Properties

Label 370.2.q.c.273.2
Level $370$
Weight $2$
Character 370.273
Analytic conductor $2.954$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(97,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.q (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 273.2
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 370.273
Dual form 370.2.q.c.267.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.46593 + 0.392794i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.30701 - 1.81431i) q^{5} +(1.07313 - 1.07313i) q^{6} +(2.26612 + 0.607206i) q^{7} -1.00000 q^{8} +(-0.603425 - 0.348387i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(1.46593 + 0.392794i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.30701 - 1.81431i) q^{5} +(1.07313 - 1.07313i) q^{6} +(2.26612 + 0.607206i) q^{7} -1.00000 q^{8} +(-0.603425 - 0.348387i) q^{9} +(-0.917738 - 2.03906i) q^{10} +2.09638i q^{11} +(-0.392794 - 1.46593i) q^{12} +(-0.141281 - 0.244705i) q^{13} +(1.65892 - 1.65892i) q^{14} +(2.62863 - 2.14626i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-3.18885 - 1.84108i) q^{17} +(-0.603425 + 0.348387i) q^{18} +(-1.26260 + 4.71209i) q^{19} +(-2.22474 - 0.224745i) q^{20} +(3.08346 + 1.78024i) q^{21} +(1.81552 + 1.04819i) q^{22} +3.38134 q^{23} +(-1.46593 - 0.392794i) q^{24} +(-1.58346 - 4.74264i) q^{25} -0.282561 q^{26} +(-3.96713 - 3.96713i) q^{27} +(-0.607206 - 2.26612i) q^{28} +(-0.0432043 + 0.0432043i) q^{29} +(-0.544406 - 3.34959i) q^{30} +(1.04989 + 1.04989i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.823443 + 3.07313i) q^{33} +(-3.18885 + 1.84108i) q^{34} +(4.06350 - 3.31784i) q^{35} +0.696775i q^{36} +(2.05197 + 5.72620i) q^{37} +(3.44949 + 3.44949i) q^{38} +(-0.110988 - 0.414214i) q^{39} +(-1.30701 + 1.81431i) q^{40} +(2.66364 - 1.53786i) q^{41} +(3.08346 - 1.78024i) q^{42} +4.22902 q^{43} +(1.81552 - 1.04819i) q^{44} +(-1.42076 + 0.639456i) q^{45} +(1.69067 - 2.92833i) q^{46} +(-4.68457 + 4.68457i) q^{47} +(-1.07313 + 1.07313i) q^{48} +(-1.29555 - 0.747989i) q^{49} +(-4.89898 - 1.00000i) q^{50} +(-3.95145 - 3.95145i) q^{51} +(-0.141281 + 0.244705i) q^{52} +(-5.40957 + 1.44949i) q^{53} +(-5.41920 + 1.45207i) q^{54} +(3.80348 + 2.73998i) q^{55} +(-2.26612 - 0.607206i) q^{56} +(-3.70176 + 6.41163i) q^{57} +(0.0158139 + 0.0590182i) q^{58} +(-2.53225 + 0.678514i) q^{59} +(-3.17303 - 1.20332i) q^{60} +(-1.33453 + 4.98054i) q^{61} +(1.43417 - 0.384286i) q^{62} +(-1.15589 - 1.15589i) q^{63} +1.00000 q^{64} +(-0.628626 - 0.0635042i) q^{65} +(2.24969 + 2.24969i) q^{66} +(-2.01033 + 7.50266i) q^{67} +3.68216i q^{68} +(4.95680 + 1.32817i) q^{69} +(-0.841579 - 5.17802i) q^{70} +(-3.71561 - 6.43563i) q^{71} +(0.603425 + 0.348387i) q^{72} +(-3.07812 + 3.07812i) q^{73} +(5.98502 + 1.08604i) q^{74} +(-0.458362 - 7.57433i) q^{75} +(4.71209 - 1.26260i) q^{76} +(-1.27293 + 4.75065i) q^{77} +(-0.414214 - 0.110988i) q^{78} +(-0.207729 + 0.775255i) q^{79} +(0.917738 + 2.03906i) q^{80} +(-3.21209 - 5.56350i) q^{81} -3.07571i q^{82} +(10.1484 - 2.71926i) q^{83} -3.56048i q^{84} +(-7.50814 + 3.37926i) q^{85} +(2.11451 - 3.66244i) q^{86} +(-0.0803047 + 0.0463639i) q^{87} -2.09638i q^{88} +(-2.69445 - 10.0558i) q^{89} +(-0.156597 + 1.55015i) q^{90} +(-0.171573 - 0.640319i) q^{91} +(-1.69067 - 2.92833i) q^{92} +(1.12667 + 1.95145i) q^{93} +(1.71467 + 6.39924i) q^{94} +(6.89898 + 8.44949i) q^{95} +(0.392794 + 1.46593i) q^{96} +13.9230i q^{97} +(-1.29555 + 0.747989i) q^{98} +(0.730351 - 1.26500i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 4 q^{5} - 4 q^{6} + 12 q^{7} - 8 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 4 q^{5} - 4 q^{6} + 12 q^{7} - 8 q^{8} - 12 q^{9} - 4 q^{10} - 8 q^{12} - 4 q^{13} + 12 q^{14} - 4 q^{16} + 12 q^{17} - 12 q^{18} + 4 q^{19} - 8 q^{20} + 12 q^{21} - 12 q^{22} - 8 q^{23} - 4 q^{24} - 8 q^{26} - 8 q^{27} - 24 q^{29} - 12 q^{30} - 8 q^{31} + 4 q^{32} - 12 q^{33} + 12 q^{34} + 8 q^{38} + 16 q^{39} - 4 q^{40} + 12 q^{41} + 12 q^{42} + 16 q^{43} - 12 q^{44} - 12 q^{45} - 4 q^{46} - 8 q^{47} + 4 q^{48} + 36 q^{49} + 20 q^{51} - 4 q^{52} + 16 q^{53} - 4 q^{54} + 16 q^{55} - 12 q^{56} + 4 q^{57} - 24 q^{58} - 8 q^{59} - 12 q^{60} + 20 q^{62} - 4 q^{63} + 8 q^{64} + 16 q^{65} - 16 q^{67} + 16 q^{69} - 12 q^{70} - 4 q^{71} + 12 q^{72} + 16 q^{73} - 20 q^{75} + 4 q^{76} + 4 q^{77} + 8 q^{78} - 32 q^{79} + 4 q^{80} + 8 q^{81} + 16 q^{85} + 8 q^{86} - 36 q^{87} + 8 q^{89} + 24 q^{90} - 24 q^{91} + 4 q^{92} + 20 q^{93} - 16 q^{94} + 16 q^{95} + 8 q^{96} + 36 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.46593 + 0.392794i 0.846353 + 0.226780i 0.655835 0.754904i \(-0.272317\pi\)
0.190518 + 0.981684i \(0.438983\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.30701 1.81431i 0.584511 0.811386i
\(6\) 1.07313 1.07313i 0.438104 0.438104i
\(7\) 2.26612 + 0.607206i 0.856515 + 0.229502i 0.660248 0.751048i \(-0.270451\pi\)
0.196267 + 0.980550i \(0.437118\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.603425 0.348387i −0.201142 0.116129i
\(10\) −0.917738 2.03906i −0.290214 0.644807i
\(11\) 2.09638i 0.632081i 0.948746 + 0.316041i \(0.102354\pi\)
−0.948746 + 0.316041i \(0.897646\pi\)
\(12\) −0.392794 1.46593i −0.113390 0.423176i
\(13\) −0.141281 0.244705i −0.0391842 0.0678690i 0.845768 0.533550i \(-0.179143\pi\)
−0.884952 + 0.465682i \(0.845809\pi\)
\(14\) 1.65892 1.65892i 0.443365 0.443365i
\(15\) 2.62863 2.14626i 0.678708 0.554163i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.18885 1.84108i −0.773409 0.446528i 0.0606804 0.998157i \(-0.480673\pi\)
−0.834089 + 0.551629i \(0.814006\pi\)
\(18\) −0.603425 + 0.348387i −0.142229 + 0.0821157i
\(19\) −1.26260 + 4.71209i −0.289661 + 1.08103i 0.655705 + 0.755017i \(0.272371\pi\)
−0.945366 + 0.326011i \(0.894295\pi\)
\(20\) −2.22474 0.224745i −0.497468 0.0502545i
\(21\) 3.08346 + 1.78024i 0.672867 + 0.388480i
\(22\) 1.81552 + 1.04819i 0.387069 + 0.223474i
\(23\) 3.38134 0.705058 0.352529 0.935801i \(-0.385322\pi\)
0.352529 + 0.935801i \(0.385322\pi\)
\(24\) −1.46593 0.392794i −0.299231 0.0801787i
\(25\) −1.58346 4.74264i −0.316693 0.948528i
\(26\) −0.282561 −0.0554148
