Properties

Label 370.2.q.c.97.1
Level $370$
Weight $2$
Character 370.97
Analytic conductor $2.954$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(97,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.q (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 97.1
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 370.97
Dual form 370.2.q.c.103.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.241181 - 0.900100i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.81431 + 1.30701i) q^{5} +(-0.658919 - 0.658919i) q^{6} +(0.0267682 - 0.0999004i) q^{7} -1.00000 q^{8} +(1.84607 + 1.06583i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(0.241181 - 0.900100i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.81431 + 1.30701i) q^{5} +(-0.658919 - 0.658919i) q^{6} +(0.0267682 - 0.0999004i) q^{7} -1.00000 q^{8} +(1.84607 + 1.06583i) q^{9} +(2.03906 - 0.917738i) q^{10} -5.56048i q^{11} +(-0.900100 + 0.241181i) q^{12} +(-0.858719 - 1.48735i) q^{13} +(-0.0731322 - 0.0731322i) q^{14} +(1.61401 - 1.31784i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(6.18885 + 3.57313i) q^{17} +(1.84607 - 1.06583i) q^{18} +(-1.98004 - 0.530550i) q^{19} +(0.224745 - 2.22474i) q^{20} +(-0.0834643 - 0.0481882i) q^{21} +(-4.81552 - 2.78024i) q^{22} -3.96713 q^{23} +(-0.241181 + 0.900100i) q^{24} +(1.58346 + 4.74264i) q^{25} -1.71744 q^{26} +(3.38134 - 3.38134i) q^{27} +(-0.0999004 + 0.0267682i) q^{28} +(-5.95680 - 5.95680i) q^{29} +(-0.334273 - 2.05670i) q^{30} +(-5.87832 + 5.87832i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-5.00498 - 1.34108i) q^{33} +(6.18885 - 3.57313i) q^{34} +(0.179137 - 0.146264i) q^{35} -2.13165i q^{36} +(5.72620 - 2.05197i) q^{37} +(-1.44949 + 1.44949i) q^{38} +(-1.54587 + 0.414214i) q^{39} +(-1.81431 - 1.30701i) q^{40} +(-8.14893 + 4.70478i) q^{41} +(-0.0834643 + 0.0481882i) q^{42} +1.18519 q^{43} +(-4.81552 + 2.78024i) q^{44} +(1.95630 + 4.34656i) q^{45} +(-1.98356 + 3.43563i) q^{46} +(4.09878 + 4.09878i) q^{47} +(0.658919 + 0.658919i) q^{48} +(6.05291 + 3.49465i) q^{49} +(4.89898 + 1.00000i) q^{50} +(4.70881 - 4.70881i) q^{51} +(-0.858719 + 1.48735i) q^{52} +(0.924288 + 3.44949i) q^{53} +(-1.23766 - 4.61900i) q^{54} +(7.26758 - 10.0884i) q^{55} +(-0.0267682 + 0.0999004i) q^{56} +(-0.955096 + 1.65427i) q^{57} +(-8.13713 + 2.18034i) q^{58} +(1.94646 + 7.26430i) q^{59} +(-1.94829 - 0.738859i) q^{60} +(-6.44364 - 1.72657i) q^{61} +(2.15161 + 8.02993i) q^{62} +(0.155892 - 0.155892i) q^{63} +1.00000 q^{64} +(0.385986 - 3.82086i) q^{65} +(-3.66390 + 3.66390i) q^{66} +(-0.575454 - 0.154193i) q^{67} -7.14626i q^{68} +(-0.956796 + 3.57081i) q^{69} +(-0.0371004 - 0.228269i) q^{70} +(3.42272 + 5.92833i) q^{71} +(-1.84607 - 1.06583i) q^{72} +(2.83548 + 2.83548i) q^{73} +(1.08604 - 5.98502i) q^{74} +(4.65075 - 0.281441i) q^{75} +(0.530550 + 1.98004i) q^{76} +(-0.555494 - 0.148844i) q^{77} +(-0.414214 + 1.54587i) q^{78} +(-12.0349 - 3.22474i) q^{79} +(-2.03906 + 0.917738i) q^{80} +(0.969450 + 1.67914i) q^{81} +9.40957i q^{82} +(1.87239 + 6.98784i) q^{83} +0.0963763i q^{84} +(6.55840 + 14.5716i) q^{85} +(0.592594 - 1.02640i) q^{86} +(-6.79837 + 3.92504i) q^{87} +5.56048i q^{88} +(-0.962402 + 0.257875i) q^{89} +(4.74238 + 0.479078i) q^{90} +(-0.171573 + 0.0459728i) q^{91} +(1.98356 + 3.43563i) q^{92} +(3.87333 + 6.70881i) q^{93} +(5.59904 - 1.50026i) q^{94} +(-2.89898 - 3.55051i) q^{95} +(0.900100 - 0.241181i) q^{96} +16.0652i q^{97} +(6.05291 - 3.49465i) q^{98} +(5.92650 - 10.2650i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 4 q^{5} - 4 q^{6} + 12 q^{7} - 8 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 4 q^{5} - 4 q^{6} + 12 q^{7} - 8 q^{8} - 12 q^{9} - 4 q^{10} - 8 q^{12} - 4 q^{13} + 12 q^{14} - 4 q^{16} + 12 q^{17} - 12 q^{18} + 4 q^{19} - 8 q^{20} + 12 q^{21} - 12 q^{22} - 8 q^{23} - 4 q^{24} - 8 q^{26} - 8 q^{27} - 24 q^{29} - 12 q^{30} - 8 q^{31} + 4 q^{32} - 12 q^{33} + 12 q^{34} + 8 q^{38} + 16 q^{39} - 4 q^{40} + 12 q^{41} + 12 q^{42} + 16 q^{43} - 12 q^{44} - 12 q^{45} - 4 q^{46} - 8 q^{47} + 4 q^{48} + 36 q^{49} + 20 q^{51} - 4 q^{52} + 16 q^{53} - 4 q^{54} + 16 q^{55} - 12 q^{56} + 4 q^{57} - 24 q^{58} - 8 q^{59} - 12 q^{60} + 20 q^{62} - 4 q^{63} + 8 q^{64} + 16 q^{65} - 16 q^{67} + 16 q^{69} - 12 q^{70} - 4 q^{71} + 12 q^{72} + 16 q^{73} - 20 q^{75} + 4 q^{76} + 4 q^{77} + 8 q^{78} - 32 q^{79} + 4 q^{80} + 8 q^{81} + 16 q^{85} + 8 q^{86} - 36 q^{87} + 8 q^{89} + 24 q^{90} - 24 q^{91} + 4 q^{92} + 20 q^{93} - 16 q^{94} + 16 q^{95} + 8 q^{96} + 36 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.241181 0.900100i 0.139246 0.519673i −0.860698 0.509115i \(-0.829973\pi\)
0.999944 0.0105575i \(-0.00336063\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.81431 + 1.30701i 0.811386 + 0.584511i
\(6\) −0.658919 0.658919i −0.269002 0.269002i
\(7\) 0.0267682 0.0999004i 0.0101174 0.0377588i −0.960683 0.277649i \(-0.910445\pi\)
0.970800 + 0.239890i \(0.0771114\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.84607 + 1.06583i 0.615355 + 0.355275i
\(10\) 2.03906 0.917738i 0.644807 0.290214i
\(11\) 5.56048i 1.67655i −0.545250 0.838274i \(-0.683565\pi\)
0.545250 0.838274i \(-0.316435\pi\)
\(12\) −0.900100 + 0.241181i −0.259836 + 0.0696229i
\(13\) −0.858719 1.48735i −0.238166 0.412515i 0.722022 0.691870i \(-0.243213\pi\)
−0.960188 + 0.279354i \(0.909880\pi\)
\(14\) −0.0731322 0.0731322i −0.0195454 0.0195454i
\(15\) 1.61401 1.31784i 0.416737 0.340264i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 6.18885 + 3.57313i 1.50102 + 0.866612i 0.999999 + 0.00117408i \(0.000373722\pi\)
0.501016 + 0.865438i \(0.332960\pi\)
\(18\) 1.84607 1.06583i 0.435122 0.251218i
\(19\) −1.98004 0.530550i −0.454252 0.121717i 0.0244361 0.999701i \(-0.492221\pi\)
−0.478688 + 0.877985i \(0.658888\pi\)
\(20\) 0.224745 2.22474i 0.0502545 0.497468i
\(21\) −0.0834643 0.0481882i −0.0182134 0.0105155i
\(22\) −4.81552 2.78024i −1.02667 0.592749i
\(23\) −3.96713 −0.827203 −0.413602 0.910458i \(-0.635729\pi\)
−0.413602 + 0.910458i \(0.635729\pi\)
\(24\) −0.241181 + 0.900100i −0.0492309 + 0.183732i
\(25\) 1.58346 + 4.74264i 0.316693 + 0.948528i
\(26\) −1.71744 −0.336817
