.06304 1.62459i −0.277317 0.0743069i
\(479\) −6.57805 24.5496i −0.300559 1.12170i −0.936702 0.350129i \(-0.886138\pi\)
0.636143 0.771571i \(-0.280529\pi\)
\(480\) 1.05171 6.47091i 0.0480039 0.295355i
\(481\) −14.7629 12.5132i −0.673128 0.570551i
\(482\) 11.7651 + 11.7651i 0.535885 + 0.535885i
\(483\) 9.47273 + 5.46909i 0.431024 + 0.248852i
\(484\) −5.49536 9.51824i −0.249789 0.432647i
\(485\) −36.0360 16.2191i −1.63631 0.736470i
\(486\) −1.71649 + 6.40605i −0.0778618 + 0.290584i
\(487\) 35.2151i 1.59575i −0.602824 0.797874i \(-0.705958\pi\)
0.602824 0.797874i \(-0.294042\pi\)
\(488\) −9.90775 2.65477i −0.448503 0.120176i
\(489\) −13.0669 + 13.0669i −0.590906 + 0.590906i
\(490\) −0.764807 7.57081i −0.0345505 0.342014i
\(491\) −42.4085 −1.91387 −0.956934 0.290305i \(-0.906243\pi\)
−0.956934 + 0.290305i \(0.906243\pi\)
\(492\) −18.3963 + 18.3963i −0.829369 + 0.829369i
\(493\) −5.54308 20.6871i −0.249648 0.931698i
\(494\) 14.9917 + 4.01702i 0.674509 + 0.180734i
\(495\) −0.704867 0.978456i −0.0316814 0.0439783i
\(496\) −1.11634 4.16622i −0.0501250 0.187069i
\(497\) 3.51229 0.941115i 0.157548 0.0422148i
\(498\) 18.8255 32.6067i 0.843590 1.46114i
\(499\) −1.05851 + 3.95040i −0.0473853 + 0.176844i −0.985563 0.169310i \(-0.945846\pi\)
0.938178 + 0.346155i \(0.112513\pi\)
\(500\) 8.21731 + 7.58128i 0.367489 + 0.339045i
\(501\) −3.20372 11.9564i −0.143131 0.534174i
\(502\) −4.59259 17.1398i −0.204978 0.764987i
\(503\) −3.62641 + 6.28113i −0.161694 + 0.280062i −0.935476 0.353390i \(-0.885029\pi\)
0.773783 + 0.633451i \(0.218362\pi\)
\(504\) −7.50436 + 7.50436i −0.334271 + 0.334271i
\(505\) −14.6387 6.58856i −0.651413 0.293187i
\(506\) 0.164185 + 0.0947923i 0.00729891 + 0.00421403i
\(507\) −5.96606 5.96606i −0.264962 0.264962i
\(508\) 6.54720 + 6.54720i 0.290485 + 0.290485i
\(509\) −2.52176 + 4.36782i −0.111775 + 0.193600i −0.916486 0.400067i \(-0.868987\pi\)
0.804711 + 0.593667i \(0.202320\pi\)
\(510\) −27.9403 4.54112i −1.23722 0.201084i
\(511\) −10.7515 + 6.20736i −0.475617 + 0.274598i
\(512\) −1.00000 −0.0441942
\(513\) −32.1519 + 18.5629i −1.41954 + 0.819571i
\(514\) −12.5632 + 7.25335i −0.554137 + 0.319931i
\(515\) 18.1515 + 8.16961i 0.799850 + 0.359996i
\(516\) 21.4591 5.74995i 0.944684 0.253127i
\(517\) 0.921635 0.921635i 0.0405335 0.0405335i
\(518\) −10.4312 4.92745i −0.458319 0.216500i
\(519\) 9.19929i 0.403804i
\(520\) −7.07812 + 0.715035i −0.310396 + 0.0313564i
\(521\) −21.3133 + 12.3053i −0.933755 + 0.539103i −0.887997 0.459849i \(-0.847903\pi\)
−0.0457575 + 0.998953i \(0.514570\pi\)
\(522\) 26.8096 + 7.18362i 1.17343 + 0.314419i
\(523\) 2.78498 + 4.82373i 0.121779 + 0.210927i 0.920469 0.390815i \(-0.127807\pi\)
−0.798690 + 0.601742i \(0.794473\pi\)