\(27\) −3.96713 3.96713i −0.763474 0.763474i
\(28\) −0.607206 2.26612i −0.114751 0.428257i
\(29\) −0.0432043 + 0.0432043i −0.00802284 + 0.00802284i −0.711107 0.703084i \(-0.751806\pi\)
0.703084 + 0.711107i \(0.251806\pi\)
\(30\) −0.544406 3.34959i −0.0993945 0.611549i
\(31\) 1.04989 + 1.04989i 0.188565 + 0.188565i 0.795076 0.606510i \(-0.207431\pi\)
−0.606510 + 0.795076i \(0.707431\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.823443 + 3.07313i −0.143343 + 0.534964i
\(34\) −3.18885 + 1.84108i −0.546883 + 0.315743i
\(35\) 4.06350 3.31784i 0.686858 0.560817i
\(36\) 0.696775i 0.116129i
\(37\) 2.05197 + 5.72620i 0.337342 + 0.941382i
\(38\) 3.44949 + 3.44949i 0.559581 + 0.559581i
\(39\) −0.110988 0.414214i −0.0177723 0.0663273i
\(40\) −1.30701 + 1.81431i −0.206656 + 0.286868i
\(41\) 2.66364 1.53786i 0.415991 0.240173i −0.277369 0.960763i \(-0.589463\pi\)
0.693361 + 0.720591i \(0.256129\pi\)
\(42\) 3.08346 1.78024i 0.475789 0.274697i
\(43\) 4.22902 0.644920 0.322460 0.946583i \(-0.395490\pi\)
0.322460 + 0.946583i \(0.395490\pi\)
\(44\) 1.81552 1.04819i 0.273699 0.158020i
\(45\) −1.42076 + 0.639456i −0.211795 + 0.0953245i
\(46\) 1.69067 2.92833i 0.249276 0.431758i
\(47\) −4.68457 + 4.68457i −0.683314 + 0.683314i −0.960746 0.277431i \(-0.910517\pi\)
0.277431 + 0.960746i \(0.410517\pi\)
\(48\) −1.07313 + 1.07313i −0.154893 + 0.154893i
\(49\) −1.29555 0.747989i −0.185079 0.106856i
\(50\) −4.89898 1.00000i −0.692820 0.141421i
\(51\) −3.95145 3.95145i −0.553313 0.553313i
\(52\) −0.141281 + 0.244705i −0.0195921 + 0.0339345i
\(53\) −5.40957 + 1.44949i −0.743061 + 0.199103i −0.610438 0.792064i \(-0.709007\pi\)
−0.132623 + 0.991167i \(0.542340\pi\)
\(54\) −5.41920 + 1.45207i −0.737459 + 0.197602i
\(55\) 3.80348 + 2.73998i 0.512862 + 0.369459i
\(56\) −2.26612 0.607206i −0.302824 0.0811414i
\(57\) −3.70176 + 6.41163i −0.490310 + 0.849242i
\(58\) 0.0158139 + 0.0590182i 0.00207646 + 0.00774947i
\(59\) −2.53225 + 0.678514i −0.329671 + 0.0883350i −0.419858 0.907590i \(-0.637920\pi\)
0.0901872 + 0.995925i \(0.471253\pi\)
\(60\) −3.17303 1.20332i −0.409637 0.155349i
\(61\) −1.33453 + 4.98054i −0.170869 + 0.637693i 0.826349 + 0.563158i \(0.190414\pi\)
−0.997218 + 0.0745345i \(0.976253\pi\)
\(62\) 1.43417 0.384286i 0.182140 0.0488043i
\(63\) −1.15589 1.15589i −0.145629 0.145629i
\(64\) 1.00000 0.125000
\(65\) −0.628626 0.0635042i −0.0779715 0.00787672i
\(66\) 2.24969 + 2.24969i 0.276918 + 0.276918i
\(67\) −2.01033 + 7.50266i −0.245601 + 0.916596i 0.727479 + 0.686130i \(0.240692\pi\)
−0.973080 + 0.230466i \(0.925975\pi\)
\(68\) 3.68216i 0.446528i
\(69\) 4.95680 + 1.32817i 0.596728 + 0.159893i
\(70\) −0.841579 5.17802i −0.100588 0.618891i
\(71\) −3.71561 6.43563i −0.440962 0.763769i 0.556799 0.830647i \(-0.312029\pi\)
−0.997761 + 0.0668782i \(0.978696\pi\)
\(72\) 0.603425 + 0.348387i 0.0711143 + 0.0410578i
\(73\) −3.07812 + 3.07812i −0.360266 + 0.360266i −0.863911 0.503645i \(-0.831992\pi\)
0.503645 + 0.863911i \(0.331992\pi\)
\(74\) 5.98502 + 1.08604i 0.695745 + 0.126250i
\(75\) −0.458362 7.57433i −0.0529271 0.874609i
\(76\) 4.71209 1.26260i 0.540514 0.144830i
\(77\) −1.27293 + 4.75065i −0.145064 + 0.541387i
\(78\) −0.414214 0.110988i −0.0469005 0.0125669i
\(79\) −0.207729 + 0.775255i −0.0233713 + 0.0872230i −0.976626 0.214944i \(-0.931043\pi\)
0.953255 + 0.302167i \(0.0977099\pi\)
\(80\) 0.917738 + 2.03906i 0.102606 + 0.227974i
\(81\) −3.21209 5.56350i −0.356899 0.618167i
\(82\) 3.07571i 0.339656i
\(83\) 10.1484 2.71926i 1.11393 0.298478i 0.345508 0.938416i \(-0.387707\pi\)
0.768427 + 0.639938i \(0.221040\pi\)
\(84\) 3.56048i 0.388480i
\(85\) −7.50814 + 3.37926i −0.814372 + 0.366532i
\(86\) 2.11451 3.66244i 0.228014 0.394931i
\(87\) −0.0803047 + 0.0463639i −0.00860957 + 0.00497074i
\(88\) 2.09638i 0.223474i
\(89\) −2.69445 10.0558i −0.285611 1.06592i −0.948391 0.317102i \(-0.897290\pi\)
0.662780 0.748814i \(-0.269376\pi\)
\(90\) −0.156597 + 1.55015i −0.0165067 + 0.163400i
\(91\) −0.171573 0.640319i −0.0179857 0.0671236i
\(92\) −1.69067 2.92833i −0.176265 0.305299i
\(93\) 1.12667 + 1.95145i 0.116830 + 0.202356i
\(94\) 1.71467 + 6.39924i 0.176855 + 0.660031i
\(95\) 6.89898 + 8.44949i 0.707820 + 0.866899i
\(96\) 0.392794 + 1.46593i 0.0400893 + 0.149615i
\(97\) 13.9230i 1.41367i 0.707378 + 0.706835i \(0.249878\pi\)
−0.707378 + 0.706835i \(0.750122\pi\)
\(98\) −1.29555 + 0.747989i −0.130871 + 0.0755583i
\(99\) 0.730351 1.26500i 0.0734030 0.127138i
\(100\) −3.31552 + 3.74264i −0.331552 + 0.374264i
\(101\) 0.527606i 0.0524987i −0.999655 0.0262494i \(-0.991644\pi\)
0.999655 0.0262494i \(-0.00835639\pi\)
\(102\) −5.39778 + 1.44633i −0.534460 + 0.143208i
\(103\) 6.65445i 0.655682i 0.944733 + 0.327841i \(0.106321\pi\)
−0.944733 + 0.327841i \(0.893679\pi\)
\(104\) 0.141281 + 0.244705i 0.0138537 + 0.0239953i
\(105\) 7.26002 3.26758i 0.708506 0.318884i
\(106\) −1.44949 + 5.40957i −0.140787 + 0.525424i
\(107\) −12.3828 3.31796i −1.19709 0.320759i −0.395406 0.918507i \(-0.629396\pi\)
−0.801685 + 0.597747i \(0.796063\pi\)
\(108\) −1.45207 + 5.41920i −0.139725 + 0.521463i
\(109\) 2.32867 0.623965i 0.223046 0.0597650i −0.145565 0.989349i \(-0.546500\pi\)
0.368611 + 0.929584i \(0.379833\pi\)
\(110\) 4.27463 1.92392i 0.407570 0.183439i
\(111\) 0.758819 + 9.20019i 0.0720239 + 0.873244i
\(112\) −1.65892 + 1.65892i −0.156753 + 0.156753i
\(113\) 17.9193 + 10.3457i 1.68570 + 0.973242i 0.957744 + 0.287622i \(0.0928647\pi\)
0.727960 + 0.685620i \(0.240469\pi\)
\(114\) 3.70176 + 6.41163i 0.346701 + 0.600505i
\(115\) 4.41944 6.13481i 0.412115 0.572074i
\(116\) 0.0590182 + 0.0158139i 0.00547970 + 0.00146828i
\(117\) 0.196881i 0.0182017i
\(118\) −0.678514 + 2.53225i −0.0624623 + 0.233113i
\(119\) −6.10841 6.10841i −0.559957 0.559957i
\(120\) −2.62863 + 2.14626i −0.239960 + 0.195926i
\(121\) 6.60521 0.600473
\(122\) 3.64601 + 3.64601i 0.330094 + 0.330094i
\(123\) 4.50877 1.20812i 0.406542 0.108933i
\(124\) 0.384286 1.43417i 0.0345099 0.128793i
\(125\) −10.6742 3.32577i −0.954733 0.297465i
\(126\) −1.57898 + 0.423086i −0.140667 + 0.0376915i
\(127\) −4.62957 17.2778i −0.410808 1.53316i −0.793086 0.609109i \(-0.791527\pi\)
