# Properties

 Label 370.2.q.b.103.1 Level $370$ Weight $2$ Character 370.103 Analytic conductor $2.954$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.q (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ x^4 - x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 103.1 Root $$-0.866025 - 0.500000i$$ of defining polynomial Character $$\chi$$ $$=$$ 370.103 Dual form 370.2.q.b.97.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 - 0.866025i) q^{2} +(0.633975 + 2.36603i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.23205 - 1.86603i) q^{5} +(1.73205 - 1.73205i) q^{6} +(0.366025 + 1.36603i) q^{7} +1.00000 q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})$$ $$q+(-0.500000 - 0.866025i) q^{2} +(0.633975 + 2.36603i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.23205 - 1.86603i) q^{5} +(1.73205 - 1.73205i) q^{6} +(0.366025 + 1.36603i) q^{7} +1.00000 q^{8} +(-2.59808 + 1.50000i) q^{9} +(-1.00000 + 2.00000i) q^{10} +6.46410i q^{11} +(-2.36603 - 0.633975i) q^{12} +(0.133975 - 0.232051i) q^{13} +(1.00000 - 1.00000i) q^{14} +(3.63397 - 4.09808i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.36603 + 1.36603i) q^{17} +(2.59808 + 1.50000i) q^{18} +(1.86603 - 0.500000i) q^{19} +(2.23205 - 0.133975i) q^{20} +(-3.00000 + 1.73205i) q^{21} +(5.59808 - 3.23205i) q^{22} -3.73205 q^{23} +(0.633975 + 2.36603i) q^{24} +(-1.96410 + 4.59808i) q^{25} -0.267949 q^{26} +(-1.36603 - 0.366025i) q^{28} +(-5.46410 + 5.46410i) q^{29} +(-5.36603 - 1.09808i) q^{30} +(4.19615 + 4.19615i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-15.2942 + 4.09808i) q^{33} +(2.36603 + 1.36603i) q^{34} +(2.09808 - 2.36603i) q^{35} -3.00000i q^{36} +(0.500000 - 6.06218i) q^{37} +(-1.36603 - 1.36603i) q^{38} +(0.633975 + 0.169873i) q^{39} +(-1.23205 - 1.86603i) q^{40} +(2.19615 + 1.26795i) q^{41} +(3.00000 + 1.73205i) q^{42} +4.00000 q^{43} +(-5.59808 - 3.23205i) q^{44} +(6.00000 + 3.00000i) q^{45} +(1.86603 + 3.23205i) q^{46} +(-3.09808 + 3.09808i) q^{47} +(1.73205 - 1.73205i) q^{48} +(4.33013 - 2.50000i) q^{49} +(4.96410 - 0.598076i) q^{50} +(-4.73205 - 4.73205i) q^{51} +(0.133975 + 0.232051i) q^{52} +(3.56218 - 13.2942i) q^{53} +(12.0622 - 7.96410i) q^{55} +(0.366025 + 1.36603i) q^{56} +(2.36603 + 4.09808i) q^{57} +(7.46410 + 2.00000i) q^{58} +(0.598076 - 2.23205i) q^{59} +(1.73205 + 5.19615i) q^{60} +(11.5622 - 3.09808i) q^{61} +(1.53590 - 5.73205i) q^{62} +(-3.00000 - 3.00000i) q^{63} +1.00000 q^{64} +(-0.598076 + 0.0358984i) q^{65} +(11.1962 + 11.1962i) q^{66} +(-5.83013 + 1.56218i) q^{67} -2.73205i q^{68} +(-2.36603 - 8.83013i) q^{69} +(-3.09808 - 0.633975i) q^{70} +(3.00000 - 5.19615i) q^{71} +(-2.59808 + 1.50000i) q^{72} +(-7.92820 + 7.92820i) q^{73} +(-5.50000 + 2.59808i) q^{74} +(-12.1244 - 1.73205i) q^{75} +(-0.500000 + 1.86603i) q^{76} +(-8.83013 + 2.36603i) q^{77} +(-0.169873 - 0.633975i) q^{78} +(12.9282 - 3.46410i) q^{79} +(-1.00000 + 2.00000i) q^{80} +(-4.50000 + 7.79423i) q^{81} -2.53590i q^{82} +(1.46410 - 5.46410i) q^{83} -3.46410i q^{84} +(5.46410 + 2.73205i) q^{85} +(-2.00000 - 3.46410i) q^{86} +(-16.3923 - 9.46410i) q^{87} +6.46410i q^{88} +(11.7942 + 3.16025i) q^{89} +(-0.401924 - 6.69615i) q^{90} +(0.366025 + 0.0980762i) q^{91} +(1.86603 - 3.23205i) q^{92} +(-7.26795 + 12.5885i) q^{93} +(4.23205 + 1.13397i) q^{94} +(-3.23205 - 2.86603i) q^{95} +(-2.36603 - 0.633975i) q^{96} -2.53590i q^{97} +(-4.33013 - 2.50000i) q^{98} +(-9.69615 - 16.7942i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 2 q^{2} + 6 q^{3} - 2 q^{4} + 2 q^{5} - 2 q^{7} + 4 q^{8}+O(q^{10})$$ 4 * q - 2 * q^2 + 6 * q^3 - 2 * q^4 + 2 * q^5 - 2 * q^7 + 4 * q^8 $$4 q - 2 q^{2} + 6 q^{3} - 2 q^{4} + 2 q^{5} - 2 q^{7} + 4 q^{8} - 4 q^{10} - 6 q^{12} + 4 q^{13} + 4 q^{14} + 18 q^{15} - 2 q^{16} - 6 q^{17} + 4 q^{19} + 2 q^{20} - 12 q^{21} + 12 q^{22} - 8 q^{23} + 6 q^{24} + 6 q^{25} - 8 q^{26} - 2 q^{28} - 8 q^{29} - 18 q^{30} - 4 q^{31} - 2 q^{32} - 30 q^{33} + 6 q^{34} - 2 q^{35} + 2 q^{37} - 2 q^{38} + 6 q^{39} + 2 q^{40} - 12 q^{41} + 12 q^{42} + 16 q^{43} - 12 q^{44} + 24 q^{45} + 4 q^{46} - 2 q^{47} + 6 q^{50} - 12 q^{51} + 4 q^{52} - 10 q^{53} + 24 q^{55} - 2 q^{56} + 6 q^{57} + 16 q^{58} - 8 q^{59} + 22 q^{61} + 20 q^{62} - 12 q^{63} + 4 q^{64} + 8 q^{65} + 24 q^{66} - 6 q^{67} - 6 q^{69} - 2 q^{70} + 12 q^{71} - 4 q^{73} - 22 q^{74} - 2 q^{76} - 18 q^{77} - 18 q^{78} + 24 q^{79} - 4 q^{80} - 18 q^{81} - 8 q^{83} + 8 q^{85} - 8 q^{86} - 24 q^{87} + 16 q^{89} - 12 q^{90} - 2 q^{91} + 4 q^{92} - 36 q^{93} + 10 q^{94} - 6 q^{95} - 6 q^{96} - 18 q^{99}+O(q^{100})$$ 4 * q - 2 * q^2 + 6 * q^3 - 2 * q^4 + 2 * q^5 - 2 * q^7 + 4 * q^8 - 4 * q^10 - 6 * q^12 + 4 * q^13 + 4 * q^14 + 18 * q^15 - 2 * q^16 - 6 * q^17 + 4 * q^19 + 2 * q^20 - 12 * q^21 + 12 * q^22 - 8 * q^23 + 6 * q^24 + 6 * q^25 - 8 * q^26 - 2 * q^28 - 8 * q^29 - 18 * q^30 - 4 * q^31 - 2 * q^32 - 30 * q^33 + 6 * q^34 - 2 * q^35 + 2 * q^37 - 2 * q^38 + 6 * q^39 + 2 * q^40 - 12 * q^41 + 12 * q^42 + 16 * q^43 - 12 * q^44 + 24 * q^45 + 4 * q^46 - 2 * q^47 + 6 * q^50 - 12 * q^51 + 4 * q^52 - 10 * q^53 + 24 * q^55 - 2 * q^56 + 6 * q^57 + 16 * q^58 - 8 * q^59 + 22 * q^61 + 20 * q^62 - 12 * q^63 + 4 * q^64 + 8 * q^65 + 24 * q^66 - 6 * q^67 - 6 * q^69 - 2 * q^70 + 12 * q^71 - 4 * q^73 - 22 * q^74 - 2 * q^76 - 18 * q^77 - 18 * q^78 + 24 * q^79 - 4 * q^80 - 18 * q^81 - 8 * q^83 + 8 * q^85 - 8 * q^86 - 24 * q^87 + 16 * q^89 - 12 * q^90 - 2 * q^91 + 4 * q^92 - 36 * q^93 + 10 * q^94 - 6 * q^95 - 6 * q^96 - 18 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 0.866025i −0.353553 0.612372i
$$3$$ 0.633975 + 2.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i $$0.166667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −1.23205 1.86603i −0.550990 0.834512i
$$6$$ 1.73205 1.73205i 0.707107 0.707107i
$$7$$ 0.366025 + 1.36603i 0.138345 + 0.516309i 0.999962 + 0.00875026i $$0.00278533\pi$$
−0.861617 + 0.507559i $$0.830548\pi$$
$$8$$ 1.00000 0.353553
$$9$$ −2.59808 + 1.50000i −0.866025 + 0.500000i
$$10$$ −1.00000 + 2.00000i −0.316228 + 0.632456i
$$11$$ 6.46410i 1.94900i 0.224388 + 0.974500i $$0.427962\pi$$