\(524\) −5.74068 + 5.74068i −0.250783 + 0.250783i
\(525\) −5.56048 27.2407i −0.242679 1.18888i
\(526\) 9.96713 + 9.96713i 0.434587 + 0.434587i
\(527\) −17.9891 + 4.82016i −0.783617 + 0.209969i
\(528\) −0.199801 + 0.199801i −0.00869522 + 0.00869522i
\(529\) −19.1304 −0.831757
\(530\) −2.12220 + 2.59915i −0.0921825 + 0.112900i
\(531\) 16.6851 62.2696i 0.724071 2.70227i
\(532\) 9.25209 0.401129
\(533\) 24.4496 + 14.1160i 1.05903 + 0.611431i
\(534\) −12.3400 7.12448i −0.534002 0.308306i
\(535\) 21.3507 + 17.4327i 0.923070 + 0.753683i
\(536\) 6.88865 + 1.84581i 0.297544 + 0.0797267i
\(537\) −33.8270 + 19.5300i −1.45974 + 0.842782i
\(538\) 17.6033 + 10.1633i 0.758933 + 0.438170i
\(539\) −0.163984 + 0.284029i −0.00706331 + 0.0122340i
\(540\) 10.7627 13.1815i 0.463152 0.567243i
\(541\) −10.6470 10.6470i −0.457752 0.457752i 0.440165 0.897917i \(-0.354920\pi\)
−0.897917 + 0.440165i \(0.854920\pi\)
\(542\) 1.66685 + 2.88706i 0.0715972 + 0.124010i
\(543\) −40.9417 + 10.9703i −1.75698 + 0.470780i
\(544\) 4.31784i 0.185126i
\(545\) 12.3359 + 2.00495i 0.528413 + 0.0858826i
\(546\) 15.3208 + 8.84544i 0.655668 + 0.378550i
\(547\) −2.18405 −0.0933831 −0.0466916 0.998909i \(-0.514868\pi\)
−0.0466916 + 0.998909i \(0.514868\pi\)
\(548\) 5.39142 20.1210i 0.230310 0.859528i
\(549\) −40.5859 40.5859i −1.73216 1.73216i
\(550\) −0.0963763 0.472146i −0.00410950 0.0201324i
\(551\) −12.0984 20.9551i −0.515410 0.892716i
\(552\) −1.49269 + 5.57081i −0.0635333 + 0.237109i
\(553\) 2.84046 4.91982i 0.120789 0.209212i
\(554\) 6.69046 0.284250
\(555\) 37.5863 + 13.3222i 1.59545 + 0.565497i
\(556\) −3.63468 −0.154145
\(557\) 9.26222 16.0426i 0.392453 0.679748i −0.600320 0.799760i \(-0.704960\pi\)
0.992772 + 0.120012i \(0.0382933\pi\)
\(558\) 6.24674 23.3132i 0.264446 0.986925i
\(559\) −12.0541 20.8782i −0.509832 0.883055i
\(560\) −3.96530 + 1.50378i −0.167565 + 0.0635464i
\(561\) 0.862708 + 0.862708i 0.0364235 + 0.0364235i
\(562\) 4.63469 17.2969i 0.195503 0.729625i
\(563\) −10.7787 −0.454267 −0.227133 0.973864i \(-0.572935\pi\)
−0.227133 + 0.973864i \(0.572935\pi\)
\(564\) 34.3381 + 19.8251i 1.44590 + 0.834788i
\(565\) 28.6524 20.6408i 1.20542 0.868365i
\(566\) 7.88412i 0.331394i
\(567\) −10.1219 + 2.71215i −0.425080 + 0.113900i
\(568\) 0.958620 + 1.66038i 0.0402228 + 0.0696679i
\(569\) −16.4710 16.4710i −0.690499 0.690499i 0.271843 0.962342i \(-0.412367\pi\)
−0.962342 + 0.271843i \(0.912367\pi\)
\(570\) −31.8194 + 3.21441i −1.33277 + 0.134637i
\(571\) 15.2470 26.4086i 0.638066 1.10516i −0.347790 0.937572i \(-0.613068\pi\)
0.985857 0.167591i \(-0.0535988\pi\)
\(572\) 0.265545 + 0.153313i 0.0111030 + 0.00641032i
\(573\) 30.9217 17.8526i 1.29177 0.745805i
\(574\) 16.2561 + 4.35582i 0.678518 + 0.181808i