0.382279 0.924047i \(-0.375139\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 6.19944 + 1.66113i 0.545830 + 0.146255i
\(130\) −0.369309 + 0.512654i −0.0323906 + 0.0449628i
\(131\) 13.8765 3.71819i 1.21239 0.324860i 0.404694 0.914452i \(-0.367378\pi\)
0.807701 + 0.589592i \(0.200712\pi\)
\(132\) 3.07313 0.823443i 0.267482 0.0716715i
\(133\) −5.72242 + 9.91153i −0.496197 + 0.859438i
\(134\) 5.49233 + 5.49233i 0.474465 + 0.474465i
\(135\) −12.3827 + 2.01255i −1.06573 + 0.173213i
\(136\) 3.18885 + 1.84108i 0.273441 + 0.157871i
\(137\) −13.7296 + 13.7296i −1.17300 + 1.17300i −0.191510 + 0.981491i \(0.561338\pi\)
−0.981491 + 0.191510i \(0.938662\pi\)
\(138\) 3.62863 3.62863i 0.308889 0.308889i
\(139\) 6.30638 10.9230i 0.534901 0.926475i −0.464268 0.885695i \(-0.653682\pi\)
0.999168 0.0407800i \(-0.0129843\pi\)
\(140\) −4.90508 1.86018i −0.414555 0.157214i
\(141\) −8.70730 + 5.02716i −0.733287 + 0.423363i
\(142\) −7.43123 −0.623615
\(143\) 0.512994 0.296177i 0.0428987 0.0247676i
\(144\) 0.603425 0.348387i 0.0502854 0.0290323i
\(145\) 0.0219178 + 0.134855i 0.00182017 + 0.0111991i
\(146\) 1.12667 + 4.20478i 0.0932438 + 0.347990i
\(147\) −1.60538 1.60538i −0.132410 0.132410i
\(148\) 3.93305 4.64016i 0.323295 0.381419i
\(149\) 20.3414i 1.66643i −0.552946 0.833217i \(-0.686496\pi\)
0.552946 0.833217i \(-0.313504\pi\)
\(150\) −6.78875 3.39021i −0.554299 0.276810i
\(151\) −15.1183 + 8.72853i −1.23031 + 0.710317i −0.967094 0.254421i \(-0.918115\pi\)
−0.263212 + 0.964738i \(0.584782\pi\)
\(152\) 1.26260 4.71209i 0.102410 0.382201i
\(153\) 1.28282 + 2.22191i 0.103710 + 0.179631i
\(154\) 3.47772 + 3.47772i 0.280242 + 0.280242i
\(155\) 3.27704 0.532614i 0.263218 0.0427806i
\(156\) −0.303225 + 0.303225i −0.0242775 + 0.0242775i
\(157\) −1.45106 5.41542i −0.115807 0.432197i 0.883539 0.468357i \(-0.155154\pi\)
−0.999346 + 0.0361602i \(0.988487\pi\)
\(158\) 0.567526 + 0.567526i 0.0451500 + 0.0451500i
\(159\) −8.49938 −0.674045
\(160\) 2.22474 + 0.224745i 0.175882 + 0.0177676i
\(161\) 7.66254 + 2.05317i 0.603893 + 0.161813i
\(162\) −6.42418 −0.504731
\(163\) −5.06927 2.92674i −0.397056 0.229240i 0.288157 0.957583i \(-0.406957\pi\)
−0.685213 + 0.728343i \(0.740291\pi\)
\(164\) −2.66364 1.53786i −0.207996 0.120086i
\(165\) 4.49938 + 5.51059i 0.350276 + 0.428999i
\(166\) 2.71926 10.1484i 0.211056 0.787671i
\(167\) 12.1416 7.00997i 0.939547 0.542448i 0.0497286 0.998763i \(-0.484164\pi\)
0.889818 + 0.456315i \(0.150831\pi\)
\(168\) −3.08346 1.78024i −0.237894 0.137348i
\(169\) 6.46008 11.1892i 0.496929 0.860707i
\(170\) −0.827547 + 8.19187i −0.0634700 + 0.628288i
\(171\) 2.40352 2.40352i 0.183802 0.183802i
\(172\) −2.11451 3.66244i −0.161230 0.279259i
\(173\) −5.29498 19.7611i −0.402570 1.50241i −0.808495 0.588504i \(-0.799717\pi\)
0.405925 0.913906i \(-0.366949\pi\)
\(174\) 0.0927279i 0.00702968i
\(175\) −0.708567 11.7089i −0.0535626 0.885110i
\(176\) −1.81552 1.04819i −0.136850 0.0790102i
\(177\) −3.97861 −0.299050
\(178\) −10.0558 2.69445i −0.753717 0.201958i
\(179\) 14.9710 14.9710i 1.11899 1.11899i 0.127098 0.991890i \(-0.459434\pi\)
0.991890 0.127098i \(-0.0405663\pi\)
\(180\) 1.26417 + 0.910689i 0.0942255 + 0.0678788i
\(181\) −0.546728 0.946961i −0.0406380 0.0703871i 0.844991 0.534781i \(-0.179606\pi\)
−0.885629 + 0.464393i \(0.846272\pi\)
\(182\) −0.640319 0.171573i −0.0474636 0.0127178i
\(183\) −3.91265 + 6.77690i −0.289231 + 0.500963i
\(184\) −3.38134 −0.249276
\(185\) 13.0711 + 3.76127i 0.961004 + 0.276534i
\(186\) 2.25334 0.165223
\(187\) 3.85960 6.68502i 0.282242 0.488857i
\(188\) 6.39924 + 1.71467i 0.466712 + 0.125055i
\(189\) −6.58114 11.3989i −0.478708 0.829146i
\(190\) 10.7670 1.74995i 0.781118 0.126954i
\(191\) 16.6360 16.6360i 1.20374 1.20374i 0.230719 0.973020i \(-0.425892\pi\)
0.973020 0.230719i \(-0.0741079\pi\)
\(192\) 1.46593 + 0.392794i 0.105794 + 0.0283474i
\(193\) −23.0148 −1.65664 −0.828320 0.560255i \(-0.810703\pi\)
−0.828320 + 0.560255i \(0.810703\pi\)
\(194\) 12.0577 + 6.96152i 0.865693 + 0.499808i
\(195\) −0.896575 0.340013i −0.0642051 0.0243488i
\(196\) 1.49598i 0.106856i
\(197\) 4.03390 + 15.0547i 0.287403 + 1.07260i 0.947065 + 0.321041i \(0.104033\pi\)
−0.659662 + 0.751563i \(0.729300\pi\)
\(198\) −0.730351 1.26500i −0.0519038 0.0899000i
\(199\) 9.10012 9.10012i 0.645090 0.645090i −0.306712 0.951802i \(-0.599229\pi\)
0.951802 + 0.306712i \(0.0992289\pi\)
\(200\) 1.58346 + 4.74264i 0.111968 + 0.335355i
\(201\) −5.89400 + 10.2087i −0.415730 + 0.720066i
\(202\) −0.456920 0.263803i −0.0321488 0.0185611i
\(203\) −0.124140 + 0.0716725i −0.00871294 + 0.00503042i
\(204\) −1.44633 + 5.39778i −0.101263 + 0.377920i
\(205\) 0.691250 6.84267i 0.0482790 0.477913i
\(206\) 5.76292 + 3.32723i 0.401522 + 0.231819i
\(207\) −2.04038 1.17802i −0.141817 0.0818778i
\(208\) 0.282561 0.0195921
\(209\) −9.87832 2.64689i −0.683297 0.183089i
\(210\) 0.800199 7.92116i 0.0552190 0.546612i
\(211\) −7.10875 −0.489386 −0.244693 0.969601i \(-0.578687\pi\)
−0.244693 + 0.969601i \(0.578687\pi\)
\(212\) 3.96008 + 3.96008i 0.271979 + 0.271979i
\(213\) −2.91894 10.8936i −0.200002 0.746419i
\(214\) −9.06484 + 9.06484i −0.619660 + 0.619660i
\(215\) 5.52737 7.67277i 0.376963 0.523279i
\(216\) 3.96713 + 3.96713i 0.269929 + 0.269929i
\(217\) 1.74168 + 3.01668i 0.118233 + 0.204785i
\(218\) 0.623965 2.32867i 0.0422602 0.157717i
\(219\) −5.72135 + 3.30323i −0.386613 + 0.223211i
\(220\) 0.471150 4.66390i 0.0317649 0.314440i
\(221\) 1.04044i 0.0699873i
\(222\) 8.34701 + 3.94294i 0.560215 + 0.264633i
\(223\) −9.43157 9.43157i −0.631585 0.631585i 0.316881 0.948465i \(-0.397364\pi\)
−0.948465 + 0.316881i \(0.897364\pi\)
\(224\) 0.607206 + 2.26612i 0.0405707 + 0.151412i
\(225\) −0.696775 + 3.41348i −0.0464516 + 0.227566i
\(226\) 17.9193 10.3457i 1.19197 0.688186i
\(227\) 12.4078 7.16364i 0.823534 0.475468i −0.0280994 0.999605i \(-0.508945\pi\)
0.851634 + 0.524137i \(0.175612\pi\)
\(228\) 7.40352 0.490310
\(229\) −21.0352 + 12.1447i −1.39005 + 0.802544i −0.993320 0.115392i \(-0.963187\pi\)
−0.396727 + 0.917936i \(0.629854\pi\)
\(230\) −3.10318 6.89475i −0.204618 0.454626i
\(231\) −3.73205 + 6.46410i −0.245551 + 0.425307i