−0.224388 + 0.974500i $$0.572038\pi$$
$$12$$ −2.36603 0.633975i −0.683013 0.183013i
$$13$$ 0.133975 0.232051i 0.0371579 0.0643593i −0.846848 0.531834i $$-0.821503\pi$$
0.884006 + 0.467475i $$0.154836\pi$$
$$14$$ 1.00000 1.00000i 0.267261 0.267261i
$$15$$ 3.63397 4.09808i 0.938288 1.05812i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −2.36603 + 1.36603i −0.573845 + 0.331310i −0.758684 0.651459i $$-0.774157\pi$$
0.184838 + 0.982769i $$0.440824\pi$$
$$18$$ 2.59808 + 1.50000i 0.612372 + 0.353553i
$$19$$ 1.86603 0.500000i 0.428096 0.114708i −0.0383365 0.999265i $$-0.512206\pi$$
0.466432 + 0.884557i $$0.345539\pi$$
$$20$$ 2.23205 0.133975i 0.499102 0.0299576i
$$21$$ −3.00000 + 1.73205i −0.654654 + 0.377964i
$$22$$ 5.59808 3.23205i 1.19351 0.689076i
$$23$$ −3.73205 −0.778186 −0.389093 0.921198i $$-0.627212\pi$$
−0.389093 + 0.921198i $$0.627212\pi$$
$$24$$ 0.633975 + 2.36603i 0.129410 + 0.482963i
$$25$$ −1.96410 + 4.59808i −0.392820 + 0.919615i
$$26$$ −0.267949 −0.0525492
$$27$$ 0 0
$$28$$ −1.36603 0.366025i −0.258155 0.0691723i
$$29$$ −5.46410 + 5.46410i −1.01466 + 1.01466i −0.0147672 + 0.999891i $$0.504701\pi$$
−0.999891 + 0.0147672i $$0.995299\pi$$
$$30$$ −5.36603 1.09808i −0.979698 0.200480i
$$31$$ 4.19615 + 4.19615i 0.753651 + 0.753651i 0.975159 0.221507i $$-0.0710977\pi$$
−0.221507 + 0.975159i $$0.571098\pi$$
$$32$$ −0.500000 + 0.866025i −0.0883883 + 0.153093i
$$33$$ −15.2942 + 4.09808i −2.66238 + 0.713384i
$$34$$ 2.36603 + 1.36603i 0.405770 + 0.234271i
$$35$$ 2.09808 2.36603i 0.354640 0.399931i
$$36$$ 3.00000i 0.500000i
$$37$$ 0.500000 6.06218i 0.0821995 0.996616i
$$38$$ −1.36603 1.36603i −0.221599 0.221599i
$$39$$ 0.633975 + 0.169873i 0.101517 + 0.0272014i
$$40$$ −1.23205 1.86603i −0.194804 0.295045i
$$41$$ 2.19615 + 1.26795i 0.342981 + 0.198020i 0.661590 0.749866i $$-0.269882\pi$$
−0.318608 + 0.947886i $$0.603215\pi$$
$$42$$ 3.00000 + 1.73205i 0.462910 + 0.267261i
$$43$$ 4.00000 0.609994 0.304997 0.952353i $$-0.401344\pi$$
0.304997 + 0.952353i $$0.401344\pi$$
$$44$$ −5.59808 3.23205i −0.843942 0.487250i
$$45$$ 6.00000 + 3.00000i 0.894427 + 0.447214i
$$46$$ 1.86603 + 3.23205i 0.275130 + 0.476540i
$$47$$ −3.09808 + 3.09808i −0.451901 + 0.451901i −0.895985 0.444084i $$-0.853529\pi$$
0.444084 + 0.895985i $$0.353529\pi$$
$$48$$ 1.73205 1.73205i 0.250000 0.250000i
$$49$$ 4.33013 2.50000i 0.618590 0.357143i
$$50$$ 4.96410 0.598076i 0.702030 0.0845807i
$$51$$ −4.73205 4.73205i −0.662620 0.662620i
$$52$$ 0.133975 + 0.232051i 0.0185789 + 0.0321797i
$$53$$ 3.56218 13.2942i 0.489303 1.82610i −0.0705468 0.997508i $$-0.522474\pi$$
0.559850 0.828594i $$-0.310859\pi$$
$$54$$ 0 0
$$55$$ 12.0622 7.96410i 1.62646 1.07388i
$$56$$ 0.366025 + 1.36603i 0.0489122 + 0.182543i
$$57$$ 2.36603 + 4.09808i 0.313388 + 0.542803i
$$58$$ 7.46410 + 2.00000i 0.980085 + 0.262613i
$$59$$ 0.598076 2.23205i 0.0778629 0.290588i −0.916004 0.401168i $$-0.868604\pi$$
0.993867 + 0.110580i $$0.0352709\pi$$
$$60$$ 1.73205 + 5.19615i 0.223607 + 0.670820i
$$61$$ 11.5622 3.09808i 1.48039 0.396668i 0.573907 0.818921i $$-0.305427\pi$$
0.906478 + 0.422253i $$0.138760\pi$$
$$62$$ 1.53590 5.73205i 0.195059 0.727971i
$$63$$ −3.00000 3.00000i −0.377964 0.377964i
$$64$$ 1.00000 0.125000
$$65$$ −0.598076 + 0.0358984i −0.0741822 + 0.00445265i
$$66$$ 11.1962 + 11.1962i 1.37815 + 1.37815i
$$67$$ −5.83013 + 1.56218i −0.712263 + 0.190850i −0.596717 0.802452i $$-0.703529\pi$$
−0.115546 + 0.993302i $$0.536862\pi$$
$$68$$ 2.73205i 0.331310i
$$69$$ −2.36603 8.83013i −0.284836 1.06302i
$$70$$ −3.09808 0.633975i −0.370291 0.0757745i
$$71$$ 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i $$-0.717462\pi$$
0.987294 + 0.158901i $$0.0507952\pi$$
$$72$$ −2.59808 + 1.50000i −0.306186 + 0.176777i
$$73$$ −7.92820 + 7.92820i −0.927926 + 0.927926i −0.997572 0.0696458i $$-0.977813\pi$$
0.0696458 + 0.997572i $$0.477813\pi$$
$$74$$ −5.50000 + 2.59808i −0.639362 + 0.302020i
$$75$$ −12.1244 1.73205i −1.40000 0.200000i
$$76$$ −0.500000 + 1.86603i −0.0573539 + 0.214048i
$$77$$ −8.83013 + 2.36603i −1.00629 + 0.269634i
$$78$$ −0.169873 0.633975i −0.0192343 0.0717835i
$$79$$ 12.9282 3.46410i 1.45454 0.389742i 0.556937 0.830555i $$-0.311976\pi$$
0.897599 + 0.440813i $$0.145310\pi$$
$$80$$ −1.00000 + 2.00000i −0.111803 + 0.223607i
$$81$$ −4.50000 + 7.79423i −0.500000 + 0.866025i
$$82$$ 2.53590i 0.280043i
$$83$$ 1.46410 5.46410i 0.160706 0.599763i −0.837843 0.545911i $$-0.816184\pi$$
0.998549 0.0538517i $$-0.0171498\pi$$
$$84$$ 3.46410i 0.377964i
$$85$$ 5.46410 + 2.73205i 0.592665 + 0.296333i
$$86$$ −2.00000 3.46410i −0.215666 0.373544i
$$87$$ −16.3923 9.46410i −1.75744 1.01466i
$$88$$ 6.46410i 0.689076i
$$89$$ 11.7942 + 3.16025i 1.25019 + 0.334986i 0.822408 0.568898i $$-0.192630\pi$$
0.427778 + 0.903884i $$0.359297\pi$$
$$90$$ −0.401924 6.69615i −0.0423665 0.705836i
$$91$$ 0.366025 + 0.0980762i 0.0383699 + 0.0102812i
$$92$$ 1.86603 3.23205i 0.194547 0.336965i
$$93$$ −7.26795 + 12.5885i −0.753651 + 1.30536i
$$94$$ 4.23205 + 1.13397i 0.436503 + 0.116961i
$$95$$ −3.23205 2.86603i −0.331601 0.294048i
$$96$$ −2.36603 0.633975i −0.241481 0.0647048i
$$97$$ 2.53590i 0.257481i −0.991678 0.128741i $$-0.958906\pi$$
0.991678 0.128741i $$-0.0410935\pi$$
$$98$$ −4.33013 2.50000i −0.437409 0.252538i
$$99$$ −9.69615 16.7942i −0.974500 1.68788i
$$100$$ −3.00000 4.00000i −0.300000 0.400000i
$$101$$ 8.39230i 0.835066i −0.908662 0.417533i $$-0.862895\pi$$
0.908662 0.417533i $$-0.137105\pi$$
$$102$$ −1.73205 + 6.46410i −0.171499 + 0.640041i
$$103$$ 3.39230i 0.334254i 0.985935 + 0.167127i $$0.0534489\pi$$
−0.985935 + 0.167127i $$0.946551\pi$$
$$104$$ 0.133975 0.232051i 0.0131373 0.0227545i
$$105$$ 6.92820 + 3.46410i 0.676123 + 0.338062i
$$106$$ −13.2942 + 3.56218i −1.29125 + 0.345989i
$$107$$ −0.196152 0.732051i −0.0189628 0.0707700i 0.955796 0.294030i $$-0.0949967\pi$$
−0.974759 + 0.223260i $$0.928330\pi$$
$$108$$ 0 0
$$109$$ 2.83013 10.5622i 0.271077 1.01167i −0.687348 0.726328i $$-0.741225\pi$$
0.958425 0.285345i $$-0.0921081\pi$$
$$110$$ −12.9282 6.46410i −1.23266 0.616328i
$$111$$ 14.6603 2.66025i 1.39149 0.252500i