\(27\) 3.38134 3.38134i 0.650739 0.650739i
\(28\) −0.0999004 + 0.0267682i −0.0188794 + 0.00505872i
\(29\) −5.95680 5.95680i −1.10615 1.10615i −0.993652 0.112497i \(-0.964115\pi\)
−0.112497 0.993652i \(-0.535885\pi\)
\(30\) −0.334273 2.05670i −0.0610297 0.375500i
\(31\) −5.87832 + 5.87832i −1.05578 + 1.05578i −0.0574269 + 0.998350i \(0.518290\pi\)
−0.998350 + 0.0574269i \(0.981710\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −5.00498 1.34108i −0.871256 0.233452i
\(34\) 6.18885 3.57313i 1.06138 0.612787i
\(35\) 0.179137 0.146264i 0.0302796 0.0247232i
\(36\) 2.13165i 0.355275i
\(37\) 5.72620 2.05197i 0.941382 0.337342i
\(38\) −1.44949 + 1.44949i −0.235138 + 0.235138i
\(39\) −1.54587 + 0.414214i −0.247537 + 0.0663273i
\(40\) −1.81431 1.30701i −0.286868 0.206656i
\(41\) −8.14893 + 4.70478i −1.27265 + 0.734764i −0.975486 0.220063i \(-0.929374\pi\)
−0.297163 + 0.954827i \(0.596040\pi\)
\(42\) −0.0834643 + 0.0481882i −0.0128788 + 0.00743559i
\(43\) 1.18519 0.180740 0.0903698 0.995908i \(-0.471195\pi\)
0.0903698 + 0.995908i \(0.471195\pi\)
\(44\) −4.81552 + 2.78024i −0.725966 + 0.419137i
\(45\) 1.95630 + 4.34656i 0.291628 + 0.647947i
\(46\) −1.98356 + 3.43563i −0.292461 + 0.506557i
\(47\) 4.09878 + 4.09878i 0.597869 + 0.597869i 0.939745 0.341876i \(-0.111062\pi\)
−0.341876 + 0.939745i \(0.611062\pi\)
\(48\) 0.658919 + 0.658919i 0.0951067 + 0.0951067i
\(49\) 6.05291 + 3.49465i 0.864702 + 0.499236i
\(50\) 4.89898 + 1.00000i 0.692820 + 0.141421i
\(51\) 4.70881 4.70881i 0.659365 0.659365i
\(52\) −0.858719 + 1.48735i −0.119083 + 0.206258i
\(53\) 0.924288 + 3.44949i 0.126961 + 0.473824i 0.999902 0.0140015i \(-0.00445696\pi\)
−0.872941 + 0.487825i \(0.837790\pi\)
\(54\) −1.23766 4.61900i −0.168424 0.628566i
\(55\) 7.26758 10.0884i 0.979961 1.36033i
\(56\) −0.0267682 + 0.0999004i −0.00357706 + 0.0133498i
\(57\) −0.955096 + 1.65427i −0.126506 + 0.219114i
\(58\) −8.13713 + 2.18034i −1.06846 + 0.286292i
\(59\) 1.94646 + 7.26430i 0.253408 + 0.945731i 0.968969 + 0.247181i \(0.0795044\pi\)
−0.715561 + 0.698550i \(0.753829\pi\)
\(60\) −1.94829 0.738859i −0.251523 0.0953863i
\(61\) −6.44364 1.72657i −0.825024 0.221065i −0.178482 0.983943i \(-0.557119\pi\)
−0.646542 + 0.762879i \(0.723785\pi\)
\(62\) 2.15161 + 8.02993i 0.273255 + 1.01980i
\(63\) 0.155892 0.155892i 0.0196406 0.0196406i
\(64\) 1.00000 0.125000
\(65\) 0.385986 3.82086i 0.0478756 0.473920i
\(66\) −3.66390 + 3.66390i −0.450995 + 0.450995i
\(67\) −0.575454 0.154193i −0.0703029 0.0188376i 0.223496 0.974705i \(-0.428253\pi\)
−0.293799 + 0.955867i \(0.594920\pi\)
\(68\) 7.14626i 0.866612i
\(69\) −0.956796 + 3.57081i −0.115185 + 0.429875i
\(70\) −0.0371004 0.228269i −0.00443434 0.0272834i
\(71\) 3.42272 + 5.92833i 0.406202 + 0.703563i 0.994461 0.105110i \(-0.0335195\pi\)
−0.588258 + 0.808673i \(0.700186\pi\)
\(72\) −1.84607 1.06583i −0.217561 0.125609i
\(73\) 2.83548 + 2.83548i 0.331867 + 0.331867i 0.853295 0.521428i \(-0.174600\pi\)
−0.521428 + 0.853295i \(0.674600\pi\)
\(74\) 1.08604 5.98502i 0.126250 0.695745i
\(75\) 4.65075 0.281441i 0.537022 0.0324980i
\(76\) 0.530550 + 1.98004i 0.0608583 + 0.227126i
\(77\) −0.555494 0.148844i −0.0633044 0.0169624i
\(78\) −0.414214 + 1.54587i −0.0469005 + 0.175035i
\(79\) −12.0349 3.22474i −1.35403 0.362812i −0.492411 0.870363i \(-0.663884\pi\)
−0.861622 + 0.507550i \(0.830551\pi\)
\(80\) −2.03906 + 0.917738i −0.227974 + 0.102606i
\(81\) 0.969450 + 1.67914i 0.107717 + 0.186571i
\(82\) 9.40957i 1.03911i
\(83\) 1.87239 + 6.98784i 0.205521 + 0.767015i 0.989290 + 0.145963i \(0.0466280\pi\)
−0.783769 + 0.621053i \(0.786705\pi\)
\(84\) 0.0963763i 0.0105155i
\(85\) 6.55840 + 14.5716i 0.711358 + 1.58052i
\(86\) 0.592594 1.02640i 0.0639011 0.110680i
\(87\) −6.79837 + 3.92504i −0.728862 + 0.420809i
\(88\) 5.56048i 0.592749i
\(89\) −0.962402 + 0.257875i −0.102014 + 0.0273347i −0.309465 0.950911i \(-0.600150\pi\)
0.207451 + 0.978245i \(0.433483\pi\)
\(90\) 4.74238 + 0.479078i 0.499891 + 0.0504993i
\(91\) −0.171573 + 0.0459728i −0.0179857 + 0.00481926i
\(92\) 1.98356 + 3.43563i 0.206801 + 0.358190i
\(93\) 3.87333 + 6.70881i 0.401646 + 0.695671i
\(94\) 5.59904 1.50026i 0.577497 0.154740i
\(95\) −2.89898 3.55051i −0.297429 0.364275i
\(96\) 0.900100 0.241181i 0.0918660 0.0246154i
\(97\) 16.0652i 1.63117i 0.578636 + 0.815586i \(0.303585\pi\)
−0.578636 + 0.815586i \(0.696415\pi\)
\(98\) 6.05291 3.49465i 0.611437 0.353013i
\(99\) 5.92650 10.2650i 0.595636 1.03167i
\(100\) 3.31552 3.74264i 0.331552 0.374264i
\(101\) 10.2850i 1.02339i −0.859166 0.511696i \(-0.829017\pi\)
0.859166 0.511696i \(-0.170983\pi\)
\(102\) −1.72354 6.43235i −0.170656 0.636898i
\(103\) 18.9019i 1.86246i −0.364433 0.931230i \(-0.618737\pi\)
0.364433 0.931230i \(-0.381263\pi\)
\(104\) 0.858719 + 1.48735i 0.0842044 + 0.145846i
\(105\) −0.0884482 0.196517i −0.00863166 0.0191781i
\(106\) 3.44949 + 0.924288i 0.335044 + 0.0897748i
\(107\) −3.80959 + 14.2176i −0.368287 + 1.37446i 0.494624 + 0.869107i \(0.335306\pi\)
−0.862910 + 0.505357i \(0.831361\pi\)
\(108\) −4.61900 1.23766i −0.444463 0.119094i
\(109\) −5.10684 19.0590i −0.489147 1.82552i −0.560614 0.828078i \(-0.689435\pi\)
0.0714669 0.997443i \(-0.477232\pi\)
\(110\) −5.10306 11.3381i −0.486558 1.08105i
\(111\) −0.465926 5.64905i −0.0442237 0.536184i
\(112\) 0.0731322 + 0.0731322i 0.00691034 + 0.00691034i
\(113\) −1.67664 0.968008i −0.157725 0.0910625i 0.419060 0.907958i \(-0.362360\pi\)
−0.576785 + 0.816896i \(0.695693\pi\)
\(114\) 0.955096 + 1.65427i 0.0894529 + 0.154937i
\(115\) −7.19761 5.18506i −0.671181 0.483510i
\(116\) −2.18034 + 8.13713i −0.202439 + 0.755514i
\(117\) 3.66098i 0.338458i
\(118\) 7.26430 + 1.94646i 0.668733 + 0.179186i
\(119\) 0.522622 0.522622i 0.0479087 0.0479087i
\(120\) −1.61401 + 1.31784i −0.147339 + 0.120302i
\(121\) −19.9189 −1.81081
\(122\) −4.71707 + 4.71707i −0.427064 + 0.427064i
\(123\) 2.26941 + 8.46955i 0.204626 + 0.763674i
\(124\) 8.02993 + 2.15161i 0.721109 + 0.193221i
\(125\) −3.32577 + 10.6742i −0.297465 + 0.954733i
\(126\) −0.0570606 0.212953i −0.00508336 0.0189714i
\(127\) 7.40775 1.98490i 0.657331 0.176131i 0.0852898 0.996356i \(-0.472818\pi\)