\(232\) 0.0432043 0.0432043i 0.00283650 0.00283650i
\(233\) 15.6342 15.6342i 1.02423 1.02423i 0.0245342 0.999699i \(-0.492190\pi\)
0.999699 0.0245342i \(-0.00781027\pi\)
\(234\) 0.170504 + 0.0984407i 0.0111462 + 0.00643527i
\(235\) 2.37651 + 14.6220i 0.155026 + 0.953836i
\(236\) 1.85374 + 1.85374i 0.120668 + 0.120668i
\(237\) −0.609031 + 1.05487i −0.0395608 + 0.0685213i
\(238\) −8.34424 + 2.23583i −0.540877 + 0.144928i
\(239\) −10.4991 + 2.81324i −0.679133 + 0.181973i −0.581865 0.813285i \(-0.697677\pi\)
−0.0972675 + 0.995258i \(0.531010\pi\)
\(240\) 0.544406 + 3.34959i 0.0351413 + 0.216215i
\(241\) 18.0033 + 4.82396i 1.15969 + 0.310738i 0.786843 0.617153i \(-0.211714\pi\)
0.372849 + 0.927892i \(0.378381\pi\)
\(242\) 3.30260 5.72028i 0.212299 0.367713i
\(243\) 1.83283 + 6.84022i 0.117576 + 0.438800i
\(244\) 4.98054 1.33453i 0.318846 0.0854346i
\(245\) −3.05039 + 1.37292i −0.194882 + 0.0877123i
\(246\) 1.20812 4.50877i 0.0770269 0.287468i
\(247\) 1.33145 0.356762i 0.0847183 0.0227002i
\(248\) −1.04989 1.04989i −0.0666680 0.0666680i
\(249\) 15.9450 1.01047
\(250\) −8.21731 + 7.58128i −0.519709 + 0.479482i
\(251\) −6.64822 6.64822i −0.419632 0.419632i 0.465445 0.885077i \(-0.345894\pi\)
−0.885077 + 0.465445i \(0.845894\pi\)
\(252\) −0.423086 + 1.57898i −0.0266519 + 0.0994663i
\(253\) 7.08856i 0.445654i
\(254\) −17.2778 4.62957i −1.08411 0.290485i
\(255\) −12.3337 + 2.00459i −0.772368 + 0.125532i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −18.5379 10.7028i −1.15636 0.667625i −0.205931 0.978567i \(-0.566022\pi\)
−0.950429 + 0.310942i \(0.899356\pi\)
\(258\) 4.53830 4.53830i 0.282542 0.282542i
\(259\) 1.17303 + 14.2223i 0.0728887 + 0.883729i
\(260\) 0.259317 + 0.576158i 0.0160822 + 0.0357318i
\(261\) 0.0411224 0.0110187i 0.00254541 0.000682041i
\(262\) 3.71819 13.8765i 0.229711 0.857292i
\(263\) 15.5472 + 4.16586i 0.958682 + 0.256878i 0.704042 0.710158i \(-0.251377\pi\)
0.254639 + 0.967036i \(0.418043\pi\)
\(264\) 0.823443 3.07313i 0.0506794 0.189138i
\(265\) −4.44052 + 11.7091i −0.272779 + 0.719287i
\(266\) 5.72242 + 9.91153i 0.350864 + 0.607715i
\(267\) 15.7995i 0.966912i
\(268\) 7.50266 2.01033i 0.458298 0.122801i
\(269\) 2.37038i 0.144524i −0.997386 0.0722622i \(-0.976978\pi\)
0.997386 0.0722622i \(-0.0230219\pi\)
\(270\) −4.44842 + 11.7300i −0.270722 + 0.713864i
\(271\) −1.98468 + 3.43757i −0.120561 + 0.208818i −0.919989 0.391944i \(-0.871803\pi\)
0.799428 + 0.600762i \(0.205136\pi\)
\(272\) 3.18885 1.84108i 0.193352 0.111632i
\(273\) 1.00605i 0.0608891i
\(274\) 5.02539 + 18.7550i 0.303595 + 1.13303i
\(275\) 9.94236 3.31954i 0.599547 0.200176i
\(276\) −1.32817 4.95680i −0.0799464 0.298364i
\(277\) 10.9805 + 19.0188i 0.659757 + 1.14273i 0.980679 + 0.195626i \(0.0626739\pi\)
−0.320922 + 0.947106i \(0.603993\pi\)
\(278\) −6.30638 10.9230i −0.378232 0.655117i
\(279\) −0.267761 0.999296i −0.0160304 0.0598263i
\(280\) −4.06350 + 3.31784i −0.242841 + 0.198279i
\(281\) −3.94842 14.7357i −0.235543 0.879059i −0.977903 0.209058i \(-0.932960\pi\)
0.742360 0.670001i \(-0.233706\pi\)
\(282\) 10.0543i 0.598726i
\(283\) 3.14945 1.81834i 0.187215 0.108089i −0.403463 0.914996i \(-0.632194\pi\)
0.590678 + 0.806907i \(0.298860\pi\)
\(284\) −3.71561 + 6.43563i −0.220481 + 0.381885i
\(285\) 6.79449 + 15.0962i 0.402471 + 0.894222i
\(286\) 0.592354i 0.0350266i
\(287\) 6.96995 1.86759i 0.411423 0.110240i
\(288\) 0.696775i 0.0410578i
\(289\) −1.72084 2.98058i −0.101226 0.175328i
\(290\) 0.127746 + 0.0484459i 0.00750152 + 0.00284484i
\(291\) −5.46888 + 20.4101i −0.320592 + 1.19646i
\(292\) 4.20478 + 1.12667i 0.246066 + 0.0659333i
\(293\) −1.29303 + 4.82564i −0.0755394 + 0.281917i −0.993355 0.115090i \(-0.963284\pi\)
0.917816 + 0.397007i \(0.129951\pi\)
\(294\) −2.19299 + 0.587611i −0.127898 + 0.0342701i
\(295\) −2.07863 + 5.48112i −0.121023 + 0.319123i
\(296\) −2.05197 5.72620i −0.119268 0.332829i
\(297\) 8.31659 8.31659i 0.482578 0.482578i
\(298\) −17.6162 10.1707i −1.02048 0.589173i
\(299\) −0.477718 0.827431i −0.0276271 0.0478516i
\(300\) −6.33038 + 4.18412i −0.365485 + 0.241570i
\(301\) 9.58350 + 2.56789i 0.552384 + 0.148011i
\(302\) 17.4571i 1.00454i
\(303\) 0.207240 0.773431i 0.0119056 0.0444324i
\(304\) −3.44949 3.44949i −0.197842 0.197842i
\(305\) 7.29201 + 8.93086i 0.417539 + 0.511379i
\(306\) 2.56564 0.146668
\(307\) 11.0272 + 11.0272i 0.629353 + 0.629353i 0.947905 0.318552i \(-0.103197\pi\)
−0.318552 + 0.947905i \(0.603197\pi\)
\(308\) 4.75065 1.27293i 0.270693 0.0725321i
\(309\) −2.61383 + 9.75493i −0.148695 + 0.554939i
\(310\) 1.17726 3.10430i 0.0668639 0.176313i
\(311\) −16.3799 + 4.38897i −0.928816 + 0.248876i −0.691350 0.722520i \(-0.742984\pi\)
−0.237467 + 0.971396i \(0.576317\pi\)
\(312\) 0.110988 + 0.414214i 0.00628347 + 0.0234502i
\(313\) −14.7922 + 25.6208i −0.836103 + 1.44817i 0.0570270 + 0.998373i \(0.481838\pi\)
−0.893130 + 0.449799i \(0.851495\pi\)
\(314\) −5.41542 1.45106i −0.305610 0.0818878i
\(315\) −3.60791 + 0.586391i −0.203283 + 0.0330394i
\(316\) 0.775255 0.207729i 0.0436115 0.0116857i
\(317\) 1.42903 0.382908i 0.0802624 0.0215062i −0.218464 0.975845i \(-0.570105\pi\)
0.298727 + 0.954339i \(0.403438\pi\)
\(318\) −4.24969 + 7.36068i −0.238311 + 0.412766i
\(319\) −0.0905725 0.0905725i −0.00507109 0.00507109i
\(320\) 1.30701 1.81431i 0.0730639 0.101423i
\(321\) −16.8490 9.72777i −0.940419 0.542951i
\(322\) 5.60937 5.60937i 0.312598 0.312598i
\(323\) 12.7016 12.7016i 0.706735 0.706735i
\(324\) −3.21209 + 5.56350i −0.178449 + 0.309084i
\(325\) −0.936835 + 1.05752i −0.0519663 + 0.0586609i
\(326\) −5.06927 + 2.92674i −0.280761 + 0.162097i
\(327\) 3.65874 0.202329
\(328\) −2.66364 + 1.53786i −0.147075 + 0.0849139i
\(329\) −13.4603 + 7.77132i −0.742091 + 0.428446i
\(330\) 7.02200 1.14128i 0.386548 0.0628254i
\(331\) −1.91875 7.16088i −0.105464 0.393597i 0.892933 0.450189i \(-0.148643\pi\)
−0.998397 + 0.0565916i \(0.981977\pi\)
\(332\) −7.42917 7.42917i −0.407728 0.407728i
\(333\) 0.756728 4.17021i 0.0414684 0.228526i
\(334\) 14.0199i 0.767137i
\(335\) 10.9847 + 13.4534i 0.600156 + 0.735038i
\(336\) −3.08346 + 1.78024i −0.168217 + 0.0971200i