$$112$$ 1.00000 1.00000i 0.0944911 0.0944911i
$$113$$ 3.63397 2.09808i 0.341856 0.197370i −0.319237 0.947675i $$-0.603427\pi$$
0.661092 + 0.750305i $$0.270093\pi$$
$$114$$ 2.36603 4.09808i 0.221599 0.383820i
$$115$$ 4.59808 + 6.96410i 0.428773 + 0.649406i
$$116$$ −2.00000 7.46410i −0.185695 0.693024i
$$117$$ 0.803848i 0.0743157i
$$118$$ −2.23205 + 0.598076i −0.205477 + 0.0550574i
$$119$$ −2.73205 2.73205i −0.250447 0.250447i
$$120$$ 3.63397 4.09808i 0.331735 0.374101i
$$121$$ −30.7846 −2.79860
$$122$$ −8.46410 8.46410i −0.766304 0.766304i
$$123$$ −1.60770 + 6.00000i −0.144961 + 0.541002i
$$124$$ −5.73205 + 1.53590i −0.514753 + 0.137928i
$$125$$ 11.0000 2.00000i 0.983870 0.178885i
$$126$$ −1.09808 + 4.09808i −0.0978244 + 0.365086i
$$127$$ −5.86603 1.57180i −0.520526 0.139474i −0.0110159 0.999939i $$-0.503507\pi$$
−0.509510 + 0.860465i $$0.670173\pi$$
$$128$$ −0.500000 0.866025i −0.0441942 0.0765466i
$$129$$ 2.53590 + 9.46410i 0.223273 + 0.833268i
$$130$$ 0.330127 + 0.500000i 0.0289541 + 0.0438529i
$$131$$ −3.63397 + 13.5622i −0.317502 + 1.18493i 0.604136 + 0.796881i $$0.293518\pi$$
−0.921638 + 0.388052i $$0.873148\pi$$
$$132$$ 4.09808 15.2942i 0.356692 1.33119i
$$133$$ 1.36603 + 2.36603i 0.118449 + 0.205160i
$$134$$ 4.26795 + 4.26795i 0.368695 + 0.368695i
$$135$$ 0 0
$$136$$ −2.36603 + 1.36603i −0.202885 + 0.117136i
$$137$$ 4.19615 4.19615i 0.358501 0.358501i −0.504759 0.863260i $$-0.668419\pi$$
0.863260 + 0.504759i $$0.168419\pi$$
$$138$$ −6.46410 + 6.46410i −0.550261 + 0.550261i
$$139$$ −5.86603 10.1603i −0.497550 0.861781i 0.502446 0.864608i $$-0.332433\pi$$
−0.999996 + 0.00282696i $$0.999100\pi$$
$$140$$ 1.00000 + 3.00000i 0.0845154 + 0.253546i
$$141$$ −9.29423 5.36603i −0.782715 0.451901i
$$142$$ −6.00000 −0.503509
$$143$$ 1.50000 + 0.866025i 0.125436 + 0.0724207i
$$144$$ 2.59808 + 1.50000i 0.216506 + 0.125000i
$$145$$ 16.9282 + 3.46410i 1.40581 + 0.287678i
$$146$$ 10.8301 + 2.90192i 0.896308 + 0.240165i
$$147$$ 8.66025 + 8.66025i 0.714286 + 0.714286i
$$148$$ 5.00000 + 3.46410i 0.410997 + 0.284747i
$$149$$ 21.4641i 1.75841i 0.476446 + 0.879204i $$0.341925\pi$$
−0.476446 + 0.879204i $$0.658075\pi$$
$$150$$ 4.56218 + 11.3660i 0.372500 + 0.928032i
$$151$$ 2.83013 + 1.63397i 0.230312 + 0.132971i 0.610716 0.791850i $$-0.290882\pi$$
−0.380404 + 0.924821i $$0.624215\pi$$
$$152$$ 1.86603 0.500000i 0.151355 0.0405554i
$$153$$ 4.09808 7.09808i 0.331310 0.573845i
$$154$$ 6.46410 + 6.46410i 0.520892 + 0.520892i
$$155$$ 2.66025 13.0000i 0.213677 1.04419i
$$156$$ −0.464102 + 0.464102i −0.0371579 + 0.0371579i
$$157$$ 1.76795 + 0.473721i 0.141098 + 0.0378070i 0.328677 0.944443i $$-0.393397\pi$$
−0.187579 + 0.982250i $$0.560064\pi$$
$$158$$ −9.46410 9.46410i −0.752923 0.752923i
$$159$$ 33.7128 2.67360
$$160$$ 2.23205 0.133975i 0.176459 0.0105916i
$$161$$ −1.36603 5.09808i −0.107658 0.401785i
$$162$$ 9.00000 0.707107
$$163$$ −1.09808 + 0.633975i −0.0860080 + 0.0496567i −0.542387 0.840129i $$-0.682479\pi$$
0.456379 + 0.889785i $$0.349146\pi$$
$$164$$ −2.19615 + 1.26795i −0.171491 + 0.0990102i
$$165$$ 26.4904 + 23.4904i 2.06227 + 1.82872i
$$166$$ −5.46410 + 1.46410i −0.424097 + 0.113636i
$$167$$ −13.8564 8.00000i −1.07224 0.619059i −0.143448 0.989658i $$-0.545819\pi$$
−0.928793 + 0.370599i $$0.879152\pi$$
$$168$$ −3.00000 + 1.73205i −0.231455 + 0.133631i
$$169$$ 6.46410 + 11.1962i 0.497239 + 0.861242i
$$170$$ −0.366025 6.09808i −0.0280729 0.467701i
$$171$$ −4.09808 + 4.09808i −0.313388 + 0.313388i
$$172$$ −2.00000 + 3.46410i −0.152499 + 0.264135i
$$173$$ 23.1603 + 6.20577i 1.76084 + 0.471816i 0.986885 0.161423i $$-0.0516084\pi$$
0.773956 + 0.633239i $$0.218275\pi$$
$$174$$ 18.9282i 1.43494i
$$175$$ −7.00000 1.00000i −0.529150 0.0755929i
$$176$$ 5.59808 3.23205i 0.421971 0.243625i
$$177$$ 5.66025 0.425451
$$178$$ −3.16025 11.7942i −0.236871 0.884015i
$$179$$ 0.437822 0.437822i 0.0327244 0.0327244i −0.690555 0.723280i $$-0.742634\pi$$
0.723280 + 0.690555i $$0.242634\pi$$
$$180$$ −5.59808 + 3.69615i −0.417256 + 0.275495i
$$181$$ −13.0263 + 22.5622i −0.968236 + 1.67703i −0.267578 + 0.963536i $$0.586223\pi$$
−0.700658 + 0.713497i $$0.747110\pi$$
$$182$$ −0.0980762 0.366025i −0.00726989 0.0271316i
$$183$$ 14.6603 + 25.3923i 1.08372 + 1.87705i
$$184$$ −3.73205 −0.275130
$$185$$ −11.9282 + 6.53590i −0.876979 + 0.480529i
$$186$$ 14.5359 1.06582
$$187$$ −8.83013 15.2942i −0.645723 1.11842i
$$188$$ −1.13397 4.23205i −0.0827036 0.308654i
$$189$$ 0 0
$$190$$ −0.866025 + 4.23205i −0.0628281 + 0.307025i
$$191$$ −5.80385 + 5.80385i −0.419952 + 0.419952i −0.885187 0.465235i $$-0.845970\pi$$
0.465235 + 0.885187i $$0.345970\pi$$
$$192$$ 0.633975 + 2.36603i 0.0457532 + 0.170753i
$$193$$ 11.8038 0.849660 0.424830 0.905273i $$-0.360334\pi$$
0.424830 + 0.905273i $$0.360334\pi$$
$$194$$ −2.19615 + 1.26795i −0.157675 + 0.0910334i
$$195$$ −0.464102 1.39230i −0.0332350 0.0997050i
$$196$$ 5.00000i 0.357143i
$$197$$ −7.56218 2.02628i −0.538783 0.144366i −0.0208419 0.999783i $$-0.506635\pi$$
−0.517941 + 0.855416i $$0.673301\pi$$
$$198$$ −9.69615 + 16.7942i −0.689076 + 1.19351i
$$199$$ −2.92820 + 2.92820i −0.207575 + 0.207575i −0.803236 0.595661i $$-0.796890\pi$$
0.595661 + 0.803236i $$0.296890\pi$$
$$200$$ −1.96410 + 4.59808i −0.138883 + 0.325133i
$$201$$ −7.39230 12.8038i −0.521413 0.903114i
$$202$$ −7.26795 + 4.19615i −0.511371 + 0.295240i
$$203$$ −9.46410 5.46410i −0.664250 0.383505i
$$204$$ 6.46410 1.73205i 0.452578 0.121268i
$$205$$ −0.339746 5.66025i −0.0237289 0.395329i
$$206$$ 2.93782 1.69615i 0.204688 0.118177i
$$207$$ 9.69615 5.59808i 0.673929 0.389093i
$$208$$ −0.267949 −0.0185789
$$209$$ 3.23205 + 12.0622i 0.223566 + 0.834358i
$$210$$ −0.464102 7.73205i −0.0320261 0.533562i
$$211$$ 26.8564 1.84887 0.924436 0.381338i $$-0.124537\pi$$
0.924436 + 0.381338i $$0.124537\pi$$
$$212$$ 9.73205 + 9.73205i 0.668400 + 0.668400i
$$213$$ 14.1962 + 3.80385i 0.972704 + 0.260635i
$$214$$ −0.535898 + 0.535898i −0.0366333 + 0.0366333i
$$215$$ −4.92820 7.46410i −0.336101 0.509048i
$$216$$ 0 0
$$217$$ −4.19615 + 7.26795i −0.284853 + 0.493381i
$$218$$ −10.5622 + 2.83013i −0.715361 + 0.191680i