0.572041 + 0.820225i \(0.306152\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0.285845 1.06679i 0.0251672 0.0939255i
\(130\) −3.11597 2.24471i −0.273289 0.196874i
\(131\) 1.24483 + 4.64577i 0.108761 + 0.405903i 0.998745 0.0500903i \(-0.0159509\pi\)
−0.889983 + 0.455993i \(0.849284\pi\)
\(132\) 1.34108 + 5.00498i 0.116726 + 0.435628i
\(133\) −0.106004 + 0.183605i −0.00919174 + 0.0159206i
\(134\) −0.421262 + 0.421262i −0.0363915 + 0.0363915i
\(135\) 10.5542 1.71537i 0.908365 0.147636i
\(136\) −6.18885 3.57313i −0.530689 0.306394i
\(137\) −5.06937 5.06937i −0.433105 0.433105i 0.456578 0.889683i \(-0.349075\pi\)
−0.889683 + 0.456578i \(0.849075\pi\)
\(138\) 2.61401 + 2.61401i 0.222520 + 0.222520i
\(139\) −5.01349 + 8.68362i −0.425239 + 0.736535i −0.996443 0.0842730i \(-0.973143\pi\)
0.571204 + 0.820808i \(0.306477\pi\)
\(140\) −0.216237 0.0820046i −0.0182754 0.00693065i
\(141\) 4.67786 2.70076i 0.393947 0.227445i
\(142\) 6.84544 0.574457
\(143\) −8.27035 + 4.77489i −0.691602 + 0.399296i
\(144\) −1.84607 + 1.06583i −0.153839 + 0.0888189i
\(145\) −3.02192 18.5931i −0.250957 1.54407i
\(146\) 3.87333 1.03786i 0.320559 0.0858936i
\(147\) 4.60538 4.60538i 0.379846 0.379846i
\(148\) −4.64016 3.93305i −0.381419 0.323295i
\(149\) 11.5581i 0.946874i 0.880828 + 0.473437i \(0.156987\pi\)
−0.880828 + 0.473437i \(0.843013\pi\)
\(150\) 2.08164 4.16839i 0.169965 0.340347i
\(151\) 14.2396 8.22122i 1.15880 0.669033i 0.207784 0.978175i \(-0.433375\pi\)
0.951016 + 0.309141i \(0.100042\pi\)
\(152\) 1.98004 + 0.530550i 0.160602 + 0.0430333i
\(153\) 7.61668 + 13.1925i 0.615772 + 1.06655i
\(154\) −0.406650 + 0.406650i −0.0327688 + 0.0327688i
\(155\) −18.3481 + 2.98210i −1.47376 + 0.239528i
\(156\) 1.13165 + 1.13165i 0.0906047 + 0.0906047i
\(157\) 2.64344 0.708309i 0.210970 0.0565292i −0.151786 0.988413i \(-0.548503\pi\)
0.362756 + 0.931884i \(0.381836\pi\)
\(158\) −8.81017 + 8.81017i −0.700899 + 0.700899i
\(159\) 3.32780 0.263912
\(160\) −0.224745 + 2.22474i −0.0177676 + 0.175882i
\(161\) −0.106193 + 0.396318i −0.00836918 + 0.0312342i
\(162\) 1.93890 0.152334
\(163\) −16.8094 9.70492i −1.31661 0.760148i −0.333432 0.942774i \(-0.608207\pi\)
−0.983182 + 0.182626i \(0.941540\pi\)
\(164\) 8.14893 + 4.70478i 0.636324 + 0.367382i
\(165\) −7.32780 8.97469i −0.570469 0.698679i
\(166\) 6.98784 + 1.87239i 0.542362 + 0.145325i
\(167\) 2.34366 1.35311i 0.181358 0.104707i −0.406573 0.913618i \(-0.633276\pi\)
0.587931 + 0.808911i \(0.299943\pi\)
\(168\) 0.0834643 + 0.0481882i 0.00643941 + 0.00371780i
\(169\) 5.02520 8.70390i 0.386554 0.669531i
\(170\) 15.8986 + 1.60609i 1.21937 + 0.123181i
\(171\) −3.08981 3.08981i −0.236284 0.236284i
\(172\) −0.592594 1.02640i −0.0451849 0.0782626i
\(173\) −15.8974 + 4.25970i −1.20866 + 0.323859i −0.806235 0.591595i \(-0.798498\pi\)
−0.402423 + 0.915454i \(0.631832\pi\)
\(174\) 7.85009i 0.595114i
\(175\) 0.516178 0.0312366i 0.0390194 0.00236127i
\(176\) 4.81552 + 2.78024i 0.362983 + 0.209568i
\(177\) 7.00804 0.526757
\(178\) −0.257875 + 0.962402i −0.0193285 + 0.0721351i
\(179\) 0.100025 + 0.100025i 0.00747620 + 0.00747620i 0.710835 0.703359i \(-0.248317\pi\)
−0.703359 + 0.710835i \(0.748317\pi\)
\(180\) 2.78609 3.86749i 0.207663 0.288265i
\(181\) −3.50352 6.06828i −0.260415 0.451052i 0.705937 0.708274i \(-0.250526\pi\)
−0.966352 + 0.257222i \(0.917193\pi\)
\(182\) −0.0459728 + 0.171573i −0.00340773 + 0.0127178i
\(183\) −3.10817 + 5.38351i −0.229762 + 0.397960i
\(184\) 3.96713 0.292461
\(185\) 13.0711 + 3.76127i 0.961004 + 0.276534i
\(186\) 7.74666 0.568013
\(187\) 19.8683 34.4129i 1.45292 2.51652i
\(188\) 1.50026 5.59904i 0.109418 0.408352i
\(189\) −0.247285 0.428310i −0.0179873 0.0311550i
\(190\) −4.52432 + 0.735335i −0.328229 + 0.0533468i
\(191\) −0.807587 0.807587i −0.0584349 0.0584349i 0.677285 0.735720i \(-0.263156\pi\)
−0.735720 + 0.677285i \(0.763156\pi\)
\(192\) 0.241181 0.900100i 0.0174057 0.0649591i
\(193\) 9.84320 0.708529 0.354265 0.935145i \(-0.384731\pi\)
0.354265 + 0.935145i \(0.384731\pi\)
\(194\) 13.9129 + 8.03259i 0.998885 + 0.576706i
\(195\) −3.34607 1.26894i −0.239617 0.0908710i
\(196\) 6.98930i 0.499236i
\(197\) −15.0547 + 4.03390i −1.07260 + 0.287403i −0.751563 0.659662i \(-0.770700\pi\)
−0.321041 + 0.947065i \(0.604033\pi\)
\(198\) −5.92650 10.2650i −0.421178 0.729502i
\(199\) −15.2717 15.2717i −1.08258 1.08258i −0.996268 0.0863133i \(-0.972491\pi\)
−0.0863133 0.996268i \(-0.527509\pi\)
\(200\) −1.58346 4.74264i −0.111968 0.335355i
\(201\) −0.277577 + 0.480778i −0.0195788 + 0.0339115i
\(202\) −8.90704 5.14248i −0.626697 0.361824i
\(203\) −0.754539 + 0.435633i −0.0529583 + 0.0305755i
\(204\) −6.43235 1.72354i −0.450355 0.120672i
\(205\) −20.9339 2.11475i −1.46209 0.147701i
\(206\) −16.3695 9.45095i −1.14052 0.658479i
\(207\) −7.32358 4.22827i −0.509024 0.293885i
\(208\) 1.71744 0.119083
\(209\) −2.95011 + 11.0100i −0.204064 + 0.761575i
\(210\) −0.214413 0.0216601i −0.0147959 0.00149469i
\(211\) 10.0377 0.691022 0.345511 0.938415i \(-0.387706\pi\)
0.345511 + 0.938415i \(0.387706\pi\)
\(212\) 2.52520 2.52520i 0.173432 0.173432i
\(213\) 6.16158 1.65099i 0.422185 0.113124i
\(214\) 10.4080 + 10.4080i 0.711475 + 0.711475i
\(215\) 2.15030 + 1.54905i 0.146650 + 0.105644i
\(216\) −3.38134 + 3.38134i −0.230071 + 0.230071i
\(217\) 0.429894 + 0.744598i 0.0291831 + 0.0505466i
\(218\) −19.0590 5.10684i −1.29084 0.345879i
\(219\) 3.23607 1.86835i 0.218674 0.126251i
\(220\) −12.3706 1.24969i −0.834029 0.0842540i
\(221\) 12.2733i 0.825590i
\(222\) −5.12518 2.42102i −0.343980 0.162488i
\(223\) 15.3605 15.3605i 1.02862 1.02862i 0.0290369 0.999578i \(-0.490756\pi\)
0.999578 0.0290369i \(-0.00924403\pi\)
\(224\) 0.0999004 0.0267682i 0.00667488 0.00178853i
\(225\) −2.13165 + 10.4429i −0.142110 + 0.696195i
\(226\) −1.67664 + 0.968008i −0.111528 + 0.0643909i
\(227\) 6.32013 3.64893i 0.419481 0.242188i −0.275374 0.961337i \(-0.588802\pi\)
0.694855 + 0.719149i \(0.255468\pi\)
\(228\) 1.91019 0.126506
\(229\) 13.6418 7.87612i 0.901478 0.520468i 0.0237985 0.999717i \(-0.492424\pi\)
0.877679 + 0.479248i \(0.159091\pi\)
\(230\) −8.08920 + 3.64078i −0.533386 + 0.240066i
\(231\) −0.267949 + 0.464102i −0.0176298 + 0.0305356i