\(337\) −0.859342 + 3.20711i −0.0468113 + 0.174702i −0.985374 0.170407i \(-0.945492\pi\)
0.938562 + 0.345110i \(0.112158\pi\)
\(338\) −6.46008 11.1892i −0.351382 0.608611i
\(339\) 22.2046 + 22.2046i 1.20599 + 1.20599i
\(340\) 6.68060 + 4.81261i 0.362306 + 0.261001i
\(341\) −2.20096 + 2.20096i −0.119189 + 0.119189i
\(342\) −0.879748 3.28327i −0.0475713 0.177539i
\(343\) −14.0941 14.0941i −0.761012 0.761012i
\(344\) −4.22902 −0.228014
\(345\) 8.88828 7.25725i 0.478529 0.390717i
\(346\) −19.7611 5.29498i −1.06236 0.284660i
\(347\) 21.2981 1.14334 0.571671 0.820483i \(-0.306295\pi\)
0.571671 + 0.820483i \(0.306295\pi\)
\(348\) 0.0803047 + 0.0463639i 0.00430478 + 0.00248537i
\(349\) 8.08946 + 4.67045i 0.433019 + 0.250004i 0.700632 0.713523i \(-0.252902\pi\)
−0.267613 + 0.963526i \(0.586235\pi\)
\(350\) −10.4945 5.24082i −0.560954 0.280133i
\(351\) −0.410298 + 1.53125i −0.0219001 + 0.0817323i
\(352\) −1.81552 + 1.04819i −0.0967673 + 0.0558686i
\(353\) 7.34233 + 4.23910i 0.390793 + 0.225624i 0.682504 0.730882i \(-0.260891\pi\)
−0.291711 + 0.956507i \(0.594224\pi\)
\(354\) −1.98930 + 3.44557i −0.105730 + 0.183130i
\(355\) −16.5326 1.67013i −0.877459 0.0886413i
\(356\) −7.36138 + 7.36138i −0.390152 + 0.390152i
\(357\) −6.55513 11.3538i −0.346934 0.600908i
\(358\) −5.47978 20.4508i −0.289615 1.08086i
\(359\) 13.4276i 0.708681i 0.935117 + 0.354340i \(0.115295\pi\)
−0.935117 + 0.354340i \(0.884705\pi\)
\(360\) 1.42076 0.639456i 0.0748808 0.0337023i
\(361\) −4.15515 2.39898i −0.218692 0.126262i
\(362\) −1.09346 −0.0574708
\(363\) 9.68274 + 2.59448i 0.508212 + 0.136175i
\(364\) −0.468746 + 0.468746i −0.0245690 + 0.0245690i
\(365\) 1.56155 + 9.60779i 0.0817351 + 0.502895i
\(366\) 3.91265 + 6.77690i 0.204517 + 0.354234i
\(367\) −6.56254 1.75843i −0.342562 0.0917892i 0.0834365 0.996513i \(-0.473410\pi\)
−0.425998 + 0.904724i \(0.640077\pi\)
\(368\) −1.69067 + 2.92833i −0.0881323 + 0.152650i
\(369\) −2.14308 −0.111564
\(370\) 9.79289 9.43924i 0.509108 0.490723i
\(371\) −13.1389 −0.682138
\(372\) 1.12667 1.95145i 0.0584150 0.101178i
\(373\) −12.3227 3.30185i −0.638043 0.170963i −0.0747263 0.997204i \(-0.523808\pi\)
−0.563317 + 0.826241i \(0.690475\pi\)
\(374\) −3.85960 6.68502i −0.199575 0.345674i
\(375\) −14.3413 9.06810i −0.740581 0.468275i
\(376\) 4.68457 4.68457i 0.241588 0.241588i
\(377\) 0.0166762 + 0.00446839i 0.000858870 + 0.000230134i
\(378\) −13.1623 −0.676995
\(379\) 28.8572 + 16.6607i 1.48230 + 0.855804i 0.999798 0.0200939i \(-0.00639652\pi\)
0.482497 + 0.875898i \(0.339730\pi\)
\(380\) 3.86798 10.1994i 0.198423 0.523220i
\(381\) 27.1464i 1.39075i
\(382\) −6.08920 22.7252i −0.311551 1.16272i
\(383\) 0.0971319 + 0.168237i 0.00496321 + 0.00859653i 0.868496 0.495696i \(-0.165087\pi\)
−0.863533 + 0.504292i \(0.831753\pi\)
\(384\) 1.07313 1.07313i 0.0547630 0.0547630i
\(385\) 6.95544 + 8.51863i 0.354482 + 0.434150i
\(386\) −11.5074 + 19.9314i −0.585711 + 1.01448i
\(387\) −2.55190 1.47334i −0.129720 0.0748940i
\(388\) 12.0577 6.96152i 0.612137 0.353418i
\(389\) −8.28376 + 30.9154i −0.420003 + 1.56747i 0.354594 + 0.935020i \(0.384619\pi\)
−0.774598 + 0.632454i \(0.782048\pi\)
\(390\) −0.742747 + 0.606451i −0.0376105 + 0.0307088i
\(391\) −10.7826 6.22532i −0.545298 0.314828i
\(392\) 1.29555 + 0.747989i 0.0654354 + 0.0377791i
\(393\) 21.8024 1.09979
\(394\) 15.0547 + 4.03390i 0.758446 + 0.203225i
\(395\) 1.13505 + 1.39015i 0.0571107 + 0.0699460i
\(396\) −1.46070 −0.0734030
\(397\) 8.55620 + 8.55620i 0.429423 + 0.429423i 0.888432 0.459009i \(-0.151795\pi\)
−0.459009 + 0.888432i \(0.651795\pi\)
\(398\) −3.33087 12.4310i −0.166962 0.623109i
\(399\) −12.2818 + 12.2818i −0.614861 + 0.614861i
\(400\) 4.89898 + 1.00000i 0.244949 + 0.0500000i
\(401\) 3.91583 + 3.91583i 0.195547 + 0.195547i 0.798088 0.602541i \(-0.205845\pi\)
−0.602541 + 0.798088i \(0.705845\pi\)
\(402\) 5.89400 + 10.2087i 0.293966 + 0.509164i
\(403\) 0.108584 0.405242i 0.00540896 0.0201865i
\(404\) −0.456920 + 0.263803i −0.0227326 + 0.0131247i
\(405\) −14.2922 1.44380i −0.710183 0.0717431i
\(406\) 0.143345i 0.00711409i
\(407\) −12.0043 + 4.30170i −0.595030 + 0.213227i
\(408\) 3.95145 + 3.95145i 0.195626 + 0.195626i
\(409\) −3.48308 12.9990i −0.172227 0.642760i −0.997007 0.0773066i \(-0.975368\pi\)
0.824780 0.565453i \(-0.191299\pi\)
\(410\) −5.58030 4.01998i −0.275592 0.198533i
\(411\) −25.5195 + 14.7337i −1.25878 + 0.726760i
\(412\) 5.76292 3.32723i 0.283919 0.163921i
\(413\) −6.15039 −0.302641
\(414\) −2.04038 + 1.17802i −0.100279 + 0.0578963i
\(415\) 8.33047 21.9665i 0.408927 1.07829i
\(416\) 0.141281 0.244705i 0.00692685 0.0119977i
\(417\) 13.5352 13.5352i 0.662820 0.662820i
\(418\) −7.23143 + 7.23143i −0.353701 + 0.353701i
\(419\) 3.65887 + 2.11245i 0.178747 + 0.103200i 0.586704 0.809801i \(-0.300425\pi\)
−0.407957 + 0.913001i \(0.633759\pi\)
\(420\) −6.45982 4.65357i −0.315207 0.227071i
\(421\) 3.50439 + 3.50439i 0.170793 + 0.170793i 0.787328 0.616535i \(-0.211464\pi\)
−0.616535 + 0.787328i \(0.711464\pi\)
\(422\) −3.55437 + 6.15636i −0.173024 + 0.299687i
\(423\) 4.45883 1.19474i 0.216796 0.0580902i
\(424\) 5.40957 1.44949i 0.262712 0.0703934i
\(425\) −3.68216 + 18.0388i −0.178611 + 0.875012i
\(426\) −10.8936 2.91894i −0.527798 0.141423i
\(427\) −6.04843 + 10.4762i −0.292704 + 0.506978i
\(428\) 3.31796 + 12.3828i 0.160380 + 0.598545i
\(429\) 0.868348 0.232673i 0.0419242 0.0112336i
\(430\) −3.88114 8.62323i −0.187165 0.415849i
\(431\) −7.77766 + 29.0266i −0.374637 + 1.39816i 0.479238 + 0.877685i \(0.340913\pi\)
−0.853875 + 0.520478i \(0.825754\pi\)
\(432\) 5.41920 1.45207i 0.260731 0.0698627i
\(433\) −3.94352 3.94352i −0.189513 0.189513i 0.605972 0.795486i \(-0.292784\pi\)
−0.795486 + 0.605972i \(0.792784\pi\)
\(434\) 3.48336 0.167207
\(435\) −0.0208401 + 0.206296i −0.000999207 + 0.00989113i
\(436\) −1.70470 1.70470i −0.0816405 0.0816405i
\(437\) −4.26928 + 15.9332i −0.204228 + 0.762188i
\(438\) 6.60645i 0.315668i
\(439\) −7.63361 2.04542i −0.364332 0.0976226i 0.0720085 0.997404i \(-0.477059\pi\)
−0.436341 + 0.899781i \(0.643726\pi\)
\(440\) −3.80348 2.73998i −0.181324 0.130623i
\(441\) 0.521180 + 0.902710i 0.0248181 + 0.0429862i