$$219$$ −23.7846 13.7321i −1.60721 0.927926i
$$220$$ 0.866025 + 14.4282i 0.0583874 + 0.972749i
$$221$$ 0.732051i 0.0492431i
$$222$$ −9.63397 11.3660i −0.646590 0.762838i
$$223$$ 9.63397 + 9.63397i 0.645139 + 0.645139i 0.951814 0.306675i $$-0.0992166\pi$$
−0.306675 + 0.951814i $$0.599217\pi$$
$$224$$ −1.36603 0.366025i −0.0912714 0.0244561i
$$225$$ −1.79423 14.8923i −0.119615 0.992820i
$$226$$ −3.63397 2.09808i −0.241728 0.139562i
$$227$$ −19.9019 11.4904i −1.32094 0.762643i −0.337059 0.941484i $$-0.609432\pi$$
−0.983878 + 0.178840i $$0.942765\pi$$
$$228$$ −4.73205 −0.313388
$$229$$ −16.8564 9.73205i −1.11390 0.643112i −0.174065 0.984734i $$-0.555690\pi$$
−0.939837 + 0.341622i $$0.889024\pi$$
$$230$$ 3.73205 7.46410i 0.246084 0.492168i
$$231$$ −11.1962 19.3923i −0.736653 1.27592i
$$232$$ −5.46410 + 5.46410i −0.358736 + 0.358736i
$$233$$ 7.19615 7.19615i 0.471436 0.471436i −0.430943 0.902379i $$-0.641819\pi$$
0.902379 + 0.430943i $$0.141819\pi$$
$$234$$ 0.696152 0.401924i 0.0455089 0.0262746i
$$235$$ 9.59808 + 1.96410i 0.626109 + 0.128124i
$$236$$ 1.63397 + 1.63397i 0.106363 + 0.106363i
$$237$$ 16.3923 + 28.3923i 1.06479 + 1.84428i
$$238$$ −1.00000 + 3.73205i −0.0648204 + 0.241913i
$$239$$ 1.49038 5.56218i 0.0964047 0.359787i −0.900824 0.434185i $$-0.857037\pi$$
0.997229 + 0.0743971i $$0.0237032\pi$$
$$240$$ −5.36603 1.09808i −0.346375 0.0708805i
$$241$$ −2.03590 7.59808i −0.131144 0.489435i 0.868840 0.495093i $$-0.164866\pi$$
−0.999984 + 0.00565742i $$0.998199\pi$$
$$242$$ 15.3923 + 26.6603i 0.989455 + 1.71379i
$$243$$ −21.2942 5.70577i −1.36603 0.366025i
$$244$$ −3.09808 + 11.5622i −0.198334 + 0.740193i
$$245$$ −10.0000 5.00000i −0.638877 0.319438i
$$246$$ 6.00000 1.60770i 0.382546 0.102503i
$$247$$ 0.133975 0.500000i 0.00852460 0.0318142i
$$248$$ 4.19615 + 4.19615i 0.266456 + 0.266456i
$$249$$ 13.8564 0.878114
$$250$$ −7.23205 8.52628i −0.457395 0.539249i
$$251$$ −6.90192 6.90192i −0.435646 0.435646i 0.454898 0.890544i $$-0.349676\pi$$
−0.890544 + 0.454898i $$0.849676\pi$$
$$252$$ 4.09808 1.09808i 0.258155 0.0691723i
$$253$$ 24.1244i 1.51669i
$$254$$ 1.57180 + 5.86603i 0.0986233 + 0.368067i
$$255$$ −3.00000 + 14.6603i −0.187867 + 0.918061i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ 7.90192 4.56218i 0.492908 0.284581i −0.232872 0.972507i $$-0.574812\pi$$
0.725780 + 0.687927i $$0.241479\pi$$
$$258$$ 6.92820 6.92820i 0.431331 0.431331i
$$259$$ 8.46410 1.53590i 0.525934 0.0954361i
$$260$$ 0.267949 0.535898i 0.0166175 0.0332350i
$$261$$ 6.00000 22.3923i 0.371391 1.38605i
$$262$$ 13.5622 3.63397i 0.837874 0.224508i
$$263$$ 2.50000 + 9.33013i 0.154157 + 0.575320i 0.999176 + 0.0405848i $$0.0129221\pi$$
−0.845019 + 0.534735i $$0.820411\pi$$
$$264$$ −15.2942 + 4.09808i −0.941295 + 0.252219i
$$265$$ −29.1962 + 9.73205i −1.79351 + 0.597835i
$$266$$ 1.36603 2.36603i 0.0837564 0.145070i
$$267$$ 29.9090i 1.83040i
$$268$$ 1.56218 5.83013i 0.0954252 0.356132i
$$269$$ 12.7321i 0.776287i −0.921599 0.388143i $$-0.873117\pi$$
0.921599 0.388143i $$-0.126883\pi$$
$$270$$ 0 0
$$271$$ 12.8564 + 22.2679i 0.780971 + 1.35268i 0.931377 + 0.364057i $$0.118609\pi$$
−0.150406 + 0.988624i $$0.548058\pi$$
$$272$$ 2.36603 + 1.36603i 0.143461 + 0.0828275i
$$273$$ 0.928203i 0.0561774i
$$274$$ −5.73205 1.53590i −0.346286 0.0927870i
$$275$$ −29.7224 12.6962i −1.79233 0.765607i
$$276$$ 8.83013 + 2.36603i 0.531511 + 0.142418i
$$277$$ 10.7321 18.5885i 0.644826 1.11687i −0.339515 0.940601i $$-0.610263\pi$$
0.984342 0.176272i $$-0.0564037\pi$$
$$278$$ −5.86603 + 10.1603i −0.351821 + 0.609372i
$$279$$ −17.1962 4.60770i −1.02951 0.275855i
$$280$$ 2.09808 2.36603i 0.125384 0.141397i
$$281$$ −6.50000 1.74167i −0.387757 0.103899i 0.0596731 0.998218i $$-0.480994\pi$$
−0.447431 + 0.894319i $$0.647661\pi$$
$$282$$ 10.7321i 0.639084i
$$283$$ −3.29423 1.90192i −0.195822 0.113058i 0.398883 0.917002i $$-0.369398\pi$$
−0.594705 + 0.803944i $$0.702731\pi$$
$$284$$ 3.00000 + 5.19615i 0.178017 + 0.308335i
$$285$$ 4.73205 9.46410i 0.280302 0.560605i
$$286$$ 1.73205i 0.102418i
$$287$$ −0.928203 + 3.46410i −0.0547901 + 0.204479i
$$288$$ 3.00000i 0.176777i
$$289$$ −4.76795 + 8.25833i −0.280468 + 0.485784i
$$290$$ −5.46410 16.3923i −0.320863 0.962589i
$$291$$ 6.00000 1.60770i 0.351726 0.0942448i
$$292$$ −2.90192 10.8301i −0.169822 0.633785i
$$293$$ −9.06218 + 2.42820i −0.529418 + 0.141857i −0.513620 0.858018i $$-0.671696\pi$$
−0.0157985 + 0.999875i $$0.505029\pi$$
$$294$$ 3.16987 11.8301i 0.184871 0.689947i
$$295$$ −4.90192 + 1.63397i −0.285401 + 0.0951337i
$$296$$ 0.500000 6.06218i 0.0290619 0.352357i
$$297$$ 0 0
$$298$$ 18.5885 10.7321i 1.07680 0.621691i
$$299$$ −0.500000 + 0.866025i −0.0289157 + 0.0500835i
$$300$$ 7.56218 9.63397i 0.436603 0.556218i
$$301$$ 1.46410 + 5.46410i 0.0843894 + 0.314946i
$$302$$ 3.26795i 0.188049i
$$303$$ 19.8564 5.32051i 1.14072 0.305655i
$$304$$ −1.36603 1.36603i −0.0783469 0.0783469i
$$305$$ −20.0263 17.7583i −1.14670 1.01684i
$$306$$ −8.19615 −0.468543
$$307$$ −1.73205 1.73205i −0.0988534 0.0988534i 0.655951 0.754804i $$-0.272268\pi$$
−0.754804 + 0.655951i $$0.772268\pi$$
$$308$$ 2.36603 8.83013i 0.134817 0.503143i
$$309$$ −8.02628 + 2.15064i −0.456599 + 0.122345i
$$310$$ −12.5885 + 4.19615i −0.714976 + 0.238325i
$$311$$ 1.36603 5.09808i 0.0774602 0.289085i −0.916320 0.400448i $$-0.868855\pi$$
0.993780 + 0.111362i $$0.0355213\pi$$
$$312$$ 0.633975 + 0.169873i 0.0358917 + 0.00961716i
$$313$$ 13.9282 + 24.1244i 0.787269 + 1.36359i 0.927634 + 0.373489i $$0.121839\pi$$
−0.140366 + 0.990100i $$0.544828\pi$$
$$314$$ −0.473721 1.76795i −0.0267336 0.0997711i
$$315$$ −1.90192 + 9.29423i −0.107161 + 0.523670i
$$316$$ −3.46410 + 12.9282i −0.194871 + 0.727268i
$$317$$ −3.47372 + 12.9641i −0.195104 + 0.728136i 0.797136 + 0.603799i $$0.206347\pi$$
−0.992240 + 0.124337i $$0.960320\pi$$
$$318$$ −16.8564 29.1962i −0.945260 1.63724i
$$319$$ −35.3205 35.3205i −1.97757 1.97757i
$$320$$ −1.23205 1.86603i −0.0688737 0.104314i
$$321$$ 1.60770 0.928203i 0.0897328 0.0518073i
$$322$$ −3.73205 + 3.73205i −0.207979 + 0.207979i
$$323$$ −3.73205 + 3.73205i −0.207657 + 0.207657i