\(575\) −6.52204 7.36225i −0.271988 0.307027i
\(576\) −4.84607 2.79788i −0.201919 0.116578i
\(577\) 6.45904 + 3.72913i 0.268894 + 0.155246i 0.628385 0.777903i \(-0.283716\pi\)
−0.359491 + 0.933148i \(0.617050\pi\)
\(578\) 1.64372 0.0683697
\(579\) −16.9817 + 63.3765i −0.705735 + 2.63384i
\(580\) 8.59111 + 7.01461i 0.356726 + 0.291266i
\(581\) −24.3559 −1.01045
\(582\) −36.6382 + 36.6382i −1.51870 + 1.51870i
\(583\) 0.139696 0.0374316i 0.00578564 0.00155026i
\(584\) −4.62863 4.62863i −0.191534 0.191534i
\(585\) −36.3016 16.3386i −1.50089 0.675518i
\(586\) 12.0179 12.0179i 0.496455 0.496455i
\(587\) 1.37623 + 2.38371i 0.0568032 + 0.0983861i 0.893029 0.450000i \(-0.148576\pi\)
−0.836226 + 0.548386i \(0.815243\pi\)
\(588\) −9.63713 2.58226i −0.397429 0.106491i
\(589\) −18.2221 + 10.5206i −0.750830 + 0.433492i
\(590\) 16.2925 19.9542i 0.670753 0.821501i
\(591\) 53.9877i 2.22076i
\(592\) 1.08604 5.98502i 0.0446361 0.245983i
\(593\) 11.7207 11.7207i 0.481309 0.481309i −0.424240 0.905550i \(-0.639459\pi\)
0.905550 + 0.424240i \(0.139459\pi\)
\(594\) −0.708467 + 0.189833i −0.0290688 + 0.00778895i
\(595\) 6.49309 + 17.1215i 0.266191 + 0.701915i
\(596\) 12.0430 6.95301i 0.493299 0.284807i
\(597\) −21.0156 + 12.1334i −0.860111 + 0.496585i
\(598\) 6.25850 0.255929
\(599\) −12.0793 + 6.97399i −0.493547 + 0.284949i −0.726045 0.687648i \(-0.758643\pi\)
0.232498 + 0.972597i \(0.425310\pi\)
\(600\) 13.1149 6.54939i 0.535412 0.267378i
\(601\) 18.1283 31.3991i 0.739467 1.28079i −0.213268 0.976994i \(-0.568411\pi\)
0.952735 0.303801i \(-0.0982558\pi\)
\(602\) −10.1620 10.1620i −0.414174 0.414174i
\(603\) 28.2185 + 28.2185i 1.14915 + 1.14915i
\(604\) −3.54504 2.04673i −0.144246 0.0832802i
\(605\) 10.0866 22.4107i 0.410078 0.911124i
\(606\) −14.8833 + 14.8833i −0.604593 + 0.604593i
\(607\) −4.36503 + 7.56045i −0.177171 + 0.306869i −0.940910 0.338655i \(-0.890028\pi\)
0.763739 + 0.645525i \(0.223361\pi\)
\(608\) 1.26260 + 4.71209i 0.0512052 + 0.191101i
\(609\) −7.13834 26.6406i −0.289260 1.07953i
\(610\) −8.13291 21.4456i −0.329292 0.868305i
\(611\) 11.1362 41.5609i 0.450523 1.68137i
\(612\) −12.0808 + 20.9245i −0.488336 + 0.845824i
\(613\) −6.11924 + 1.63964i −0.247154 + 0.0662246i −0.380269 0.924876i \(-0.624169\pi\)
0.133115 + 0.991101i \(0.457502\pi\)
\(614\) 5.06034 + 18.8855i 0.204219 + 0.762155i
\(615\) −57.4207 9.33255i −2.31543 0.376325i
\(616\) 0.176557 + 0.0473082i 0.00711367 + 0.00190610i
\(617\) −8.94057 33.3667i −0.359934 1.34329i −0.874160 0.485637i \(-0.838588\pi\)
0.514226 0.857655i \(-0.328079\pi\)
\(618\) 18.4548 18.4548i 0.742361 0.742361i
\(619\) −2.07274 −0.0833106 −0.0416553 0.999132i \(-0.513263\pi\)
−0.0416553 + 0.999132i \(0.513263\pi\)