\(442\) 0.901044 + 0.520218i 0.0428583 + 0.0247442i
\(443\) 8.53517 8.53517i 0.405518 0.405518i −0.474654 0.880172i \(-0.657427\pi\)
0.880172 + 0.474654i \(0.157427\pi\)
\(444\) 7.58819 5.25725i 0.360120 0.249498i
\(445\) −21.7661 8.25447i −1.03181 0.391299i
\(446\) −12.8838 + 3.45219i −0.610064 + 0.163466i
\(447\) 7.98998 29.8190i 0.377913 1.41039i
\(448\) 2.26612 + 0.607206i 0.107064 + 0.0286878i
\(449\) 6.46517 24.1283i 0.305110 1.13869i −0.627740 0.778423i \(-0.716020\pi\)
0.932850 0.360264i \(-0.117313\pi\)
\(450\) 2.60778 + 2.31017i 0.122932 + 0.108902i
\(451\) 3.22392 + 5.58400i 0.151809 + 0.262940i
\(452\) 20.6914i 0.973242i
\(453\) −25.5907 + 6.85702i −1.20236 + 0.322171i
\(454\) 14.3273i 0.672413i
\(455\) −1.38599 0.525614i −0.0649760 0.0246412i
\(456\) 3.70176 6.41163i 0.173351 0.300252i
\(457\) 15.3284 8.84983i 0.717030 0.413978i −0.0966285 0.995321i \(-0.530806\pi\)
0.813659 + 0.581343i \(0.197473\pi\)
\(458\) 24.2894i 1.13497i
\(459\) 5.34676 + 19.9544i 0.249565 + 0.931390i
\(460\) −7.52262 0.759939i −0.350744 0.0354323i
\(461\) −6.13700 22.9036i −0.285829 1.06673i −0.948232 0.317579i \(-0.897130\pi\)
0.662403 0.749148i \(-0.269537\pi\)
\(462\) 3.73205 + 6.46410i 0.173631 + 0.300737i
\(463\) 11.2140 + 19.4232i 0.521159 + 0.902673i 0.999697 + 0.0246067i \(0.00783334\pi\)
−0.478539 + 0.878067i \(0.658833\pi\)
\(464\) −0.0158139 0.0590182i −0.000734141 0.00273985i
\(465\) 5.01310 + 0.506426i 0.232477 + 0.0234849i
\(466\) −5.72253 21.3568i −0.265091 0.989333i
\(467\) 25.3419i 1.17268i 0.810064 + 0.586342i \(0.199432\pi\)
−0.810064 + 0.586342i \(0.800568\pi\)
\(468\) 0.170504 0.0984407i 0.00788156 0.00455042i
\(469\) −9.11133 + 15.7813i −0.420722 + 0.728712i
\(470\) 13.8513 + 5.25290i 0.638913 + 0.242298i
\(471\) 8.50856i 0.392054i
\(472\) 2.53225 0.678514i 0.116556 0.0312312i
\(473\) 8.86563i 0.407642i
\(474\) 0.609031 + 1.05487i 0.0279737 + 0.0484519i
\(475\) 24.3470 1.47337i 1.11712 0.0676026i
\(476\) −2.23583 + 8.34424i −0.102479 + 0.382458i
\(477\) 3.76925 + 1.00997i 0.172582 + 0.0462432i
\(478\) −2.81324 + 10.4991i −0.128674 + 0.480219i
\(479\) −35.8158 + 9.59682i −1.63647 + 0.438490i −0.955780 0.294084i \(-0.904985\pi\)
−0.680687 + 0.732574i \(0.738319\pi\)
\(480\) 3.17303 + 1.20332i 0.144828 + 0.0549240i
\(481\) 1.11133 1.31113i 0.0506722 0.0597823i
\(482\) 13.1793 13.1793i 0.600301 0.600301i
\(483\) 10.4262 + 6.01960i 0.474411 + 0.273901i
\(484\) −3.30260 5.72028i −0.150118 0.260013i
\(485\) 25.2608 + 18.1975i 1.14703 + 0.826307i
\(486\) 6.84022 + 1.83283i 0.310279 + 0.0831389i
\(487\) 16.8303i 0.762654i 0.924440 + 0.381327i \(0.124533\pi\)
−0.924440 + 0.381327i \(0.875467\pi\)
\(488\) 1.33453 4.98054i 0.0604114 0.225458i
\(489\) −6.28157 6.28157i −0.284062 0.284062i
\(490\) −0.336213 + 3.32817i −0.0151886 + 0.150351i
\(491\) −35.4803 −1.60120 −0.800601 0.599197i \(-0.795487\pi\)
−0.800601 + 0.599197i \(0.795487\pi\)
\(492\) −3.30065 3.30065i −0.148805 0.148805i
\(493\) 0.217315 0.0582293i 0.00978736 0.00262251i
\(494\) 0.356762 1.33145i 0.0160515 0.0599049i
\(495\) −1.34054 2.97846i −0.0602528 0.133872i
\(496\) −1.43417 + 0.384286i −0.0643963 + 0.0172549i
\(497\) −4.51229 16.8401i −0.202404 0.755381i
\(498\) 7.97248 13.8087i 0.357255 0.618784i
\(499\) 35.2503 + 9.44530i 1.57802 + 0.422830i 0.938313 0.345787i \(-0.112388\pi\)
0.639709 + 0.768617i \(0.279055\pi\)
\(500\) 2.45692 + 10.9070i 0.109877 + 0.487778i
\(501\) 20.5522 5.50694i 0.918204 0.246032i
\(502\) −9.08164 + 2.43342i −0.405333 + 0.108609i
\(503\) −18.7221 + 32.4276i −0.834775 + 1.44587i 0.0594379 + 0.998232i \(0.481069\pi\)
−0.894213 + 0.447641i \(0.852264\pi\)
\(504\) 1.15589 + 1.15589i 0.0514875 + 0.0514875i
\(505\) −0.957242 0.689585i −0.0425967 0.0306861i
\(506\) 6.13888 + 3.54428i 0.272906 + 0.157563i
\(507\) 13.8650 13.8650i 0.615768 0.615768i
\(508\) −12.6482 + 12.6482i −0.561174 + 0.561174i
\(509\) 9.49906 16.4528i 0.421038 0.729260i −0.575003 0.818151i \(-0.694999\pi\)
0.996041 + 0.0888916i \(0.0283325\pi\)
\(510\) −4.43084 + 11.6836i −0.196201 + 0.517359i
\(511\) −8.84445 + 5.10634i −0.391255 + 0.225891i
\(512\) −1.00000 −0.0441942
\(513\) 23.7024 13.6846i 1.04648 0.604188i
\(514\) −18.5379 + 10.7028i −0.817670 + 0.472082i
\(515\) 12.0733 + 8.69741i 0.532011 + 0.383254i
\(516\) −1.66113 6.19944i −0.0731273 0.272915i
\(517\) −9.82061 9.82061i −0.431910 0.431910i
\(518\) 12.9034 + 6.09526i 0.566941 + 0.267810i
\(519\) 31.0482i 1.36286i
\(520\) 0.628626 + 0.0635042i 0.0275671 + 0.00278484i
\(521\) 15.3133 8.84116i 0.670890 0.387338i −0.125524 0.992091i \(-0.540061\pi\)
0.796414 + 0.604752i \(0.206728\pi\)
\(522\) 0.0110187 0.0411224i 0.000482276 0.00179988i
\(523\) −11.1107 19.2444i −0.485839 0.841498i 0.514028 0.857773i \(-0.328153\pi\)
−0.999868 + 0.0162751i \(0.994819\pi\)
\(524\) −10.1583 10.1583i −0.443767 0.443767i
\(525\) 3.56048 17.4427i 0.155392 0.761262i
\(526\) 11.3813 11.3813i 0.496250 0.496250i
\(527\) −1.41500 5.28086i −0.0616385 0.230038i
\(528\) −2.24969 2.24969i −0.0979051 0.0979051i
\(529\) −11.5665 −0.502893
\(530\) 7.92016 + 9.70017i 0.344030 + 0.421349i
\(531\) 1.76441 + 0.472772i 0.0765688 + 0.0205165i
\(532\) 11.4448 0.496197
\(533\) −0.752642 0.434538i −0.0326006 0.0188219i
\(534\) −13.6827 7.89974i −0.592110 0.341855i
\(535\) −22.2042 + 18.1297i −0.959973 + 0.783814i
\(536\) 2.01033 7.50266i 0.0868331 0.324066i
\(537\) 27.8270 16.0659i 1.20082 0.693295i
\(538\) −2.05281 1.18519i −0.0885028 0.0510971i
\(539\) 1.56807 2.71597i 0.0675414 0.116985i
\(540\) 7.93426 + 9.71744i 0.341436 + 0.418172i
\(541\) 25.3440 25.3440i 1.08962 1.08962i 0.0940557 0.995567i \(-0.470017\pi\)
0.995567 0.0940557i \(-0.0299832\pi\)
\(542\) 1.98468 + 3.43757i 0.0852495 + 0.147656i
\(543\) −0.429503 1.60293i −0.0184317 0.0687882i
\(544\) 3.68216i 0.157871i
\(545\) 1.91152 5.04046i 0.0818804 0.215909i
\(546\) −0.871267 0.503026i −0.0372868 0.0215275i
\(547\) 41.5779 1.77774 0.888872 0.458156i \(-0.151490\pi\)
0.888872 + 0.458156i \(0.151490\pi\)
\(548\) 18.7550 + 5.02539i 0.801174 + 0.214674i
\(549\) 2.54044 2.54044i 0.108424 0.108424i
\(550\) 2.09638 10.2701i 0.0893898 0.437919i