$$324$$ −4.50000 7.79423i −0.250000 0.433013i
$$325$$ 0.803848 + 1.07180i 0.0445894 + 0.0594526i
$$326$$ 1.09808 + 0.633975i 0.0608168 + 0.0351126i
$$327$$ 26.7846 1.48119
$$328$$ 2.19615 + 1.26795i 0.121262 + 0.0700108i
$$329$$ −5.36603 3.09808i −0.295839 0.170802i
$$330$$ 7.09808 34.6865i 0.390736 1.90943i
$$331$$ −7.33013 1.96410i −0.402900 0.107957i 0.0516776 0.998664i $$-0.483543\pi$$
−0.454578 + 0.890707i $$0.650210\pi$$
$$332$$ 4.00000 + 4.00000i 0.219529 + 0.219529i
$$333$$ 7.79423 + 16.5000i 0.427121 + 0.904194i
$$334$$ 16.0000i 0.875481i
$$335$$ 10.0981 + 8.95448i 0.551717 + 0.489236i
$$336$$ 3.00000 + 1.73205i 0.163663 + 0.0944911i
$$337$$ 35.3205 9.46410i 1.92403 0.515542i 0.938750 0.344600i $$-0.111985\pi$$
0.985281 0.170943i $$-0.0546813\pi$$
$$338$$ 6.46410 11.1962i 0.351601 0.608990i
$$339$$ 7.26795 + 7.26795i 0.394741 + 0.394741i
$$340$$ −5.09808 + 3.36603i −0.276482 + 0.182548i
$$341$$ −27.1244 + 27.1244i −1.46887 + 1.46887i
$$342$$ 5.59808 + 1.50000i 0.302709 + 0.0811107i
$$343$$ 12.0000 + 12.0000i 0.647939 + 0.647939i
$$344$$ 4.00000 0.215666
$$345$$ −13.5622 + 15.2942i −0.730163 + 0.823414i
$$346$$ −6.20577 23.1603i −0.333624 1.24510i
$$347$$ 15.1244 0.811918 0.405959 0.913891i $$-0.366938\pi$$
0.405959 + 0.913891i $$0.366938\pi$$
$$348$$ 16.3923 9.46410i 0.878720 0.507329i
$$349$$ 2.07180 1.19615i 0.110901 0.0640286i −0.443524 0.896263i $$-0.646272\pi$$
0.554424 + 0.832234i $$0.312938\pi$$
$$350$$ 2.63397 + 6.56218i 0.140792 + 0.350763i
$$351$$ 0 0
$$352$$ −5.59808 3.23205i −0.298378 0.172269i
$$353$$ −14.4904 + 8.36603i −0.771245 + 0.445279i −0.833319 0.552793i $$-0.813562\pi$$
0.0620735 + 0.998072i $$0.480229\pi$$
$$354$$ −2.83013 4.90192i −0.150420 0.260534i
$$355$$ −13.3923 + 0.803848i −0.710790 + 0.0426638i
$$356$$ −8.63397 + 8.63397i −0.457600 + 0.457600i
$$357$$ 4.73205 8.19615i 0.250447 0.433786i
$$358$$ −0.598076 0.160254i −0.0316093 0.00846969i
$$359$$ 21.1244i 1.11490i 0.830210 + 0.557450i $$0.188220\pi$$
−0.830210 + 0.557450i $$0.811780\pi$$
$$360$$ 6.00000 + 3.00000i 0.316228 + 0.158114i
$$361$$ −13.2224 + 7.63397i −0.695917 + 0.401788i
$$362$$ 26.0526 1.36929
$$363$$ −19.5167 72.8372i −1.02436 3.82296i
$$364$$ −0.267949 + 0.267949i −0.0140444 + 0.0140444i
$$365$$ 24.5622 + 5.02628i 1.28564 + 0.263087i
$$366$$ 14.6603 25.3923i 0.766304 1.32728i
$$367$$ 8.25833 + 30.8205i 0.431081 + 1.60882i 0.750274 + 0.661127i $$0.229922\pi$$
−0.319192 + 0.947690i $$0.603412\pi$$
$$368$$ 1.86603 + 3.23205i 0.0972733 + 0.168482i
$$369$$ −7.60770 −0.396041
$$370$$ 11.6244 + 7.06218i 0.604321 + 0.367145i
$$371$$ 19.4641 1.01053
$$372$$ −7.26795 12.5885i −0.376826 0.652681i
$$373$$ −5.23205 19.5263i −0.270905 1.01103i −0.958536 0.284972i $$-0.908016\pi$$
0.687631 0.726061i $$-0.258651\pi$$
$$374$$ −8.83013 + 15.2942i −0.456595 + 0.790846i
$$375$$ 11.7058 + 24.7583i 0.604483 + 1.27851i
$$376$$ −3.09808 + 3.09808i −0.159771 + 0.159771i
$$377$$ 0.535898 + 2.00000i 0.0276002 + 0.103005i
$$378$$ 0 0
$$379$$ 33.1244 19.1244i 1.70148 0.982352i 0.757222 0.653158i $$-0.226556\pi$$
0.944262 0.329194i $$-0.106777\pi$$
$$380$$ 4.09808 1.36603i 0.210227 0.0700756i
$$381$$ 14.8756i 0.762102i
$$382$$ 7.92820 + 2.12436i 0.405642 + 0.108691i
$$383$$ 1.66987 2.89230i 0.0853265 0.147790i −0.820204 0.572071i $$-0.806140\pi$$
0.905530 + 0.424282i $$0.139473\pi$$
$$384$$ 1.73205 1.73205i 0.0883883 0.0883883i
$$385$$ 15.2942 + 13.5622i 0.779466 + 0.691193i
$$386$$ −5.90192 10.2224i −0.300400 0.520308i
$$387$$ −10.3923 + 6.00000i −0.528271 + 0.304997i
$$388$$ 2.19615 + 1.26795i 0.111493 + 0.0643704i
$$389$$ 4.00000 1.07180i 0.202808 0.0543423i −0.155985 0.987759i $$-0.549855\pi$$
0.358793 + 0.933417i $$0.383188\pi$$
$$390$$ −0.973721 + 1.09808i −0.0493063 + 0.0556033i
$$391$$ 8.83013 5.09808i 0.446559 0.257821i
$$392$$ 4.33013 2.50000i 0.218704 0.126269i
$$393$$ −34.3923 −1.73486
$$394$$ 2.02628 + 7.56218i 0.102082 + 0.380977i
$$395$$ −22.3923 19.8564i −1.12668 0.999084i
$$396$$ 19.3923 0.974500
$$397$$ −17.0981 17.0981i −0.858128 0.858128i 0.132990 0.991117i $$-0.457542\pi$$
−0.991117 + 0.132990i $$0.957542\pi$$
$$398$$ 4.00000 + 1.07180i 0.200502 + 0.0537243i
$$399$$ −4.73205 + 4.73205i −0.236899 + 0.236899i
$$400$$ 4.96410 0.598076i 0.248205 0.0299038i
$$401$$ 2.43782 + 2.43782i 0.121739 + 0.121739i 0.765352 0.643612i $$-0.222565\pi$$
−0.643612 + 0.765352i $$0.722565\pi$$
$$402$$ −7.39230 + 12.8038i −0.368695 + 0.638598i
$$403$$ 1.53590 0.411543i 0.0765085 0.0205004i
$$404$$ 7.26795 + 4.19615i 0.361594 + 0.208766i
$$405$$ 20.0885 1.20577i 0.998203 0.0599153i
$$406$$ 10.9282i 0.542358i
$$407$$ 39.1865 + 3.23205i 1.94240 + 0.160207i
$$408$$ −4.73205 4.73205i −0.234271 0.234271i
$$409$$ −14.5622 3.90192i −0.720053 0.192938i −0.119858 0.992791i $$-0.538244\pi$$
−0.600195 + 0.799853i $$0.704911\pi$$
$$410$$ −4.73205 + 3.12436i −0.233699 + 0.154301i
$$411$$ 12.5885 + 7.26795i 0.620943 + 0.358501i
$$412$$ −2.93782 1.69615i −0.144736 0.0835634i
$$413$$ 3.26795 0.160805
$$414$$ −9.69615 5.59808i −0.476540 0.275130i
$$415$$ −12.0000 + 4.00000i −0.589057 + 0.196352i
$$416$$ 0.133975 + 0.232051i 0.00656865 + 0.0113772i
$$417$$ 20.3205 20.3205i 0.995100 0.995100i
$$418$$ 8.83013 8.83013i 0.431896 0.431896i
$$419$$ −8.08846 + 4.66987i −0.395147 + 0.228138i −0.684388 0.729118i $$-0.739930\pi$$
0.289241 + 0.957256i $$0.406597\pi$$
$$420$$ −6.46410 + 4.26795i −0.315416 + 0.208255i
$$421$$ −15.3205 15.3205i −0.746676 0.746676i 0.227177 0.973853i $$-0.427050\pi$$
−0.973853 + 0.227177i $$0.927050\pi$$
$$422$$ −13.4282 23.2583i −0.653675 1.13220i
$$423$$ 3.40192 12.6962i 0.165407 0.617308i
$$424$$ 3.56218 13.2942i 0.172995 0.645625i
$$425$$ −1.63397 13.5622i −0.0792594 0.657862i
$$426$$ −3.80385 14.1962i −0.184297 0.687806i
$$427$$ 8.46410 + 14.6603i 0.409607 + 0.709459i
$$428$$ 0.732051 + 0.196152i 0.0353850 + 0.00948139i
$$429$$ −1.09808 + 4.09808i −0.0530156 + 0.197857i
$$430$$ −4.00000 + 8.00000i −0.192897 + 0.385794i
$$431$$ 29.7583 7.97372i 1.43341 0.384081i 0.543188 0.839611i $$-0.317217\pi$$
0.890220 + 0.455530i $$0.150550\pi$$
$$432$$ 0 0