\(620\) 6.09978 7.47067i 0.244973 0.300029i
\(621\) −10.5858 + 10.5858i −0.424793 + 0.424793i
\(622\) −7.43169 1.99132i −0.297984 0.0798445i
\(623\) 9.21746i 0.369290i
\(624\) −2.41421 + 9.00997i −0.0966459 + 0.360687i
\(625\) −3.01472 + 24.8176i −0.120589 + 0.992703i
\(626\) −11.7922 20.4246i −0.471310 0.816332i
\(627\) 1.19375 + 0.689211i 0.0476737 + 0.0275244i
\(628\) 12.8633 + 12.8633i 0.513303 + 0.513303i
\(629\) −25.8424 4.68936i −1.03040 0.186977i
\(630\) −23.4235 3.80701i −0.933215 0.151675i
\(631\) 6.43456 + 24.0141i 0.256156 + 0.955987i 0.967444 + 0.253086i \(0.0814456\pi\)
−0.711288 + 0.702901i \(0.751888\pi\)
\(632\) 2.89329 + 0.775255i 0.115089 + 0.0308380i
\(633\) −0.0285924 + 0.106708i −0.00113645 + 0.00424128i
\(634\) 15.0893 + 4.04316i 0.599272 + 0.160574i
\(635\) −3.32143 + 20.4359i −0.131807 + 0.810974i
\(636\) 2.19980 + 3.81017i 0.0872278 + 0.151083i
\(637\) 10.8268i 0.428973i
\(638\) −0.123724 0.461746i −0.00489829 0.0182807i
\(639\) 10.7284i 0.424409i
\(640\) −1.30701 1.81431i −0.0516640 0.0717170i
\(641\) 5.25663 9.10475i 0.207624 0.359616i −0.743341 0.668912i \(-0.766760\pi\)
0.950966 + 0.309296i \(0.100093\pi\)
\(642\) 31.2985 18.0702i 1.23525 0.713173i
\(643\) 48.2140i 1.90137i 0.310154 + 0.950686i \(0.399619\pi\)
−0.310154 + 0.950686i \(0.600381\pi\)
\(644\) 3.60368 0.965604i 0.142005 0.0380501i
\(645\) 38.4794 + 31.4183i 1.51512 + 1.23709i
\(646\) 20.3460 5.45171i 0.800504 0.214494i
\(647\) −12.7515 22.0863i −0.501314 0.868301i −0.999999 0.00151802i \(-0.999517\pi\)
0.498685 0.866783i \(-0.333817\pi\)
\(648\) −2.76260 4.78497i −0.108525 0.187971i
\(649\) −1.07248 + 0.287369i −0.0420984 + 0.0112802i
\(650\) −10.5484 11.9074i −0.413744 0.467045i
\(651\) −23.1662 + 6.20736i −0.907955 + 0.243286i
\(652\) 6.30298i 0.246844i
\(653\) 20.5247 11.8499i 0.803193 0.463724i −0.0413936 0.999143i \(-0.513180\pi\)
0.844586 + 0.535419i \(0.179846\pi\)
\(654\) 8.19333 14.1913i 0.320385 0.554922i
\(655\) −17.9185 2.91228i −0.700134 0.113792i
\(656\) 8.87367i 0.346459i
\(657\) −9.48030 35.3810i −0.369862 1.38034i
\(658\) 25.6492i 0.999910i
\(659\) 0.853736 + 1.47871i 0.0332568 + 0.0576025i 0.882175 0.470922i \(-0.156079\pi\)
−0.848918 + 0.528525i \(0.822745\pi\)
\(660\) −0.623642 0.101360i −0.0242752 0.00394544i
\(661\) 14.2931 + 3.82982i 0.555936 + 0.148963i 0.525839 0.850584i \(-0.323752\pi\)
0.0300975 + 0.999547i \(0.490418\pi\)
\(662\) 6.05986 22.6157i 0.235523 0.878984i
\(663\) 38.9036 + 10.4242i 1.51089 + 0.404842i
\(664\) −3.32377 12.4045i −0.128987 0.481386i
\(665\) 12.0926 + 16.7862i 0.468929 + 0.650941i
\(666\) 22.0084 25.9652i 0.852808 1.00613i
\(667\) −6.89932 6.89932i −0.267143 0.267143i
\(668\) −3.65634 2.11099i −0.141468 0.0816766i