\(232\) 5.95680 + 5.95680i 0.391083 + 0.391083i
\(233\) −1.56317 1.56317i −0.102407 0.102407i 0.654047 0.756454i \(-0.273070\pi\)
−0.756454 + 0.654047i \(0.773070\pi\)
\(234\) −3.17050 1.83049i −0.207262 0.119663i
\(235\) 2.07934 + 12.7936i 0.135641 + 0.834563i
\(236\) 5.31784 5.31784i 0.346162 0.346162i
\(237\) −5.80518 + 10.0549i −0.377087 + 0.653134i
\(238\) −0.191293 0.713915i −0.0123997 0.0462762i
\(239\) −6.10746 22.7934i −0.395059 1.47438i −0.821680 0.569950i \(-0.806963\pi\)
0.426621 0.904431i \(-0.359704\pi\)
\(240\) 0.334273 + 2.05670i 0.0215773 + 0.132759i
\(241\) 5.03837 18.8035i 0.324550 1.21124i −0.590213 0.807247i \(-0.700956\pi\)
0.914763 0.403990i \(-0.132377\pi\)
\(242\) −9.95946 + 17.2503i −0.640218 + 1.10889i
\(243\) 15.6022 4.18060i 1.00088 0.268185i
\(244\) 1.72657 + 6.44364i 0.110532 + 0.412512i
\(245\) 6.41435 + 14.2516i 0.409798 + 0.910501i
\(246\) 8.46955 + 2.26941i 0.539999 + 0.144692i
\(247\) 0.911187 + 3.40060i 0.0579775 + 0.216375i
\(248\) 5.87832 5.87832i 0.373273 0.373273i
\(249\) 6.74134 0.427215
\(250\) 7.58128 + 8.21731i 0.479482 + 0.519709i
\(251\) 0.577154 0.577154i 0.0364296 0.0364296i −0.688657 0.725087i \(-0.741800\pi\)
0.725087 + 0.688657i \(0.241800\pi\)
\(252\) −0.212953 0.0570606i −0.0134148 0.00359448i
\(253\) 22.0591i 1.38685i
\(254\) 1.98490 7.40775i 0.124544 0.464803i
\(255\) 14.6977 2.38881i 0.920405 0.149593i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −21.7048 12.5313i −1.35391 0.781679i −0.365113 0.930963i \(-0.618970\pi\)
−0.988794 + 0.149284i \(0.952303\pi\)
\(258\) −0.780943 0.780943i −0.0486194 0.0486194i
\(259\) −0.0517123 0.626978i −0.00321324 0.0389585i
\(260\) −3.50196 + 1.57616i −0.217182 + 0.0977492i
\(261\) −4.64772 17.3455i −0.287687 1.07366i
\(262\) 4.64577 + 1.24483i 0.287016 + 0.0769058i
\(263\) −1.47613 + 5.50901i −0.0910223 + 0.339700i −0.996386 0.0849363i \(-0.972931\pi\)
0.905364 + 0.424636i \(0.139598\pi\)
\(264\) 5.00498 + 1.34108i 0.308035 + 0.0825379i
\(265\) −2.83156 + 7.46651i −0.173941 + 0.458664i
\(266\) 0.106004 + 0.183605i 0.00649954 + 0.0112575i
\(267\) 0.928452i 0.0568203i
\(268\) 0.154193 + 0.575454i 0.00941881 + 0.0351515i
\(269\) 8.45805i 0.515696i 0.966185 + 0.257848i \(0.0830134\pi\)
−0.966185 + 0.257848i \(0.916987\pi\)
\(270\) 3.79157 9.99794i 0.230747 0.608455i
\(271\) −7.60110 + 13.1655i −0.461734 + 0.799747i −0.999048 0.0436357i \(-0.986106\pi\)
0.537313 + 0.843383i \(0.319439\pi\)
\(272\) −6.18885 + 3.57313i −0.375254 + 0.216653i
\(273\) 0.165520i 0.0100178i
\(274\) −6.92489 + 1.85552i −0.418348 + 0.112096i
\(275\) 26.3713 8.80482i 1.59025 0.530951i
\(276\) 3.57081 0.956796i 0.214938 0.0575923i
\(277\) 7.72657 + 13.3828i 0.464245 + 0.804095i 0.999167 0.0408060i \(-0.0129925\pi\)
−0.534923 + 0.844901i \(0.679659\pi\)
\(278\) 5.01349 + 8.68362i 0.300689 + 0.520809i
\(279\) −17.1170 + 4.58649i −1.02477 + 0.274586i
\(280\) −0.179137 + 0.146264i −0.0107055 + 0.00874097i
\(281\) 4.29157 1.14992i 0.256013 0.0685986i −0.128530 0.991706i \(-0.541026\pi\)
0.384543 + 0.923107i \(0.374359\pi\)
\(282\) 5.40153i 0.321656i
\(283\) 7.24395 4.18230i 0.430608 0.248612i −0.268998 0.963141i \(-0.586692\pi\)
0.699606 + 0.714529i \(0.253359\pi\)
\(284\) 3.42272 5.92833i 0.203101 0.351782i
\(285\) −3.89499 + 1.75305i −0.230719 + 0.103842i
\(286\) 9.54978i 0.564690i
\(287\) 0.251878 + 0.940020i 0.0148679 + 0.0554876i
\(288\) 2.13165i 0.125609i
\(289\) 17.0345 + 29.5047i 1.00203 + 1.73557i
\(290\) −17.6130 6.67948i −1.03427 0.392232i
\(291\) 14.4603 + 3.87462i 0.847676 + 0.227134i
\(292\) 1.03786 3.87333i 0.0607359 0.226670i
\(293\) 8.17171 + 2.18960i 0.477396 + 0.127918i 0.489490 0.872009i \(-0.337183\pi\)
−0.0120938 + 0.999927i \(0.503850\pi\)
\(294\) −1.68569 6.29107i −0.0983113 0.366903i
\(295\) −5.96300 + 15.7238i −0.347179 + 0.915473i
\(296\) −5.72620 + 2.05197i −0.332829 + 0.119268i
\(297\) −18.8019 18.8019i −1.09100 1.09100i
\(298\) 10.0096 + 5.77904i 0.579840 + 0.334771i
\(299\) 3.40665 + 5.90049i 0.197012 + 0.341234i
\(300\) −2.56911 3.88695i −0.148328 0.224413i
\(301\) 0.0317254 0.118401i 0.00182862 0.00682451i
\(302\) 16.4424i 0.946156i
\(303\) −9.25749 2.48054i −0.531829 0.142503i
\(304\) 1.44949 1.44949i 0.0831339 0.0831339i
\(305\) −9.43415 11.5544i −0.540198 0.661604i
\(306\) 15.2334 0.870833
\(307\) 8.70076 8.70076i 0.496579 0.496579i −0.413792 0.910371i \(-0.635796\pi\)
0.910371 + 0.413792i \(0.135796\pi\)
\(308\) 0.148844 + 0.555494i 0.00848119 + 0.0316522i
\(309\) −17.0136 4.55878i −0.967869 0.259340i
\(310\) −6.59147 + 17.3810i −0.374371 + 0.987173i
\(311\) 7.18747 + 26.8240i 0.407564 + 1.52105i 0.799277 + 0.600962i \(0.205216\pi\)
−0.391714 + 0.920087i \(0.628118\pi\)
\(312\) 1.54587 0.414214i 0.0875174 0.0234502i
\(313\) −0.935758 + 1.62078i −0.0528922 + 0.0916119i −0.891259 0.453494i \(-0.850177\pi\)
0.838367 + 0.545106i \(0.183511\pi\)
\(314\) 0.708309 2.64344i 0.0399722 0.149178i
\(315\) 0.486590 0.0790851i 0.0274162 0.00445594i
\(316\) 3.22474 + 12.0349i 0.181406 + 0.677017i
\(317\) −1.65086 6.16108i −0.0927214 0.346041i 0.903943 0.427653i \(-0.140660\pi\)
−0.996664 + 0.0816126i \(0.973993\pi\)
\(318\) 1.66390 2.88196i 0.0933070 0.161612i
\(319\) −33.1226 + 33.1226i −1.85451 + 1.85451i
\(320\) 1.81431 + 1.30701i 0.101423 + 0.0730639i
\(321\) 11.8784 + 6.85802i 0.662989 + 0.382777i
\(322\) 0.290125 + 0.290125i 0.0161680 + 0.0161680i
\(323\) −10.3584 10.3584i −0.576359 0.576359i
\(324\) 0.969450 1.67914i 0.0538583 0.0932854i
\(325\) 5.69419 6.42776i 0.315857 0.356548i
\(326\) −16.8094 + 9.70492i −0.930987 + 0.537506i
\(327\) −18.3867 −1.01678
\(328\) 8.14893 4.70478i 0.449949 0.259778i
\(329\) 0.519187 0.299753i 0.0286237 0.0165259i
\(330\) −11.4362 + 1.85872i −0.629543 + 0.102319i
\(331\) −6.22338 + 1.66755i −0.342068 + 0.0916569i −0.425763 0.904835i \(-0.639994\pi\)
0.0836953 + 0.996491i \(0.473328\pi\)
\(332\) 5.11546 5.11546i 0.280747 0.280747i
\(333\) 12.7580 + 2.31507i 0.699134 + 0.126865i
\(334\) 2.70623i 0.148078i
\(335\) −0.842524 1.03188i −0.0460320 0.0563774i
\(336\) 0.0834643 0.0481882i 0.00455335 0.00262888i
\(337\) −11.9691 3.20711i −0.651998 0.174702i −0.0823657 0.996602i \(-0.526248\pi\)