$$433$$ −16.5167 16.5167i −0.793740 0.793740i 0.188360 0.982100i $$-0.439683\pi$$
−0.982100 + 0.188360i $$0.939683\pi$$
$$434$$ 8.39230 0.402844
$$435$$ 2.53590 + 42.2487i 0.121587 + 2.02567i
$$436$$ 7.73205 + 7.73205i 0.370298 + 0.370298i
$$437$$ −6.96410 + 1.86603i −0.333138 + 0.0892641i
$$438$$ 27.4641i 1.31229i
$$439$$ 4.63397 + 17.2942i 0.221168 + 0.825408i 0.983904 + 0.178699i $$0.0571888\pi$$
−0.762736 + 0.646710i $$0.776145\pi$$
$$440$$ 12.0622 7.96410i 0.575042 0.379674i
$$441$$ −7.50000 + 12.9904i −0.357143 + 0.618590i
$$442$$ 0.633975 0.366025i 0.0301551 0.0174101i
$$443$$ 17.8564 17.8564i 0.848383 0.848383i −0.141548 0.989931i $$-0.545208\pi$$
0.989931 + 0.141548i $$0.0452079\pi$$
$$444$$ −5.02628 + 14.0263i −0.238537 + 0.665658i
$$445$$ −8.63397 25.9019i −0.409290 1.22787i
$$446$$ 3.52628 13.1603i 0.166974 0.623156i
$$447$$ −50.7846 + 13.6077i −2.40203 + 0.643622i
$$448$$ 0.366025 + 1.36603i 0.0172931 + 0.0645386i
$$449$$ −26.2224 + 7.02628i −1.23751 + 0.331591i −0.817501 0.575928i $$-0.804641\pi$$
−0.420012 + 0.907518i $$0.637974\pi$$
$$450$$ −12.0000 + 9.00000i −0.565685 + 0.424264i
$$451$$ −8.19615 + 14.1962i −0.385942 + 0.668471i
$$452$$ 4.19615i 0.197370i
$$453$$ −2.07180 + 7.73205i −0.0973415 + 0.363283i
$$454$$ 22.9808i 1.07854i
$$455$$ −0.267949 0.803848i −0.0125617 0.0376850i
$$456$$ 2.36603 + 4.09808i 0.110799 + 0.191910i
$$457$$ −4.73205 2.73205i −0.221356 0.127800i 0.385222 0.922824i $$-0.374125\pi$$
−0.606578 + 0.795024i $$0.707458\pi$$
$$458$$ 19.4641i 0.909498i
$$459$$ 0 0
$$460$$ −8.33013 + 0.500000i −0.388394 + 0.0233126i
$$461$$ −11.0981 2.97372i −0.516889 0.138500i −0.00906176 0.999959i $$-0.502884\pi$$
−0.507827 + 0.861459i $$0.669551\pi$$
$$462$$ −11.1962 + 19.3923i −0.520892 + 0.902212i
$$463$$ 2.39230 4.14359i 0.111180 0.192569i −0.805066 0.593185i $$-0.797870\pi$$
0.916246 + 0.400616i $$0.131204\pi$$
$$464$$ 7.46410 + 2.00000i 0.346512 + 0.0928477i
$$465$$ 32.4449 1.94744i 1.50459 0.0903104i
$$466$$ −9.83013 2.63397i −0.455372 0.122017i
$$467$$ 27.6603i 1.27996i 0.768390 + 0.639982i $$0.221058\pi$$
−0.768390 + 0.639982i $$0.778942\pi$$
$$468$$ −0.696152 0.401924i −0.0321797 0.0185789i
$$469$$ −4.26795 7.39230i −0.197076 0.341345i
$$470$$ −3.09808 9.29423i −0.142904 0.428711i
$$471$$ 4.48334i 0.206581i
$$472$$ 0.598076 2.23205i 0.0275287 0.102738i
$$473$$ 25.8564i 1.18888i
$$474$$ 16.3923 28.3923i 0.752923 1.30410i
$$475$$ −1.36603 + 9.56218i −0.0626775 + 0.438743i
$$476$$ 3.73205 1.00000i 0.171058 0.0458349i
$$477$$ 10.6865 + 39.8827i 0.489303 + 1.82610i
$$478$$ −5.56218 + 1.49038i −0.254408 + 0.0681684i
$$479$$ 4.92820 18.3923i 0.225175 0.840366i −0.757159 0.653231i $$-0.773413\pi$$
0.982334 0.187135i $$-0.0599202\pi$$
$$480$$ 1.73205 + 5.19615i 0.0790569 + 0.237171i
$$481$$ −1.33975 0.928203i −0.0610872 0.0423224i
$$482$$ −5.56218 + 5.56218i −0.253350 + 0.253350i
$$483$$ 11.1962 6.46410i 0.509443 0.294127i
$$484$$ 15.3923 26.6603i 0.699650 1.21183i
$$485$$ −4.73205 + 3.12436i −0.214871 + 0.141870i
$$486$$ 5.70577 + 21.2942i 0.258819 + 0.965926i
$$487$$ 30.7846i 1.39498i −0.716593 0.697492i $$-0.754299\pi$$
0.716593 0.697492i $$-0.245701\pi$$
$$488$$ 11.5622 3.09808i 0.523395 0.140243i
$$489$$ −2.19615 2.19615i −0.0993134 0.0993134i
$$490$$ 0.669873 + 11.1603i 0.0302618 + 0.504169i
$$491$$ 23.3923 1.05568 0.527840 0.849344i $$-0.323002\pi$$
0.527840 + 0.849344i $$0.323002\pi$$
$$492$$ −4.39230 4.39230i −0.198020 0.198020i
$$493$$ 5.46410 20.3923i 0.246091 0.918423i
$$494$$ −0.500000 + 0.133975i −0.0224961 + 0.00602780i
$$495$$ −19.3923 + 38.7846i −0.871619 + 1.74324i
$$496$$ 1.53590 5.73205i 0.0689639 0.257377i
$$497$$ 8.19615 + 2.19615i 0.367648 + 0.0985109i
$$498$$ −6.92820 12.0000i −0.310460 0.537733i
$$499$$ −8.22243 30.6865i −0.368087 1.37372i −0.863188 0.504883i $$-0.831536\pi$$
0.495101 0.868835i $$-0.335131\pi$$
$$500$$ −3.76795 + 10.5263i −0.168508 + 0.470750i
$$501$$ 10.1436 37.8564i 0.453182 1.69130i
$$502$$ −2.52628 + 9.42820i −0.112753 + 0.420801i
$$503$$ −6.66025 11.5359i −0.296966 0.514360i 0.678474 0.734624i $$-0.262641\pi$$
−0.975440 + 0.220264i $$0.929308\pi$$
$$504$$ −3.00000 3.00000i −0.133631 0.133631i
$$505$$ −15.6603 + 10.3397i −0.696872 + 0.460113i
$$506$$ −20.8923 + 12.0622i −0.928776 + 0.536229i
$$507$$ −22.3923 + 22.3923i −0.994477 + 0.994477i
$$508$$ 4.29423 4.29423i 0.190526 0.190526i
$$509$$ −13.2679 22.9808i −0.588092 1.01860i −0.994482 0.104905i $$-0.966546\pi$$
0.406391 0.913699i $$-0.366787\pi$$
$$510$$ 14.1962 4.73205i 0.628616 0.209539i
$$511$$ −13.7321 7.92820i −0.607470 0.350723i
$$512$$ 1.00000 0.0441942
$$513$$ 0 0
$$514$$ −7.90192 4.56218i −0.348539 0.201229i
$$515$$ 6.33013 4.17949i 0.278939 0.184170i
$$516$$ −9.46410 2.53590i −0.416634 0.111637i
$$517$$ −20.0263 20.0263i −0.880755 0.880755i
$$518$$ −5.56218 6.56218i −0.244388 0.288326i
$$519$$ 58.7321i 2.57805i
$$520$$ −0.598076 + 0.0358984i −0.0262274 + 0.00157425i
$$521$$ 17.1340 + 9.89230i 0.750653 + 0.433390i 0.825930 0.563773i $$-0.190651\pi$$
−0.0752768 + 0.997163i $$0.523984\pi$$
$$522$$ −22.3923 + 6.00000i −0.980085 + 0.262613i
$$523$$ −20.9545 + 36.2942i −0.916276 + 1.58704i −0.111253 + 0.993792i $$0.535486\pi$$
−0.805023 + 0.593244i $$0.797847\pi$$
$$524$$ −9.92820 9.92820i −0.433716 0.433716i
$$525$$ −2.07180 17.1962i −0.0904206 0.750502i
$$526$$ 6.83013 6.83013i 0.297808 0.297808i
$$527$$ −15.6603 4.19615i −0.682171 0.182787i
$$528$$ 11.1962 + 11.1962i 0.487250 + 0.487250i
$$529$$ −9.07180 −0.394426
$$530$$ 23.0263 + 20.4186i 1.00020 + 0.886927i
$$531$$ 1.79423 + 6.69615i 0.0778629 + 0.290588i
$$532$$ −2.73205 −0.118449
$$533$$ 0.588457 0.339746i 0.0254889 0.0147160i
$$534$$ 25.9019 14.9545i 1.12089 0.647144i
$$535$$ −1.12436 + 1.26795i −0.0486101 + 0.0548182i
$$536$$ −5.83013 + 1.56218i −0.251823 + 0.0674758i
$$537$$ 1.31347 + 0.758330i 0.0566803 + 0.0327244i
$$538$$ −11.0263 + 6.36603i −0.475377 + 0.274459i
$$539$$ 16.1603 + 27.9904i 0.696071 + 1.20563i
$$540$$ 0 0
$$541$$ 14.9282 14.9282i 0.641814 0.641814i −0.309188 0.951001i $$-0.600057\pi$$
0.951001 + 0.309188i $$0.100057\pi$$
$$542$$ 12.8564 22.2679i 0.552230 0.956490i