\(551\) −0.149033 0.258132i −0.00634901 0.0109968i
\(552\) −4.95680 1.32817i −0.210975 0.0565306i
\(553\) −0.941480 + 1.63069i −0.0400358 + 0.0693440i
\(554\) 21.9611 0.933037
\(555\) 17.6838 + 10.6480i 0.750636 + 0.451982i
\(556\) −12.6128 −0.534901
\(557\) 3.96253 6.86330i 0.167898 0.290807i −0.769783 0.638306i \(-0.779636\pi\)
0.937680 + 0.347499i \(0.112969\pi\)
\(558\) −0.999296 0.267761i −0.0423036 0.0113352i
\(559\) −0.597479 1.03486i −0.0252707 0.0437701i
\(560\) 0.841579 + 5.17802i 0.0355632 + 0.218811i
\(561\) 8.28372 8.28372i 0.349739 0.349739i
\(562\) −14.7357 3.94842i −0.621588 0.166554i
\(563\) −44.8627 −1.89074 −0.945368 0.326006i \(-0.894297\pi\)
−0.945368 + 0.326006i \(0.894297\pi\)
\(564\) 8.70730 + 5.02716i 0.366643 + 0.211682i
\(565\) 42.1910 18.9893i 1.77499 0.798885i
\(566\) 3.63667i 0.152861i
\(567\) −3.90080 14.5580i −0.163818 0.611378i
\(568\) 3.71561 + 6.43563i 0.155904 + 0.270033i
\(569\) 11.0669 11.0669i 0.463948 0.463948i −0.435999 0.899947i \(-0.643605\pi\)
0.899947 + 0.435999i \(0.143605\pi\)
\(570\) 16.4709 + 1.66390i 0.689892 + 0.0696932i
\(571\) 12.7757 22.1282i 0.534647 0.926036i −0.464533 0.885556i \(-0.653778\pi\)
0.999180 0.0404804i \(-0.0128888\pi\)
\(572\) −0.512994 0.296177i −0.0214494 0.0123838i
\(573\) 30.9217 17.8526i 1.29177 0.745805i
\(574\) 1.86759 6.96995i 0.0779518 0.290920i
\(575\) −5.35423 16.0365i −0.223287 0.668768i
\(576\) −0.603425 0.348387i −0.0251427 0.0145161i
\(577\) −27.4034 15.8214i −1.14082 0.658653i −0.194186 0.980965i \(-0.562207\pi\)
−0.946633 + 0.322312i \(0.895540\pi\)
\(578\) −3.44168 −0.143155
\(579\) −33.7380 9.04006i −1.40210 0.375692i
\(580\) 0.105829 0.0864086i 0.00439429 0.00358792i
\(581\) 24.6488 1.02260
\(582\) 14.9413 + 14.9413i 0.619335 + 0.619335i
\(583\) −3.03868 11.3405i −0.125849 0.469675i
\(584\) 3.07812 3.07812i 0.127373 0.127373i
\(585\) 0.357204 + 0.257325i 0.0147686 + 0.0106391i
\(586\) 3.53261 + 3.53261i 0.145931 + 0.145931i
\(587\) −4.70200 8.14410i −0.194072 0.336143i 0.752524 0.658565i \(-0.228836\pi\)
−0.946596 + 0.322422i \(0.895503\pi\)
\(588\) −0.587611 + 2.19299i −0.0242327 + 0.0904375i
\(589\) −6.27276 + 3.62158i −0.258464 + 0.149225i
\(590\) 3.70747 + 4.54071i 0.152634 + 0.186938i
\(591\) 23.6536i 0.972978i
\(592\) −5.98502 1.08604i −0.245983 0.0446361i
\(593\) −17.8671 17.8671i −0.733713 0.733713i 0.237640 0.971353i \(-0.423626\pi\)
−0.971353 + 0.237640i \(0.923626\pi\)
\(594\) −3.04408 11.3607i −0.124900 0.466134i
\(595\) −19.0663 + 3.09883i −0.781642 + 0.127040i
\(596\) −17.6162 + 10.1707i −0.721587 + 0.416609i
\(597\) 16.9146 9.76563i 0.692267 0.399681i
\(598\) −0.955435 −0.0390707
\(599\) −21.1681 + 12.2214i −0.864907 + 0.499354i −0.865652 0.500645i \(-0.833096\pi\)
0.000745382 1.00000i \(0.499763\pi\)
\(600\) 0.458362 + 7.57433i 0.0187126 + 0.309221i
\(601\) −3.57775 + 6.19685i −0.145940 + 0.252775i −0.929723 0.368259i \(-0.879954\pi\)
0.783784 + 0.621034i \(0.213287\pi\)
\(602\) 7.01561 7.01561i 0.285935 0.285935i
\(603\) 3.82692 3.82692i 0.155844 0.155844i
\(604\) 15.1183 + 8.72853i 0.615153 + 0.355159i
\(605\) 8.63305 11.9839i 0.350983 0.487215i
\(606\) −0.566191 0.566191i −0.0229999 0.0229999i
\(607\) −12.8824 + 22.3130i −0.522881 + 0.905657i 0.476764 + 0.879031i \(0.341810\pi\)
−0.999645 + 0.0266257i \(0.991524\pi\)
\(608\) −4.71209 + 1.26260i −0.191101 + 0.0512052i
\(609\) −0.210133 + 0.0563050i −0.00851502 + 0.00228159i
\(610\) 11.3804 1.84964i 0.460777 0.0748898i
\(611\) 1.80818 + 0.484499i 0.0731509 + 0.0196007i
\(612\) 1.28282 2.22191i 0.0518549 0.0898153i
\(613\) −5.55500 20.7315i −0.224364 0.837339i −0.982658 0.185426i \(-0.940634\pi\)
0.758294 0.651913i \(-0.226033\pi\)
\(614\) 15.0634 4.03622i 0.607909 0.162889i
\(615\) 3.70108 9.75933i 0.149242 0.393534i
\(616\) 1.27293 4.75065i 0.0512879 0.191409i
\(617\) 9.79415 2.62433i 0.394298 0.105652i −0.0562220 0.998418i \(-0.517905\pi\)
0.450519 + 0.892767i \(0.351239\pi\)
\(618\) 7.14110 + 7.14110i 0.287257 + 0.287257i
\(619\) 35.8253 1.43994 0.719970 0.694005i \(-0.244156\pi\)
0.719970 + 0.694005i \(0.244156\pi\)
\(620\) −2.09978 2.57169i −0.0843290 0.103282i
\(621\) −13.4142 13.4142i −0.538294 0.538294i
\(622\) −4.38897 + 16.3799i −0.175982 + 0.656772i
\(623\) 24.4239i 0.978521i
\(624\) 0.414214 + 0.110988i 0.0165818 + 0.00444308i
\(625\) −19.9853 + 15.0196i −0.799411 + 0.600784i
\(626\) 14.7922 + 25.6208i 0.591214 + 1.02401i
\(627\) −13.4412 7.76028i −0.536790 0.309916i
\(628\) −3.96436 + 3.96436i −0.158195 + 0.158195i
\(629\) 3.99899 22.0378i 0.159450 0.878706i
\(630\) −1.29613 + 3.41774i −0.0516389 + 0.136166i
\(631\) −22.9068 + 6.13785i −0.911904 + 0.244344i −0.684121 0.729368i \(-0.739814\pi\)
−0.227782 + 0.973712i \(0.573147\pi\)
\(632\) 0.207729 0.775255i 0.00826302 0.0308380i
\(633\) −10.4209 2.79227i −0.414193 0.110983i
\(634\) 0.382908 1.42903i 0.0152072 0.0567541i
\(635\) −37.3982 14.1827i −1.48410 0.562824i
\(636\) 4.24969 + 7.36068i 0.168511 + 0.291870i
\(637\) 0.422705i 0.0167482i
\(638\) −0.123724 + 0.0331518i −0.00489829 + 0.00131249i
\(639\) 5.17789i 0.204834i
\(640\) −0.917738 2.03906i −0.0362768 0.0806008i
\(641\) −14.2566 + 24.6932i −0.563103 + 0.975323i 0.434120 + 0.900855i \(0.357059\pi\)
−0.997223 + 0.0744682i \(0.976274\pi\)
\(642\) −16.8490 + 9.72777i −0.664977 + 0.383925i
\(643\) 22.9109i 0.903517i 0.892140 + 0.451759i \(0.149203\pi\)
−0.892140 + 0.451759i \(0.850797\pi\)
\(644\) −2.05317 7.66254i −0.0809063 0.301946i
\(645\) 11.1165 9.07660i 0.437713 0.357391i
\(646\) −4.64910 17.3507i −0.182916 0.682654i
\(647\) 11.4258 + 19.7900i 0.449193 + 0.778025i 0.998334 0.0577050i \(-0.0183783\pi\)
−0.549141 + 0.835730i \(0.685045\pi\)
\(648\) 3.21209 + 5.56350i 0.126183 + 0.218555i
\(649\) −1.42242 5.30855i −0.0558349 0.208379i
\(650\) 0.447425 + 1.34009i 0.0175495 + 0.0525625i
\(651\) 1.36824 + 5.10634i 0.0536256 + 0.200133i
\(652\) 5.85349i 0.229240i
\(653\) −7.05249 + 4.07175i −0.275985 + 0.159340i −0.631604 0.775291i \(-0.717603\pi\)
0.355619 + 0.934631i \(0.384270\pi\)
\(654\) 1.82937 3.16856i 0.0715341 0.123901i
\(655\) 11.3907 30.0360i 0.445072 1.17360i
\(656\) 3.07571i 0.120086i