\(669\) −5.87868 10.1822i −0.227283 0.393666i
\(670\) 5.65464 + 14.9106i 0.218458 + 0.576049i
\(671\) −0.255857 + 0.954872i −0.00987726 + 0.0368624i
\(672\) 5.56048i 0.214500i
\(673\) −10.9026 2.92133i −0.420263 0.112609i 0.0424892 0.999097i \(-0.486471\pi\)
−0.462752 + 0.886488i \(0.653138\pi\)
\(674\) −4.89828 + 4.89828i −0.188675 + 0.188675i
\(675\) 37.9823 + 2.29851i 1.46194 + 0.0884696i
\(676\) −2.87780 −0.110685
\(677\) 24.5713 24.5713i 0.944353 0.944353i −0.0541785 0.998531i \(-0.517254\pi\)
0.998531 + 0.0541785i \(0.0172540\pi\)
\(678\) −11.9836 44.7234i −0.460227 1.71759i
\(679\) 32.3758 + 8.67508i 1.24247 + 0.332919i
\(680\) −7.83391 + 5.64344i −0.300417 + 0.216416i
\(681\) 18.4922 + 69.0137i 0.708621 + 2.64461i
\(682\) −0.401525 + 0.107588i −0.0153752 + 0.00411977i
\(683\) 13.5237 23.4238i 0.517471 0.896285i −0.482323 0.875993i \(-0.660207\pi\)
0.999794 0.0202923i \(-0.00645967\pi\)
\(684\) −7.06520 + 26.3677i −0.270145 + 1.00819i
\(685\) 43.5525 16.5166i 1.66405 0.631068i
\(686\) 5.10652 + 19.0578i 0.194968 + 0.727630i
\(687\) 15.5837 + 58.1593i 0.594557 + 2.21892i
\(688\) 3.78875 6.56230i 0.144445 0.250185i
\(689\) 3.37593 3.37593i 0.128613 0.128613i
\(690\) −12.0582 + 4.57287i −0.459046 + 0.174086i
\(691\) 20.1538 + 11.6358i 0.766688 + 0.442648i 0.831692 0.555237i \(-0.187373\pi\)
−0.0650037 + 0.997885i \(0.520706\pi\)
\(692\) 2.21869 + 2.21869i 0.0843420 + 0.0843420i
\(693\) 0.723243 + 0.723243i 0.0274737 + 0.0274737i
\(694\) 7.92416 13.7251i 0.300797 0.520996i
\(695\) −4.75055 6.59445i −0.180199 0.250142i
\(696\) 12.5939 7.27111i 0.477372 0.275611i
\(697\) 38.3151 1.45129
\(698\) −19.6627 + 11.3523i −0.744243 + 0.429689i
\(699\) −74.9814 + 43.2905i −2.83606 + 1.63740i
\(700\) −7.91101 5.22885i −0.299008 0.197632i
\(701\) −8.64460 + 2.31631i −0.326502 + 0.0874859i −0.418347 0.908287i \(-0.637390\pi\)
0.0918448 + 0.995773i \(0.470724\pi\)
\(702\) −17.1210 + 17.1210i −0.646189 + 0.646189i
\(703\) −29.5732 + 2.43916i −1.11537 + 0.0919946i
\(704\) 0.0963763i 0.00363232i
\(705\) 8.91119 + 88.2117i 0.335615 + 3.32224i
\(706\) −12.4888 + 7.21039i −0.470021 + 0.271367i
\(707\) 13.1518 + 3.52402i 0.494625 + 0.132534i
\(708\) −16.8883 29.2514i −0.634701 1.09933i
\(709\) −31.3140 + 31.3140i −1.17602 + 1.17602i −0.195272 + 0.980749i \(0.562559\pi\)
−0.980749 + 0.195272i \(0.937441\pi\)
\(710\) −1.75952 + 3.90936i −0.0660337 + 0.146716i
\(711\) 11.8520 + 11.8520i 0.444485 + 0.444485i
\(712\) −4.69445 + 1.25787i −0.175932 + 0.0471408i
\(713\) −5.99952 + 5.99952i −0.224684 + 0.224684i
\(714\) 24.0092 0.898523
\(715\) 0.0689124 + 0.682163i 0.00257718 + 0.0255114i
\(716\) −3.44815 + 12.8687i −0.128864 + 0.480925i
\(717\) −18.4030 −0.687273