−0.569632 + 0.821900i \(0.692914\pi\)
\(338\) −5.02520 8.70390i −0.273335 0.473430i
\(339\) −1.27568 + 1.27568i −0.0692852 + 0.0692852i
\(340\) 9.34022 12.9656i 0.506544 0.703156i
\(341\) 32.6862 + 32.6862i 1.77006 + 1.77006i
\(342\) −4.22076 + 1.13095i −0.228232 + 0.0611547i
\(343\) 1.02307 1.02307i 0.0552405 0.0552405i
\(344\) −1.18519 −0.0639011
\(345\) −6.40300 + 5.22803i −0.344726 + 0.281468i
\(346\) −4.25970 + 15.8974i −0.229003 + 0.854650i
\(347\) 28.4004 1.52461 0.762306 0.647216i \(-0.224067\pi\)
0.762306 + 0.647216i \(0.224067\pi\)
\(348\) 6.79837 + 3.92504i 0.364431 + 0.210404i
\(349\) 8.00242 + 4.62020i 0.428360 + 0.247314i 0.698648 0.715466i \(-0.253786\pi\)
−0.270288 + 0.962780i \(0.587119\pi\)
\(350\) 0.231037 0.462642i 0.0123495 0.0247292i
\(351\) −7.93285 2.12560i −0.423424 0.113456i
\(352\) 4.81552 2.78024i 0.256668 0.148187i
\(353\) 8.90031 + 5.13859i 0.473715 + 0.273500i 0.717794 0.696256i \(-0.245152\pi\)
−0.244078 + 0.969756i \(0.578485\pi\)
\(354\) 3.50402 6.06914i 0.186237 0.322571i
\(355\) −1.53848 + 15.2294i −0.0816539 + 0.808291i
\(356\) 0.704527 + 0.704527i 0.0373399 + 0.0373399i
\(357\) −0.344365 0.596458i −0.0182257 0.0315679i
\(358\) 0.136636 0.0366116i 0.00722145 0.00193498i
\(359\) 12.2560i 0.646847i 0.946254 + 0.323424i \(0.104834\pi\)
−0.946254 + 0.323424i \(0.895166\pi\)
\(360\) −1.95630 4.34656i −0.103106 0.229084i
\(361\) −12.8154 7.39898i −0.674495 0.389420i
\(362\) −7.00705 −0.368282
\(363\) −4.80406 + 17.9290i −0.252148 + 0.941029i
\(364\) 0.125600 + 0.125600i 0.00658323 + 0.00658323i
\(365\) 1.43845 + 8.85043i 0.0752921 + 0.463253i
\(366\) 3.10817 + 5.38351i 0.162467 + 0.281400i
\(367\) −1.36639 + 5.09944i −0.0713250 + 0.266188i −0.992375 0.123256i \(-0.960666\pi\)
0.921050 + 0.389445i \(0.127333\pi\)
\(368\) 1.98356 3.43563i 0.103400 0.179095i
\(369\) −20.0579 −1.04417
\(370\) 9.79289 9.43924i 0.509108 0.490723i
\(371\) 0.369347 0.0191755
\(372\) 3.87333 6.70881i 0.200823 0.347835i
\(373\) 3.30185 12.3227i 0.170963 0.638043i −0.826241 0.563317i \(-0.809525\pi\)
0.997204 0.0747263i \(-0.0238083\pi\)
\(374\) −19.8683 34.4129i −1.02737 1.77945i
\(375\) 8.80576 + 5.56794i 0.454728 + 0.287527i
\(376\) −4.09878 4.09878i −0.211378 0.211378i
\(377\) −3.74460 + 13.9750i −0.192857 + 0.719751i
\(378\) −0.494570 −0.0254379
\(379\) −5.52269 3.18852i −0.283681 0.163783i 0.351407 0.936223i \(-0.385703\pi\)
−0.635089 + 0.772439i \(0.719037\pi\)
\(380\) −1.62534 + 4.28585i −0.0833783 + 0.219859i
\(381\) 7.14643i 0.366123i
\(382\) −1.10318 + 0.295597i −0.0564438 + 0.0151241i
\(383\) 5.92368 + 10.2601i 0.302686 + 0.524268i 0.976743 0.214411i \(-0.0687833\pi\)
−0.674057 + 0.738679i \(0.735450\pi\)
\(384\) −0.658919 0.658919i −0.0336253 0.0336253i
\(385\) −0.813300 0.996085i −0.0414496 0.0507652i
\(386\) 4.92160 8.52446i 0.250503 0.433884i
\(387\) 2.18794 + 1.26321i 0.111219 + 0.0642123i
\(388\) 13.9129 8.03259i 0.706318 0.407793i
\(389\) −3.59492 0.963255i −0.182270 0.0488390i 0.166530 0.986036i \(-0.446744\pi\)
−0.348799 + 0.937197i \(0.613410\pi\)
\(390\) −2.77197 + 2.26330i −0.140364 + 0.114607i
\(391\) −24.5519 14.1751i −1.24165 0.716864i
\(392\) −6.05291 3.49465i −0.305718 0.176507i
\(393\) 4.48188 0.226081
\(394\) −4.03390 + 15.0547i −0.203225 + 0.758446i
\(395\) −17.6203 21.5804i −0.886575 1.08583i
\(396\) −11.8530 −0.595636
\(397\) 5.68644 5.68644i 0.285394 0.285394i −0.549861 0.835256i \(-0.685320\pi\)
0.835256 + 0.549861i \(0.185320\pi\)
\(398\) −20.8615 + 5.58983i −1.04569 + 0.280193i
\(399\) 0.139696 + 0.139696i 0.00699357 + 0.00699357i
\(400\) −4.89898 1.00000i −0.244949 0.0500000i
\(401\) 10.6700 10.6700i 0.532832 0.532832i −0.388582 0.921414i \(-0.627035\pi\)
0.921414 + 0.388582i \(0.127035\pi\)
\(402\) 0.277577 + 0.480778i 0.0138443 + 0.0239790i
\(403\) 13.7909 + 3.69526i 0.686974 + 0.184074i
\(404\) −8.90704 + 5.14248i −0.443142 + 0.255848i
\(405\) −0.435758 + 4.31356i −0.0216530 + 0.214342i
\(406\) 0.871267i 0.0432403i
\(407\) −11.4099 31.8404i −0.565569 1.57827i
\(408\) −4.70881 + 4.70881i −0.233121 + 0.233121i
\(409\) 21.4831 5.75637i 1.06227 0.284634i 0.314956 0.949106i \(-0.398010\pi\)
0.747313 + 0.664472i \(0.231343\pi\)
\(410\) −12.2984 + 17.0719i −0.607373 + 0.843121i
\(411\) −5.78557 + 3.34030i −0.285381 + 0.164765i
\(412\) −16.3695 + 9.45095i −0.806469 + 0.465615i
\(413\) 0.777810 0.0382735
\(414\) −7.32358 + 4.22827i −0.359934 + 0.207808i
\(415\) −5.73607 + 15.1254i −0.281572 + 0.742475i
\(416\) 0.858719 1.48735i 0.0421022 0.0729231i
\(417\) 6.60697 + 6.60697i 0.323545 + 0.323545i
\(418\) 8.05986 + 8.05986i 0.394220 + 0.394220i
\(419\) −4.02283 2.32258i −0.196528 0.113466i 0.398507 0.917165i \(-0.369528\pi\)
−0.595035 + 0.803700i \(0.702862\pi\)
\(420\) −0.125965 + 0.174857i −0.00614644 + 0.00853214i
\(421\) 4.93926 4.93926i 0.240725 0.240725i −0.576425 0.817150i \(-0.695553\pi\)
0.817150 + 0.576425i \(0.195553\pi\)
\(422\) 5.01884 8.69289i 0.244313 0.423163i
\(423\) 3.19803 + 11.9352i 0.155493 + 0.580309i
\(424\) −0.924288 3.44949i −0.0448874 0.167522i
\(425\) −7.14626 + 35.0094i −0.346645 + 1.69821i
\(426\) 1.65099 6.16158i 0.0799908 0.298530i
\(427\) −0.344970 + 0.597506i −0.0166943 + 0.0289153i
\(428\) 14.2176 3.80959i 0.687232 0.184143i
\(429\) 2.30323 + 8.59575i 0.111201 + 0.415007i
\(430\) 2.41667 1.08769i 0.116542 0.0524532i
\(431\) 2.02030 + 0.541338i 0.0973144 + 0.0260753i 0.307148 0.951662i \(-0.400625\pi\)
−0.209833 + 0.977737i \(0.567292\pi\)
\(432\) 1.23766 + 4.61900i 0.0595468 + 0.222232i
\(433\) 15.5293 15.5293i 0.746291 0.746291i −0.227490 0.973780i \(-0.573052\pi\)
0.973780 + 0.227490i \(0.0730518\pi\)
\(434\) 0.859788 0.0412711
\(435\) −17.4644 1.76427i −0.837356 0.0845901i
\(436\) −13.9522 + 13.9522i −0.668187 + 0.668187i
\(437\) 7.85507 + 2.10476i 0.375759 + 0.100684i
\(438\) 3.73670i 0.178546i
\(439\) −2.43746 + 9.09672i −0.116334 + 0.434163i −0.999383 0.0351169i \(-0.988820\pi\)
0.883050 + 0.469279i \(0.155486\pi\)
\(440\) −7.26758 + 10.0884i −0.346469 + 0.480948i
\(441\) 7.44938 + 12.9027i 0.354733 + 0.614415i
\(442\) −10.6290 6.13664i −0.505568 0.291890i