\(657\) 2.92979 0.785034i 0.114302 0.0306271i
\(658\) 15.5426i 0.605915i
\(659\) 7.14626 + 12.3777i 0.278379 + 0.482166i 0.970982 0.239152i \(-0.0768696\pi\)
−0.692603 + 0.721319i \(0.743536\pi\)
\(660\) 2.52262 6.65187i 0.0981929 0.258924i
\(661\) 7.32555 27.3393i 0.284931 1.06338i −0.663959 0.747769i \(-0.731125\pi\)
0.948890 0.315607i \(-0.102208\pi\)
\(662\) −7.16088 1.91875i −0.278315 0.0745744i
\(663\) −0.408677 + 1.52520i −0.0158717 + 0.0592339i
\(664\) −10.1484 + 2.71926i −0.393835 + 0.105528i
\(665\) 10.5034 + 23.3367i 0.407303 + 0.904959i
\(666\) −3.23315 2.74045i −0.125282 0.106190i
\(667\) −0.146089 + 0.146089i −0.00565657 + 0.00565657i
\(668\) −12.1416 7.00997i −0.469773 0.271224i
\(669\) −10.1213 17.5306i −0.391313 0.677774i
\(670\) 17.1433 2.78629i 0.662304 0.107644i
\(671\) −10.4411 2.79768i −0.403073 0.108003i
\(672\) 3.56048i 0.137348i
\(673\) 8.15000 30.4162i 0.314160 1.17246i −0.610610 0.791932i \(-0.709076\pi\)
0.924769 0.380528i \(-0.124258\pi\)
\(674\) 2.34777 + 2.34777i 0.0904325 + 0.0904325i
\(675\) −12.5329 + 25.0965i −0.482390 + 0.965963i
\(676\) −12.9202 −0.496929
\(677\) 0.529695 + 0.529695i 0.0203578 + 0.0203578i 0.717212 0.696855i \(-0.245418\pi\)
−0.696855 + 0.717212i \(0.745418\pi\)
\(678\) 30.3321 8.12745i 1.16490 0.312133i
\(679\) −8.45416 + 31.5514i −0.324441 + 1.21083i
\(680\) 7.50814 3.37926i 0.287924 0.129589i
\(681\) 21.0027 5.62767i 0.804827 0.215653i
\(682\) 0.805607 + 3.00657i 0.0308483 + 0.115127i
\(683\) −11.4000 + 19.7454i −0.436209 + 0.755535i −0.997393 0.0721551i \(-0.977012\pi\)
0.561185 + 0.827691i \(0.310346\pi\)
\(684\) −3.28327 0.879748i −0.125539 0.0336380i
\(685\) 6.96512 + 42.8545i 0.266124 + 1.63739i
\(686\) −19.2529 + 5.15881i −0.735081 + 0.196964i
\(687\) −35.6065 + 9.54072i −1.35847 + 0.364001i
\(688\) −2.11451 + 3.66244i −0.0806150 + 0.139629i
\(689\) 1.11896 + 1.11896i 0.0426291 + 0.0426291i
\(690\) −1.84082 11.3261i −0.0700790 0.431177i
\(691\) 40.5885 + 23.4338i 1.54406 + 0.891463i 0.998576 + 0.0533414i \(0.0169872\pi\)
0.545483 + 0.838122i \(0.316346\pi\)
\(692\) −14.4661 + 14.4661i −0.549920 + 0.549920i
\(693\) 2.42319 2.42319i 0.0920492 0.0920492i
\(694\) 10.6491 18.4447i 0.404232 0.700151i
\(695\) −11.5752 25.7182i −0.439073 0.975546i
\(696\) 0.0803047 0.0463639i 0.00304394 0.00175742i
\(697\) −11.3253 −0.428975
\(698\) 8.08946 4.67045i 0.306191 0.176779i
\(699\) 29.0597 16.7776i 1.09914 0.634587i
\(700\) −9.78593 + 6.46809i −0.369873 + 0.244471i
\(701\) 2.24052 + 8.36172i 0.0846231 + 0.315818i 0.995243 0.0974282i \(-0.0310616\pi\)
−0.910619 + 0.413246i \(0.864395\pi\)
\(702\) 1.12096 + 1.12096i 0.0423078 + 0.0423078i
\(703\) −29.5732 + 2.43916i −1.11537 + 0.0919946i
\(704\) 2.09638i 0.0790102i
\(705\) −2.25966 + 22.3683i −0.0851036 + 0.842439i
\(706\) 7.34233 4.23910i 0.276332 0.159541i
\(707\) 0.320366 1.19562i 0.0120486 0.0449659i
\(708\) 1.98930 + 3.44557i 0.0747626 + 0.129493i
\(709\) 29.5614 + 29.5614i 1.11020 + 1.11020i 0.993122 + 0.117080i \(0.0373534\pi\)
0.117080 + 0.993122i \(0.462647\pi\)
\(710\) −9.71267 + 13.4826i −0.364510 + 0.505992i
\(711\) 0.395438 0.395438i 0.0148301 0.0148301i
\(712\) 2.69445 + 10.0558i 0.100979 + 0.376858i
\(713\) 3.55003 + 3.55003i 0.132950 + 0.132950i
\(714\) −13.1103 −0.490639
\(715\) 0.133129 1.31784i 0.00497873 0.0492843i
\(716\) −20.4508 5.47978i −0.764283 0.204789i
\(717\) −16.4960 −0.616054
\(718\) 11.6286 + 6.71379i 0.433976 + 0.250556i
\(719\) −33.9666 19.6107i −1.26674 0.731354i −0.292372 0.956305i \(-0.594445\pi\)
−0.974370 + 0.224951i \(0.927778\pi\)
\(720\) 0.156597 1.55015i 0.00583601 0.0577705i
\(721\) −4.04062 + 15.0798i −0.150481 + 0.561602i
\(722\) −4.15515 + 2.39898i −0.154639 + 0.0892808i
\(723\) 24.4966 + 14.1431i 0.911039 + 0.525989i
\(724\) −0.546728 + 0.946961i −0.0203190 + 0.0351935i
\(725\) 0.273315 + 0.136490i 0.0101507 + 0.00506911i
\(726\) 7.08826 7.08826i 0.263070 0.263070i
\(727\) 0.306321 + 0.530563i 0.0113608 + 0.0196775i 0.871650 0.490129i \(-0.163050\pi\)
−0.860289 + 0.509806i \(0.829717\pi\)
\(728\) 0.171573 + 0.640319i 0.00635891 + 0.0237318i
\(729\) 30.0197i 1.11184i
\(730\) 9.10136 + 3.45155i 0.336856 + 0.127748i
\(731\) −13.4857 7.78598i −0.498787 0.287975i
\(732\) 7.82529 0.289231
\(733\) −32.5083 8.71058i −1.20072 0.321733i −0.397607 0.917556i \(-0.630159\pi\)
−0.803116 + 0.595823i \(0.796826\pi\)
\(734\) −4.80411 + 4.80411i −0.177323 + 0.177323i
\(735\) −5.01091 + 0.814420i −0.184830 + 0.0300403i
\(736\) 1.69067 + 2.92833i 0.0623189 + 0.107940i
\(737\) −15.7284 4.21441i −0.579363 0.155240i
\(738\) −1.07154 + 1.85596i −0.0394439 + 0.0683188i
\(739\) 33.4952 1.23214 0.616070 0.787692i \(-0.288724\pi\)
0.616070 + 0.787692i \(0.288724\pi\)
\(740\) −3.27817 13.2005i −0.120508 0.485261i
\(741\) 2.09195 0.0768495
\(742\) −6.56945 + 11.3786i −0.241172 + 0.417722i
\(743\) 30.3837 + 8.14129i 1.11467 + 0.298675i 0.768725 0.639579i \(-0.220891\pi\)
0.345946 + 0.938255i \(0.387558\pi\)
\(744\) −1.12667 1.95145i −0.0413057 0.0715435i
\(745\) −36.9057 26.5864i −1.35212 0.974050i
\(746\) −9.02082 + 9.02082i −0.330276 + 0.330276i
\(747\) −7.07117 1.89471i −0.258720 0.0693239i
\(748\) −7.71920 −0.282242
\(749\) −26.0463 15.0378i −0.951711 0.549470i
\(750\) −15.0239 + 7.88588i −0.548593 + 0.287952i
\(751\) 27.5335i 1.00471i −0.864661 0.502356i \(-0.832467\pi\)
0.864661 0.502356i \(-0.167533\pi\)
\(752\) −1.71467 6.39924i −0.0625276 0.233356i
\(753\) −7.13442 12.3572i −0.259993 0.450321i
\(754\) 0.0122079 0.0122079i 0.000444584 0.000444584i
\(755\) −3.92338 + 38.8375i −0.142787 + 1.41344i
\(756\) −6.58114 + 11.3989i −0.239354 + 0.414573i
\(757\) −24.2755 14.0154i −0.882307 0.509400i −0.0108886 0.999941i \(-0.503466\pi\)
−0.871418 + 0.490541i \(0.836799\pi\)
\(758\) 28.8572 16.6607i 1.04814 0.605145i
\(759\) −2.78434 + 10.3913i −0.101065 + 0.377181i
\(760\) −6.89898 8.44949i −0.250252 0.306495i
\(761\) −6.55281 3.78327i −0.237539 0.137143i 0.376506 0.926414i \(-0.377125\pi\)
−0.614045 + 0.789271i \(0.710459\pi\)
\(762\) −23.5095 13.5732i −0.851659 0.491706i
\(763\) 5.65593 0.204758
\(764\) −22.7252 6.08920i −0.822170 0.220300i
\(765\)