$$543$$ −61.6410 16.5167i −2.64527 0.708798i
$$544$$ 2.73205i 0.117136i
$$545$$ −23.1962 + 7.73205i −0.993614 + 0.331205i
$$546$$ 0.803848 0.464102i 0.0344015 0.0198617i
$$547$$ −7.46410 −0.319142 −0.159571 0.987186i $$-0.551011\pi$$
−0.159571 + 0.987186i $$0.551011\pi$$
$$548$$ 1.53590 + 5.73205i 0.0656103 + 0.244861i
$$549$$ −25.3923 + 25.3923i −1.08372 + 1.08372i
$$550$$ 3.86603 + 32.0885i 0.164848 + 1.36826i
$$551$$ −7.46410 + 12.9282i −0.317981 + 0.550760i
$$552$$ −2.36603 8.83013i −0.100705 0.375835i
$$553$$ 9.46410 + 16.3923i 0.402455 + 0.697072i
$$554$$ −21.4641 −0.911922
$$555$$ −23.0263 24.0788i −0.977411 1.02209i
$$556$$ 11.7321 0.497550
$$557$$ 8.59808 + 14.8923i 0.364312 + 0.631007i 0.988666 0.150135i $$-0.0479708\pi$$
−0.624353 + 0.781142i $$0.714637\pi$$
$$558$$ 4.60770 + 17.1962i 0.195059 + 0.727971i
$$559$$ 0.535898 0.928203i 0.0226661 0.0392588i
$$560$$ −3.09808 0.633975i −0.130918 0.0267903i
$$561$$ 30.5885 30.5885i 1.29145 1.29145i
$$562$$ 1.74167 + 6.50000i 0.0734679 + 0.274186i
$$563$$ 8.87564 0.374064 0.187032 0.982354i $$-0.440113\pi$$
0.187032 + 0.982354i $$0.440113\pi$$
$$564$$ 9.29423 5.36603i 0.391358 0.225950i
$$565$$ −8.39230 4.19615i −0.353067 0.176533i
$$566$$ 3.80385i 0.159888i
$$567$$ −12.2942 3.29423i −0.516309 0.138345i
$$568$$ 3.00000 5.19615i 0.125877 0.218026i
$$569$$ 28.3468 28.3468i 1.18836 1.18836i 0.210838 0.977521i $$-0.432381\pi$$
0.977521 0.210838i $$-0.0676193\pi$$
$$570$$ −10.5622 + 0.633975i −0.442401 + 0.0265543i
$$571$$ −8.72243 15.1077i −0.365022 0.632237i 0.623757 0.781618i $$-0.285605\pi$$
−0.988780 + 0.149381i $$0.952272\pi$$
$$572$$ −1.50000 + 0.866025i −0.0627182 + 0.0362103i
$$573$$ −17.4115 10.0526i −0.727378 0.419952i
$$574$$ 3.46410 0.928203i 0.144589 0.0387425i
$$575$$ 7.33013 17.1603i 0.305687 0.715632i
$$576$$ −2.59808 + 1.50000i −0.108253 + 0.0625000i
$$577$$ 25.1769 14.5359i 1.04813 0.605137i 0.126004 0.992030i $$-0.459785\pi$$
0.922125 + 0.386892i $$0.126452\pi$$
$$578$$ 9.53590 0.396641
$$579$$ 7.48334 + 27.9282i 0.310997 + 1.16066i
$$580$$ −11.4641 + 12.9282i −0.476021 + 0.536814i
$$581$$ 8.00000 0.331896
$$582$$ −4.39230 4.39230i −0.182067 0.182067i
$$583$$ 85.9352 + 23.0263i 3.55907 + 0.953651i
$$584$$ −7.92820 + 7.92820i −0.328071 + 0.328071i
$$585$$ 1.50000 0.990381i 0.0620174 0.0409472i
$$586$$ 6.63397 + 6.63397i 0.274047 + 0.274047i
$$587$$ 18.8301 32.6147i 0.777203 1.34615i −0.156346 0.987702i $$-0.549971\pi$$
0.933548 0.358452i $$-0.116695\pi$$
$$588$$ −11.8301 + 3.16987i −0.487866 + 0.130723i
$$589$$ 9.92820 + 5.73205i 0.409084 + 0.236185i
$$590$$ 3.86603 + 3.42820i 0.159162 + 0.141137i
$$591$$ 19.1769i 0.788833i
$$592$$ −5.50000 + 2.59808i −0.226049 + 0.106780i
$$593$$ 10.7846 + 10.7846i 0.442871 + 0.442871i 0.892976 0.450105i $$-0.148613\pi$$
−0.450105 + 0.892976i $$0.648613\pi$$
$$594$$ 0 0
$$595$$ −1.73205 + 8.46410i −0.0710072 + 0.346994i
$$596$$ −18.5885 10.7321i −0.761413 0.439602i
$$597$$ −8.78461 5.07180i −0.359530 0.207575i
$$598$$ 1.00000 0.0408930
$$599$$ 24.5885 + 14.1962i 1.00466 + 0.580039i 0.909623 0.415435i $$-0.136371\pi$$
0.0950342 + 0.995474i $$0.469704\pi$$
$$600$$ −12.1244 1.73205i −0.494975 0.0707107i
$$601$$ −10.6962 18.5263i −0.436305 0.755703i 0.561096 0.827751i $$-0.310380\pi$$
−0.997401 + 0.0720480i $$0.977047\pi$$
$$602$$ 4.00000 4.00000i 0.163028 0.163028i
$$603$$ 12.8038 12.8038i 0.521413 0.521413i
$$604$$ −2.83013 + 1.63397i −0.115156 + 0.0664855i
$$605$$ 37.9282 + 57.4449i 1.54200 + 2.33547i
$$606$$ −14.5359 14.5359i −0.590481 0.590481i
$$607$$ −1.73205 3.00000i −0.0703018 0.121766i 0.828732 0.559646i $$-0.189063\pi$$
−0.899034 + 0.437880i $$0.855730\pi$$
$$608$$ −0.500000 + 1.86603i −0.0202777 + 0.0756773i
$$609$$ 6.92820 25.8564i 0.280745 1.04775i
$$610$$ −5.36603 + 26.2224i −0.217264 + 1.06172i
$$611$$ 0.303848 + 1.13397i 0.0122924 + 0.0458757i
$$612$$ 4.09808 + 7.09808i 0.165655 + 0.286923i
$$613$$ −3.13397 0.839746i −0.126580 0.0339170i 0.194973 0.980809i $$-0.437538\pi$$
−0.321553 + 0.946892i $$0.604205\pi$$
$$614$$ −0.633975 + 2.36603i −0.0255851 + 0.0954850i
$$615$$ 13.1769 4.39230i 0.531344 0.177115i
$$616$$ −8.83013 + 2.36603i −0.355776 + 0.0953299i
$$617$$ −9.46410 + 35.3205i −0.381010 + 1.42195i 0.463350 + 0.886175i $$0.346647\pi$$
−0.844361 + 0.535775i $$0.820020\pi$$
$$618$$ 5.87564 + 5.87564i 0.236353 + 0.236353i
$$619$$ −6.67949 −0.268471 −0.134236 0.990949i $$-0.542858\pi$$
−0.134236 + 0.990949i $$0.542858\pi$$
$$620$$ 9.92820 + 8.80385i 0.398726 + 0.353571i
$$621$$ 0 0
$$622$$ −5.09808 + 1.36603i −0.204414 + 0.0547726i
$$623$$ 17.2679i 0.691826i
$$624$$ −0.169873 0.633975i −0.00680036 0.0253793i
$$625$$ −17.2846 18.0622i −0.691384 0.722487i
$$626$$ 13.9282 24.1244i 0.556683 0.964203i
$$627$$ −26.4904 + 15.2942i −1.05792 + 0.610793i
$$628$$ −1.29423 + 1.29423i −0.0516453 + 0.0516453i
$$629$$ 7.09808 + 15.0263i 0.283019 + 0.599137i
$$630$$ 9.00000 3.00000i 0.358569 0.119523i
$$631$$ 7.16987 26.7583i 0.285428 1.06523i −0.663098 0.748533i $$-0.730759\pi$$
0.948526 0.316700i $$-0.102575\pi$$
$$632$$ 12.9282 3.46410i 0.514256 0.137795i
$$633$$ 17.0263 + 63.5429i 0.676734 + 2.52561i
$$634$$ 12.9641 3.47372i 0.514870 0.137959i
$$635$$ 4.29423 + 12.8827i 0.170411 + 0.511234i
$$636$$ −16.8564 + 29.1962i −0.668400 + 1.15770i
$$637$$ 1.33975i 0.0530827i
$$638$$ −12.9282 + 48.2487i −0.511832 + 1.91018i
$$639$$ 18.0000i 0.712069i
$$640$$ −1.00000 + 2.00000i −0.0395285 + 0.0790569i
$$641$$ −1.16025 2.00962i −0.0458273 0.0793752i 0.842202 0.539162i $$-0.181259\pi$$
−0.888029 + 0.459787i $$0.847926\pi$$
$$642$$ −1.60770 0.928203i −0.0634507 0.0366333i
$$643$$ 2.24871i 0.0886805i 0.999016 + 0.0443403i $$0.0141186\pi$$
−0.999016 + 0.0443403i $$0.985881\pi$$
$$644$$ 5.09808 + 1.36603i 0.200892 + 0.0538289i
$$645$$ 14.5359 16.3923i 0.572350 0.645446i
$$646$$ 5.09808 + 1.36603i 0.200581 + 0.0537456i
$$647$$ −22.0885 + 38.2583i −0.868387 + 1.50409i −0.00474239 + 0.999989i $$0.501510\pi$$
−0.863644 + 0.504101i $$0.831824\pi$$
$$648$$ −4.50000 + 7.79423i −0.176777 + 0.306186i
$$649$$ 14.4282 + 3.86603i 0.566357 + 0.151755i