\(718\) 3.92188 + 2.26430i 0.146363 + 0.0845030i
\(719\) 37.9439 + 21.9069i 1.41507 + 0.816991i 0.995860 0.0908979i \(-0.0289737\pi\)
0.419210 + 0.907889i \(0.362307\pi\)
\(720\) −1.25762 12.4491i −0.0468686 0.463952i
\(721\) −16.3078 4.36967i −0.607336 0.162735i
\(722\) 4.15515 2.39898i 0.154639 0.0892808i
\(723\) 42.2457 + 24.3906i 1.57114 + 0.907095i
\(724\) −7.22853 + 12.5202i −0.268646 + 0.465309i
\(725\) −1.49806 + 24.7551i −0.0556365 + 0.919382i
\(726\) −22.7852 22.7852i −0.845638 0.845638i
\(727\) −22.0033 38.1108i −0.816056 1.41345i −0.908567 0.417738i \(-0.862823\pi\)
0.0925117 0.995712i \(-0.470510\pi\)
\(728\) 5.82843 1.56172i 0.216016 0.0578813i
\(729\) 36.0197i 1.33406i
\(730\) 2.34813 14.4474i 0.0869082 0.534723i
\(731\) −28.3350 16.3592i −1.04801 0.605067i
\(732\) −30.0727 −1.11152
\(733\) −8.78453 + 32.7843i −0.324464 + 1.21092i 0.590385 + 0.807121i \(0.298976\pi\)
−0.914850 + 0.403795i \(0.867691\pi\)
\(734\) 23.0516 + 23.0516i 0.850849 + 0.850849i
\(735\) −7.91077 20.8598i −0.291793 0.769426i
\(736\) 0.983564 + 1.70358i 0.0362546 + 0.0627949i
\(737\) 0.177892 0.663902i 0.00655274 0.0244552i
\(738\) −24.8274 + 43.0024i −0.913911 + 1.58294i
\(739\) −4.75282 −0.174835 −0.0874176 0.996172i \(-0.527861\pi\)
−0.0874176 + 0.996172i \(0.527861\pi\)
\(740\) 12.2782 5.85204i 0.451355 0.215125i
\(741\) 45.5040 1.67163
\(742\) 1.42302 2.46475i 0.0522408 0.0904837i
\(743\) 12.4596 46.5000i 0.457100 1.70592i −0.224739 0.974419i \(-0.572153\pi\)
0.681839 0.731502i \(-0.261180\pi\)
\(744\) −6.32282 10.9514i −0.231806 0.401500i
\(745\) 28.3552 + 12.7621i 1.03885 + 0.467567i
\(746\) 15.0208 + 15.0208i 0.549951 + 0.549951i
\(747\) 18.5990 69.4123i 0.680501 2.53966i
\(748\) 0.416137 0.0152155
\(749\) −20.2466 11.6894i −0.739794 0.427120i
\(750\) 29.0239 + 15.2343i 1.05980 + 0.556280i
\(751\) 30.2191i 1.10271i 0.834271 + 0.551355i \(0.185889\pi\)
−0.834271 + 0.551355i \(0.814111\pi\)
\(752\) 13.0631 3.50026i 0.476364 0.127641i
\(753\) −26.0120 45.0541i −0.947930 1.64186i
\(754\) −11.1586 11.1586i −0.406374 0.406374i
\(755\) −0.919983 9.10690i −0.0334816 0.331434i
\(756\) −7.21682 + 12.4999i −0.262473 + 0.454617i
\(757\) −8.29774 4.79070i −0.301587 0.174121i 0.341569 0.939857i \(-0.389042\pi\)
−0.643155 + 0.765736i \(0.722375\pi\)
\(758\) −3.13757 + 1.81148i −0.113962 + 0.0657958i
\(759\) 0.536894 + 0.143860i 0.0194880 + 0.00522180i
\(760\) −6.89898 + 8.44949i −0.250252 + 0.306495i
\(761\) 13.1033 + 7.56520i 0.474995 + 0.274238i 0.718328 0.695704i \(-0.244908\pi\)
−0.243333 + 0.969943i \(0.578241\pi\)
\(762\) 23.5095 + 13.5732i 0.851659 + 0.491706i
\(763\) −10.6003 −0.383757
\(764\) 3.15200 11.7634i 0.114035 0.425586i
\(765\) −53.7533 + 5.43019i −1.94345