\(443\) 1.60697 + 1.60697i 0.0763493 + 0.0763493i 0.744250 0.667901i \(-0.232807\pi\)
−0.667901 + 0.744250i \(0.732807\pi\)
\(444\) −4.65926 + 3.22803i −0.221119 + 0.153195i
\(445\) −2.08314 0.790000i −0.0987504 0.0374496i
\(446\) −5.62233 20.9828i −0.266225 0.993566i
\(447\) 10.4034 + 2.78759i 0.492065 + 0.131848i
\(448\) 0.0267682 0.0999004i 0.00126468 0.00471985i
\(449\) 2.87798 + 0.771151i 0.135820 + 0.0363929i 0.326089 0.945339i \(-0.394269\pi\)
−0.190269 + 0.981732i \(0.560936\pi\)
\(450\) 7.97801 + 7.06753i 0.376087 + 0.333166i
\(451\) 26.1609 + 45.3119i 1.23187 + 2.13366i
\(452\) 1.93602i 0.0910625i
\(453\) −3.96560 14.7998i −0.186320 0.695357i
\(454\) 7.29785i 0.342505i
\(455\) −0.371374 0.140838i −0.0174103 0.00660258i
\(456\) 0.955096 1.65427i 0.0447265 0.0774685i
\(457\) 6.91429 3.99197i 0.323437 0.186736i −0.329487 0.944160i \(-0.606876\pi\)
0.652923 + 0.757424i \(0.273542\pi\)
\(458\) 15.7522i 0.736054i
\(459\) 33.0086 8.84462i 1.54071 0.412832i
\(460\) −0.891592 + 8.82585i −0.0415707 + 0.411507i
\(461\) −7.44879 + 1.99590i −0.346925 + 0.0929581i −0.428074 0.903744i \(-0.640808\pi\)
0.0811492 + 0.996702i \(0.474141\pi\)
\(462\) 0.267949 + 0.464102i 0.0124661 + 0.0215920i
\(463\) −2.67846 4.63923i −0.124479 0.215603i 0.797050 0.603913i \(-0.206393\pi\)
−0.921529 + 0.388309i \(0.873059\pi\)
\(464\) 8.13713 2.18034i 0.377757 0.101220i
\(465\) −1.74102 + 17.2343i −0.0807380 + 0.799224i
\(466\) −2.13533 + 0.572161i −0.0989175 + 0.0265049i
\(467\) 1.68754i 0.0780898i −0.999237 0.0390449i \(-0.987568\pi\)
0.999237 0.0390449i \(-0.0124315\pi\)
\(468\) −3.17050 + 1.83049i −0.146557 + 0.0846145i
\(469\) −0.0308078 + 0.0533607i −0.00142257 + 0.00246397i
\(470\) 12.1193 + 4.59605i 0.559020 + 0.212000i
\(471\) 2.55019i 0.117507i
\(472\) −1.94646 7.26430i −0.0895932 0.334367i
\(473\) 6.59022i 0.303019i
\(474\) 5.80518 + 10.0549i 0.266641 + 0.461836i
\(475\) −0.619114 10.2307i −0.0284069 0.469418i
\(476\) −0.713915 0.191293i −0.0327222 0.00876790i
\(477\) −1.97026 + 7.35311i −0.0902120 + 0.336676i
\(478\) −22.7934 6.10746i −1.04254 0.279349i
\(479\) −1.22580 4.57475i −0.0560083 0.209026i 0.932251 0.361812i \(-0.117842\pi\)
−0.988259 + 0.152787i \(0.951175\pi\)
\(480\) 1.94829 + 0.738859i 0.0889268 + 0.0337241i
\(481\) −7.96919 6.75478i −0.363364 0.307991i
\(482\) −13.7651 13.7651i −0.626983 0.626983i
\(483\) 0.331114 + 0.191169i 0.0150662 + 0.00869847i
\(484\) 9.95946 + 17.2503i 0.452703 + 0.784104i
\(485\) −20.9973 + 29.1473i −0.953439 + 1.32351i
\(486\) 4.18060 15.6022i 0.189636 0.707730i
\(487\) 5.21509i 0.236318i 0.992995 + 0.118159i \(0.0376993\pi\)
−0.992995 + 0.118159i \(0.962301\pi\)
\(488\) 6.44364 + 1.72657i 0.291690 + 0.0781581i
\(489\) −12.7895 + 12.7895i −0.578361 + 0.578361i
\(490\) 15.5494 + 1.57081i 0.702451 + 0.0709620i
\(491\) 11.4803 0.518098 0.259049 0.965864i \(-0.416591\pi\)
0.259049 + 0.965864i \(0.416591\pi\)
\(492\) 6.20014 6.20014i 0.279524 0.279524i
\(493\) −15.5813 58.1501i −0.701745 2.61895i
\(494\) 3.40060 + 0.911187i 0.153000 + 0.0409963i
\(495\) 24.1690 10.8780i 1.08631 0.488928i
\(496\) −2.15161 8.02993i −0.0966103 0.360554i
\(497\) 0.683863 0.183240i 0.0306754 0.00821946i
\(498\) 3.37067 5.83817i 0.151043 0.261615i
\(499\) −9.13764 + 34.1022i −0.409057 + 1.52662i 0.387391 + 0.921915i \(0.373376\pi\)
−0.796448 + 0.604707i \(0.793290\pi\)
\(500\) 10.9070 2.45692i 0.487778 0.109877i
\(501\) −0.652690 2.43587i −0.0291601 0.108827i
\(502\) −0.211253 0.788407i −0.00942869 0.0351883i
\(503\) −6.17744 + 10.6996i −0.275438 + 0.477073i −0.970246 0.242123i \(-0.922156\pi\)
0.694807 + 0.719196i \(0.255490\pi\)
\(504\) −0.155892 + 0.155892i −0.00694400 + 0.00694400i
\(505\) 13.4425 18.6601i 0.598184 0.830366i
\(506\) 19.1038 + 11.0296i 0.849266 + 0.490324i
\(507\) −6.62240 6.62240i −0.294111 0.294111i
\(508\) −5.42285 5.42285i −0.240600 0.240600i
\(509\) 20.5218 35.5447i 0.909611 1.57549i 0.0950057 0.995477i \(-0.469713\pi\)
0.814605 0.580016i \(-0.196954\pi\)
\(510\) 5.28008 13.9230i 0.233806 0.616520i
\(511\) 0.359166 0.207365i 0.0158886 0.00917327i
\(512\) −1.00000 −0.0441942
\(513\) −8.48916 + 4.90122i −0.374806 + 0.216394i
\(514\) −21.7048 + 12.5313i −0.957357 + 0.552730i
\(515\) 24.7049 34.2940i 1.08863 1.51117i
\(516\) −1.06679 + 0.285845i −0.0469627 + 0.0125836i
\(517\) 22.7912 22.7912i 1.00235 1.00235i
\(518\) −0.568835 0.268705i −0.0249932 0.0118062i
\(519\) 15.3366i 0.673203i
\(520\) −0.385986 + 3.82086i −0.0169266 + 0.167556i
\(521\) 8.38514 4.84116i 0.367360 0.212095i −0.304945 0.952370i \(-0.598638\pi\)
0.672304 + 0.740275i \(0.265305\pi\)
\(522\) −17.3455 4.64772i −0.759194 0.203425i
\(523\) −19.9811 34.6083i −0.873714 1.51332i −0.858126 0.513439i \(-0.828371\pi\)
−0.0155877 0.999879i \(-0.504962\pi\)
\(524\) 3.40094 3.40094i 0.148571 0.148571i
\(525\) 0.0963763 0.472146i 0.00420621 0.0206061i
\(526\) 4.03287 + 4.03287i 0.175842 + 0.175842i
\(527\) −57.3840 + 15.3760i −2.49969 + 0.669789i
\(528\) 3.66390 3.66390i 0.159451 0.159451i
\(529\) −7.26190 −0.315735
\(530\) 5.05040 + 6.18546i 0.219376 + 0.268679i
\(531\) −4.14918 + 15.4850i −0.180059 + 0.671990i
\(532\) 0.212009 0.00919174
\(533\) 13.9953 + 8.08018i 0.606203 + 0.349991i
\(534\) 0.804063 + 0.464226i 0.0347952 + 0.0200890i
\(535\) −25.4943 + 20.8160i −1.10221 + 0.899953i
\(536\) 0.575454 + 0.154193i 0.0248558 + 0.00666010i
\(537\) 0.114156 0.0659082i 0.00492621 0.00284415i
\(538\) 7.32489 + 4.22902i 0.315798 + 0.182326i
\(539\) 19.4319 33.6571i 0.836993 1.44971i
\(540\) −6.76268 8.28256i −0.291020 0.356425i
\(541\) 7.18294 + 7.18294i 0.308819 + 0.308819i 0.844451 0.535633i \(-0.179927\pi\)
−0.535633 + 0.844451i \(0.679927\pi\)
\(542\) 7.60110 + 13.1655i 0.326495 + 0.565506i
\(543\) −6.30704 + 1.68997i −0.270661 + 0.0725234i
\(544\) 7.14626i 0.306394i
\(545\) 15.6448 41.2537i 0.670151 1.76711i
\(546\) 0.143345 + 0.0827602i 0.00613460 + 0.00354181i
\(547\) −25.9211 −1.10830 −0.554152 0.832415i \(-0.686958\pi\)
−0.554152 + 0.832415i \(0.686958\pi\)
\(548\) −1.85552 + 6.92489i −0.0792638 + 0.295816i
\(549\) −10.0552 10.0552i −0.429144 0.429144i
\(550\) 5.56048 27.2407i 0.237100 1.16155i
\(551\) 8.63431 + 14.9551i 0.367834 + 0.637107i
\(552\) 0.956796 3.57081i 0.0407239 0.151984i
\(553\) −0.644307 + 1.11597i −0.0273987 + 0.0474560i
\(554\) 15.4531 0.656541
\(555\) 6.53801 10.8581i 0.277523 0.460901i
\(556\) 10.0270 0.425239
\(557\) 20.0583 34.7420i 0.849897 1.47206i −0.0314026 0.999507i \(-0.509997\pi\)
0.881300 0.472558i \(-0.156669\pi\)
\(558\) −4.58649 + 17.1170i −0.194162 + 0.724621i
\(559\) −1.01774 1.76279i −0.0430460 0.0745579i
\(560\) 0.0371004 + 0.228269i 0.00156778 + 0.00964612i
\(561\) −26.1832 26.1832i −1.10546 1.10546i
\(562\) 1.14992 4.29157i 0.0485065 0.181029i
\(563\) −10.1495 −0.427752 −0.213876 0.976861i \(-0.568609\pi\)
−0.213876 + 0.976861i \(0.568609\pi\)
\(564\) −4.67786 2.70076i −0.196973 0.113723i
\(565\) −1.77675 3.94765i −0.0747486 0.166079i
\(566\) 8.36459i 0.351590i
\(567\) 0.193697 0.0519009i 0.00813451 0.00217963i
\(568\) −3.42272 5.92833i −0.143614 0.248747i
\(569\) −27.5816 27.5816i −1.15628 1.15628i −0.985269 0.171012i \(-0.945296\pi\)
−0.171012 0.985269i \(-0.554704\pi\)
\(570\) −0.429306 + 4.24969i −0.0179816 + 0.178000i
\(571\) 19.0735 33.0363i 0.798202 1.38253i −0.122584 0.992458i \(-0.539118\pi\)
0.920786 0.390068i \(-0.127549\pi\)
\(572\) 8.27035 + 4.77489i 0.345801 + 0.199648i
\(573\) −0.921683 + 0.532134i −0.0385039 + 0.0222302i
\(574\) 0.940020 + 0.251878i 0.0392357 + 0.0105132i
\(575\) −6.28181 18.8147i −0.261969 0.784626i
\(576\) 1.84607 + 1.06583i 0.0769194 + 0.0444094i
\(577\) 37.6461 + 21.7350i 1.56723 + 0.904839i 0.996491 + 0.0837050i \(0.0266753\pi\)
0.570736 + 0.821134i \(0.306658\pi\)
\(578\) 34.0691 1.41709
\(579\) 2.37399 8.85986i 0.0986598 0.368203i
\(580\) −14.5911 + 11.9136i −0.605863 + 0.494685i
\(581\) 0.748209 0.0310409
\(582\) 10.5856 10.5856i 0.438789 0.438789i
\(583\) 19.1808 5.13948i 0.794388 0.212856i
\(584\) −2.83548 2.83548i −0.117333 0.117333i
\(585\) 4.78493 6.64217i 0.197833 0.274620i
\(586\) 5.98210 5.98210i 0.247118 0.247118i
\(587\) 5.48017 + 9.49194i 0.226191 + 0.391774i 0.956676 0.291154i \(-0.0940393\pi\)
−0.730485 + 0.682929i \(0.760706\pi\)
\(588\) −6.29107 1.68569i −0.259439 0.0695166i
\(589\) 14.7580 8.52056i 0.608094 0.351083i
\(590\) 10.6357 + 13.0260i 0.437864 + 0.536271i
\(591\) 14.5236i 0.597423i
\(592\) −1.08604 + 5.98502i −0.0446361 + 0.245983i
\(593\) 21.7960 21.7960i 0.895055 0.895055i −0.0999387 0.994994i \(-0.531865\pi\)
0.994994 + 0.0999387i \(0.0318647\pi\)
\(594\) −25.6838 + 6.88196i −1.05382 + 0.282370i
\(595\) 1.63127 0.265129i 0.0668756 0.0108692i
\(596\) 10.0096 5.77904i 0.410009 0.236719i
\(597\) −17.4293 + 10.0628i −0.713333 + 0.411843i
\(598\) 6.81330 0.278617
\(599\) −21.0451 + 12.1504i −0.859878 + 0.496451i −0.863971 0.503541i \(-0.832030\pi\)
0.00409367 + 0.999992i \(0.498697\pi\)
\(600\) −4.65075 + 0.281441i −0.189866 + 0.0114898i
\(601\) 9.26404 16.0458i 0.377888 0.654522i −0.612867 0.790186i \(-0.709984\pi\)
0.990755 + 0.135665i \(0.0433170\pi\)
\(602\) −0.0866755 0.0866755i −0.00353263 0.00353263i
\(603\) −0.897984 0.897984i −0.0365687 0.0365687i
\(604\) −14.2396 8.22122i −0.579400 0.334517i
\(605\) −36.1391 26.0342i −1.46927 1.05844i
\(606\) −6.77696 + 6.77696i −0.275295 + 0.275295i
\(607\) 14.9535 25.9002i 0.606943 1.05126i −0.384798 0.923001i \(-0.625729\pi\)
0.991741 0.128256i \(-0.0409378\pi\)
\(608\) −0.530550 1.98004i −0.0215166 0.0803012i
\(609\) 0.210133 + 0.784227i 0.00851502 + 0.0317785i
\(610\) −14.7235 + 2.39300i −0.596137 + 0.0968897i
\(611\) 2.57660 9.61601i 0.104238 0.389022i
\(612\) 7.61668 13.1925i 0.307886 0.533274i
\(613\) −8.80896 + 2.36036i −0.355791 + 0.0953338i −0.432287 0.901736i \(-0.642293\pi\)
0.0764964 + 0.997070i \(0.475627\pi\)
\(614\) −3.18470 11.8855i −0.128524 0.479658i
\(615\) −6.95234 + 18.3325i −0.280346 + 0.739240i
\(616\) 0.555494 + 0.148844i 0.0223815 + 0.00599710i
\(617\) 9.62007 + 35.9026i 0.387289 + 1.44538i 0.834526 + 0.550968i \(0.185741\pi\)
−0.447237 + 0.894415i \(0.647592\pi\)
\(618\) −12.4548 + 12.4548i −0.501006 + 0.501006i
\(619\) 34.2163 1.37527 0.687635 0.726056i \(-0.258649\pi\)
0.687635 + 0.726056i \(0.258649\pi\)
\(620\) 11.7566 + 14.3989i 0.472158 + 0.578273i
\(621\) −13.4142 + 13.4142i −0.538294 + 0.538294i
\(622\) 26.8240 + 7.18747i 1.07554 + 0.288191i
\(623\) 0.103047i 0.00412850i
\(624\) 0.414214 1.54587i 0.0165818 0.0618842i
\(625\) −19.9853 + 15.0196i −0.799411 + 0.600784i
\(626\) 0.935758 + 1.62078i 0.0374004 + 0.0647794i
\(627\) 9.19856 + 5.31079i 0.367355 + 0.212092i
\(628\) −1.93514 1.93514i −0.0772203 0.0772203i
\(629\) 42.7706 + 7.76116i 1.70537 + 0.309458i
\(630\) 0.174805 0.460942i 0.00696441 0.0183644i
\(631\) 7.88594 + 29.4307i 0.313934 + 1.17162i 0.924977 + 0.380022i \(0.124084\pi\)
−0.611043 + 0.791597i \(0.709250\pi\)
\(632\) 12.0349 + 3.22474i 0.478723 + 0.128273i
\(633\) 2.42090 9.03491i 0.0962220 0.359106i
\(634\) −6.16108 1.65086i −0.244688 0.0655639i
\(635\) 16.0342 + 6.08075i 0.636300 + 0.241307i
\(636\) −1.66390 2.88196i −0.0659780 0.114277i
\(637\) 12.0037i 0.475604i
\(638\) 12.1237 + 45.2464i 0.479983 + 1.79132i
\(639\) 14.5921i 0.577255i
\(640\) 2.03906 0.917738i 0.0806008 0.0362768i
\(641\) −0.400224 + 0.693208i −0.0158079 + 0.0273801i −0.873821 0.486247i \(-0.838365\pi\)
0.858013 + 0.513628i \(0.171699\pi\)
\(642\) 11.8784 6.85802i 0.468804 0.270664i
\(643\) 40.2835i 1.58863i 0.607509 + 0.794313i \(0.292169\pi\)
−0.607509 + 0.794313i \(0.707831\pi\)
\(644\) 0.396318 0.106193i 0.0156171 0.00418459i
\(645\) 1.91291 1.56189i 0.0753208 0.0614992i
\(646\) −14.1499 + 3.79145i −0.556720 + 0.149173i
\(647\) −19.9613 34.5740i −0.784759 1.35924i −0.929143 0.369721i \(-0.879453\pi\)
0.144383 0.989522i \(-0.453880\pi\)
\(648\) −0.969450 1.67914i −0.0380836 0.0659627i
\(649\) 40.3930 10.8233i 1.58556 0.424850i
\(650\) −2.71950 8.14520i −0.106668 0.319481i
\(651\) 0.773895 0.207365i 0.0303313 0.00812726i
\(652\) 19.4098i 0.760148i
\(653\) −20.5247 + 11.8499i −0.803193 + 0.463724i −0.844586 0.535419i \(-0.820154\pi\)
0.0413936 + 0.999143i \(0.486820\pi\)
\(654\) −9.19333 + 15.9233i −0.359488 + 0.622651i
\(655\) −3.81354 + 10.0559i −0.149007 + 0.392916i
\(656\) 9.40957i 0.367382i
\(657\) 2.21235 + 8.25660i 0.0863119 + 0.322121i
\(658\) 0.599506i 0.0233712i
\(659\) 3.68216 + 6.37769i 0.143437 + 0.248440i 0.928789 0.370610i \(-0.120851\pi\)
−0.785352 + 0.619050i \(0.787518\pi\)
\(660\) −4.10841 + 10.8334i −0.159920 + 0.421690i
\(661\) −35.4174 9.49007i −1.37758 0.369121i −0.507337 0.861747i \(-0.669370\pi\)
−0.870241 + 0.492626i \(0.836037\pi\)
\(662\) −1.66755 + 6.22338i −0.0648112 + 0.241879i
\(663\) −11.0472 2.96008i −0.429036 0.114960i
\(664\) −1.87239 6.98784i −0.0726627 0.271181i
\(665\) −0.432298 + 0.194568i −0.0167638 + 0.00754504i
\(666\) 8.38390 9.89121i 0.324870 0.383277i
\(667\) 23.6314 + 23.6314i 0.915010 + 0.915010i
\(668\) −2.34366 1.35311i −0.0906790 0.0523535i
\(669\) −10.1213 17.5306i −0.391313 0.677774i
\(670\) −1.31489 + 0.213709i −0.0507987 + 0.00825628i
\(671\) −9.60055 + 35.8297i −0.370625 + 1.38319i
\(672\) 0.0963763i 0.00371780i
\(673\) −23.1500 6.20302i −0.892367 0.239109i −0.216632 0.976253i \(-0.569507\pi\)
−0.675735 + 0.737144i \(0.736174\pi\)
\(674\) −8.76198 + 8.76198i −0.337499 + 0.337499i
\(675\) 21.3907 + 10.6823i 0.823329 + 0.411160i
\(676\) −10.0504 −0.386554
\(677\) 5.42867 5.42867i 0.208641 0.208641i −0.595049 0.803690i \(-0.702867\pi\)
0.803690 + 0.595049i \(0.202867\pi\)
\(678\) 0.466930 + 1.74261i 0.0179323 + 0.0669244i
\(679\) 1.60492 + 0.430037i 0.0615911 + 0.0165033i
\(680\) −6.55840 14.5716i −0.251503 0.558797i
\(681\) −1.76010 6.56879i −0.0674473 0.251717i
\(682\) 44.6502 11.9640i 1.70975 0.458125i
\(683\) −8.86346 + 15.3520i −0.339151 + 0.587427i −0.984273 0.176653i \(-0.943473\pi\)
0.645122 + 0.764079i \(0.276806\pi\)
\(684\) −1.13095 + 4.22076i −0.0432429 + 0.161385i
\(685\) −2.57172 15.8231i −0.0982604 0.604570i
\(686\) −0.374469 1.39754i −0.0142973 0.0533582i
\(687\) −3.79914 14.1786i −0.144946 0.540947i
\(688\) −0.592594 + 1.02640i −0.0225925 + 0.0391313i
\(689\) 4.33688 4.33688i 0.165222 0.165222i
\(690\) 1.32611 + 8.15918i 0.0504840 + 0.310615i
\(691\) 0.382057 + 0.220581i 0.0145342 + 0.00839130i 0.507249 0.861799i \(-0.330662\pi\)
−0.492715 + 0.870191i \(0.663996\pi\)
\(692\) 11.6377 + 11.6377i 0.442400 + 0.442400i
\(693\) −0.866836 0.866836i −0.0329284 0.0329284i
\(694\) 14.2002 24.5955i 0.539032 0.933631i
\(695\) −20.4456 + 9.20214i −0.775546 + 0.349057i
\(696\) 6.79837 3.92504i 0.257692 0.148778i
\(697\) −67.2433 −2.54702
\(698\) 8.00242 4.62020i 0.302896 0.174877i
\(699\) −1.78402 + 1.03000i −0.0674778 + 0.0389583i
\(700\) −0.285141 0.431405i −0.0107773 0.0163056i
\(701\) −38.1400 + 10.2196i −1.44053 + 0.385988i −0.892719 0.450615i \(-0.851205\pi\)
−0.547810 + 0.836603i \(0.684538\pi\)
\(702\) −5.80725 + 5.80725i −0.219180 + 0.219180i
\(703\) −12.4268 + 1.02494i −0.468685 + 0.0386565i
\(704\) 5.56048i 0.209568i
\(705\) 12.0170 + 1.21397i 0.452587 + 0.0457206i
\(706\) 8.90031 5.13859i 0.334967 0.193394i
\(707\) −1.02747 0.275310i −0.0386421 0.0103541i
\(708\) −3.50402 6.06914i −0.131689 0.228092i
\(709\) −13.8629 + 13.8629i −0.520634 + 0.520634i −0.917763 0.397129i \(-0.870007\pi\)
0.397129 + 0.917763i \(0.370007\pi\)
\(710\) 12.4198 + 8.94704i 0.466106 + 0.335777i
\(711\) −18.7802 18.7802i −0.704313 0.704313i
\(712\) 0.962402 0.257875i 0.0360675 0.00966427i
\(713\) 23.3200 23.3200i 0.873342 0.873342i
\(714\) −0.688731 −0.0257751
\(715\) −21.2458 2.14626i −0.794549 0.0802657i
\(716\) 0.0366116 0.136636i 0.00136824 0.00510634i
\(717\) −21.9893 −0.821206
\(718\) 10.6140 + 6.12800i 0.396111 + 0.228695i
\(719\) −12.5516 7.24669i −0.468097 0.270256i 0.247346 0.968927i \(-0.420442\pi\)
−0.715443 + 0.698671i \(0.753775\pi\)
\(720\) −4.74238 0.479078i −0.176738 0.0178542i
\(721\) −1.88831 0.505971i −0.0703243 0.0188433i
\(722\) −12.8154 + 7.39898i −0.476940 + 0.275362i
\(723\) −15.7098 9.07007i −0.584255 0.337320i
\(724\) −3.50352 + 6.06828i −0.130207 + 0.225526i
\(725\) 18.8186 37.6833i 0.698904 1.39952i
\(726\) 13.1249 + 13.1249i 0.487112 + 0.487112i
\(727\) 16.7353 + 28.9864i 0.620678 + 1.07505i 0.989360 + 0.145490i \(0.0464760\pi\)
−0.368681 + 0.929556i \(0.620191\pi\)
\(728\) 0.171573 0.0459728i 0.00635891 0.00170387i
\(729\) 9.23511i 0.342041i
\(730\) 8.38392 + 3.17948i 0.310303 + 0.117678i
\(731\) 7.33495 + 4.23484i 0.271293 + 0.156631i
\(732\) 6.21634 0.229762
\(733\) 0.0524807 0.195861i 0.00193842 0.00723428i −0.964950 0.262434i \(-0.915475\pi\)
0.966888 + 0.255200i \(0.0821413\pi\)
\(734\) 3.73305 + 3.73305i 0.137789 + 0.137789i
\(735\) 14.3749 2.33634i 0.530225 0.0861771i
\(736\) −1.98356 3.43563i −0.0731151 0.126639i
\(737\) −0.857384 + 3.19980i −0.0315821 + 0.117866i
\(738\) −10.0290 + 17.3707i −0.369171 + 0.639424i
\(739\) −34.4241 −1.26631 −0.633155 0.774025i \(-0.718241\pi\)
−0.633155 + 0.774025i \(0.718241\pi\)
\(740\) −3.27817 13.2005i −0.120508 0.485261i
\(741\) 3.28064 0.120517
\(742\) 0.184674 0.319864i 0.00677958 0.0117426i
\(743\) −6.65580 + 24.8398i −0.244178 + 0.911283i 0.729617 + 0.683856i \(0.239698\pi\)
−0.973795 + 0.227428i \(0.926969\pi\)
\(744\) −3.87333 6.70881i −0.142003 0.245957i
\(745\) −15.1065 + 20.9700i −0.553459 + 0.768280i
\(746\) −9.02082 9.02082i −0.330276 0.330276i
\(747\) −3.99128 + 14.8957i −0.146033 + 0.545003i
\(748\) −39.7366 −1.45292
\(749\) 1.31837 + 0.761159i 0.0481720 + 0.0278121i
\(750\) 9.22486 4.84204i 0.336844 0.176806i
\(751\) 46.7091i 1.70444i 0.523183 + 0.852220i \(0.324744\pi\)
−0.523183 + 0.852220i \(0.675256\pi\)
\(752\) −5.59904 + 1.50026i −0.204176 + 0.0547088i
\(753\) −0.380298 0.658695i −0.0138588 0.0240042i
\(754\) 10.2304 + 10.2304i 0.372570 + 0.372570i
\(755\) 36.5802 + 3.69535i 1.33129 + 0.134488i
\(756\) −0.247285 + 0.428310i −0.00899366 + 0.0155775i
\(757\) −1.84585 1.06570i −0.0670886 0.0387336i 0.466081 0.884742i \(-0.345666\pi\)
−0.533169 + 0.846009i \(0.678999\pi\)
\(758\) −5.52269 + 3.18852i −0.200593 + 0.115812i
\(759\) 19.8554 + 5.32024i 0.720706 + 0.193113i
\(760\) 2.89898 + 3.55051i 0.105157 + 0.128791i
\(761\) 2.82489 + 1.63095i 0.102402 + 0.0591218i 0.550326 0.834950i \(-0.314503\pi\)
−0.447924 + 0.894071i \(0.647837\pi\)
\(762\) −6.18899 3.57321i −0.224203 0.129444i
\(763\) −2.04070 −0.0738784
\(764\) −0.295597 + 1.10318i −0.0106943 + 0.0399118i
\(765\) −3.42362