$$650$$ 0.526279 1.23205i 0.0206424 0.0483250i
$$651$$ −19.8564 5.32051i −0.778234 0.208527i
$$652$$ 1.26795i 0.0496567i
$$653$$ −31.4545 18.1603i −1.23091 0.710666i −0.263690 0.964608i $$-0.584939\pi$$
−0.967219 + 0.253942i $$0.918273\pi$$
$$654$$ −13.3923 23.1962i −0.523681 0.907041i
$$655$$ 29.7846 9.92820i 1.16378 0.387927i
$$656$$ 2.53590i 0.0990102i
$$657$$ 8.70577 32.4904i 0.339644 1.26757i
$$658$$ 6.19615i 0.241551i
$$659$$ 9.79423 16.9641i 0.381529 0.660828i −0.609752 0.792592i $$-0.708731\pi$$
0.991281 + 0.131765i $$0.0420643\pi$$
$$660$$ −33.5885 + 11.1962i −1.30743 + 0.435810i
$$661$$ −6.29423 + 1.68653i −0.244817 + 0.0655985i −0.379141 0.925339i $$-0.623780\pi$$
0.134324 + 0.990937i $$0.457114\pi$$
$$662$$ 1.96410 + 7.33013i 0.0763370 + 0.284893i
$$663$$ −1.73205 + 0.464102i −0.0672673 + 0.0180242i
$$664$$ 1.46410 5.46410i 0.0568182 0.212048i
$$665$$ 2.73205 5.46410i 0.105944 0.211889i
$$666$$ 10.3923 15.0000i 0.402694 0.581238i
$$667$$ 20.3923 20.3923i 0.789593 0.789593i
$$668$$ 13.8564 8.00000i 0.536120 0.309529i
$$669$$ −16.6865 + 28.9019i −0.645139 + 1.11741i
$$670$$ 2.70577 13.2224i 0.104533 0.510827i
$$671$$ 20.0263 + 74.7391i 0.773106 + 2.88527i
$$672$$ 3.46410i 0.133631i
$$673$$ −21.9282 + 5.87564i −0.845270 + 0.226489i −0.655364 0.755313i $$-0.727485\pi$$
−0.189906 + 0.981802i $$0.560818\pi$$
$$674$$ −25.8564 25.8564i −0.995952 0.995952i
$$675$$ 0 0
$$676$$ −12.9282 −0.497239
$$677$$ 26.5622 + 26.5622i 1.02087 + 1.02087i 0.999778 + 0.0210898i $$0.00671360\pi$$
0.0210898 + 0.999778i $$0.493286\pi$$
$$678$$ 2.66025 9.92820i 0.102166 0.381290i
$$679$$ 3.46410 0.928203i 0.132940 0.0356212i
$$680$$ 5.46410 + 2.73205i 0.209539 + 0.104769i
$$681$$ 14.5692 54.3731i 0.558294 2.08358i
$$682$$ 37.0526 + 9.92820i 1.41882 + 0.380171i
$$683$$ −11.1962 19.3923i −0.428409 0.742026i 0.568323 0.822805i $$-0.307592\pi$$
−0.996732 + 0.0807795i $$0.974259\pi$$
$$684$$ −1.50000 5.59808i −0.0573539 0.214048i
$$685$$ −13.0000 2.66025i −0.496704 0.101643i
$$686$$ 4.39230 16.3923i 0.167699 0.625861i
$$687$$ 12.3397 46.0526i 0.470791 1.75701i
$$688$$ −2.00000 3.46410i −0.0762493 0.132068i
$$689$$ −2.60770 2.60770i −0.0993453 0.0993453i
$$690$$ 20.0263 + 4.09808i 0.762387 + 0.156011i
$$691$$ −24.3397 + 14.0526i −0.925928 + 0.534585i −0.885521 0.464599i $$-0.846199\pi$$
−0.0404063 + 0.999183i $$0.512865\pi$$
$$692$$ −16.9545 + 16.9545i −0.644513 + 0.644513i
$$693$$ 19.3923 19.3923i 0.736653 0.736653i
$$694$$ −7.56218 13.0981i −0.287056 0.497196i
$$695$$ −11.7321 + 23.4641i −0.445022 + 0.890044i
$$696$$ −16.3923 9.46410i −0.621349 0.358736i
$$697$$ −6.92820 −0.262424
$$698$$ −2.07180 1.19615i −0.0784187 0.0452750i
$$699$$ 21.5885 + 12.4641i 0.816550 + 0.471436i
$$700$$ 4.36603 5.56218i 0.165020 0.210231i
$$701$$ 32.6865 + 8.75833i 1.23455 + 0.330798i 0.816351 0.577556i $$-0.195994\pi$$
0.418202 + 0.908354i $$0.362660\pi$$
$$702$$ 0 0
$$703$$ −2.09808 11.5622i −0.0791304 0.436076i
$$704$$ 6.46410i 0.243625i
$$705$$ 1.43782 + 23.9545i 0.0541515 + 0.902178i
$$706$$ 14.4904 + 8.36603i 0.545353 + 0.314860i
$$707$$ 11.4641 3.07180i 0.431152 0.115527i
$$708$$ −2.83013 + 4.90192i −0.106363 + 0.184226i
$$709$$ −9.80385 9.80385i −0.368191 0.368191i 0.498626 0.866817i $$-0.333838\pi$$
−0.866817 + 0.498626i $$0.833838\pi$$
$$710$$ 7.39230 + 11.1962i 0.277428 + 0.420184i
$$711$$ −28.3923 + 28.3923i −1.06479 + 1.06479i
$$712$$ 11.7942 + 3.16025i 0.442007 + 0.118436i
$$713$$ −15.6603 15.6603i −0.586481 0.586481i
$$714$$ −9.46410 −0.354185
$$715$$ −0.232051 3.86603i −0.00867821 0.144581i
$$716$$ 0.160254 + 0.598076i 0.00598897 + 0.0223512i
$$717$$ 14.1051 0.526765
$$718$$ 18.2942 10.5622i 0.682735 0.394177i
$$719$$ 13.7321 7.92820i 0.512119 0.295672i −0.221585 0.975141i $$-0.571123\pi$$
0.733704 + 0.679469i $$0.237790\pi$$
$$720$$ −0.401924 6.69615i −0.0149788 0.249551i
$$721$$ −4.63397 + 1.24167i −0.172578 + 0.0462422i
$$722$$ 13.2224 + 7.63397i 0.492088 + 0.284107i
$$723$$ 16.6865 9.63397i 0.620579 0.358291i
$$724$$ −13.0263 22.5622i −0.484118 0.838517i
$$725$$ −14.3923 35.8564i −0.534517 1.33167i
$$726$$ −53.3205 + 53.3205i −1.97891 + 1.97891i
$$727$$ −6.79423 + 11.7679i −0.251984 + 0.436449i −0.964072 0.265641i $$-0.914416\pi$$
0.712088 + 0.702090i $$0.247750\pi$$
$$728$$ 0.366025 + 0.0980762i 0.0135658 + 0.00363495i
$$729$$ 27.0000i 1.00000i
$$730$$ −7.92820 23.7846i −0.293436 0.880308i
$$731$$ −9.46410 + 5.46410i −0.350042 + 0.202097i
$$732$$ −29.3205 −1.08372
$$733$$ −2.30385 8.59808i −0.0850946 0.317577i 0.910238 0.414087i $$-0.135899\pi$$
−0.995332 + 0.0965093i $$0.969232\pi$$
$$734$$ 22.5622 22.5622i 0.832785 0.832785i
$$735$$ 5.49038 26.8301i 0.202516 0.989644i
$$736$$ 1.86603 3.23205i 0.0687826 0.119135i
$$737$$ −10.0981 37.6865i −0.371967 1.38820i
$$738$$ 3.80385 + 6.58846i 0.140022 + 0.242524i
$$739$$ 44.2679 1.62842 0.814211 0.580568i $$-0.197170\pi$$
0.814211 + 0.580568i $$0.197170\pi$$
$$740$$ 0.303848 13.5981i 0.0111697 0.499875i
$$741$$ 1.26795 0.0465793
$$742$$ −9.73205 16.8564i −0.357275 0.618818i
$$743$$ −7.57180 28.2583i −0.277782 1.03670i −0.953954 0.299953i $$-0.903029\pi$$
0.676172 0.736744i $$-0.263638\pi$$
$$744$$ −7.26795 + 12.5885i −0.266456 + 0.461515i
$$745$$ 40.0526 26.4449i 1.46741 0.968865i
$$746$$ −14.2942 + 14.2942i −0.523349 + 0.523349i
$$747$$ 4.39230 + 16.3923i 0.160706 + 0.599763i
$$748$$ 17.6603 0.645723
$$749$$ 0.928203 0.535898i 0.0339158 0.0195813i
$$750$$ 15.5885 22.5167i 0.569210 0.822192i
$$751$$ 17.1769i 0.626795i −0.949622 0.313397i $$-0.898533\pi$$
0.949622 0.313397i $$-0.101467\pi$$
$$752$$ 4.23205 + 1.13397i 0.154327 + 0.0413518i
$$753$$ 11.9545 20.7058i 0.435646 0.754560i
$$754$$ 1.46410 1.46410i 0.0533194 0.0533194i
$$755$$ −0.437822 7.29423i −0.0159340 0.265464i
$$756$$ 0 0
$$757$$ −29.0429 + 16.7679i −1.05558 + 0.609441i −0.924207 0.381891i $$-0.875273\pi$$
−0.131376 + 0.991333i $$0.541940\pi$$
$$758$$ −33.1244 19.1244i −1.20313 0.694628i
$$759$$ 57.0788 15.2942i 2.07183 0.555145i
$$760$$ −3.23205 2.86603i −0.117239 0.103962i
$$761$$ 7.50000 4.33013i 0.271875 0.156967i −0.357865 0.933774i $$-0.616495\pi$$
0.629739 + 0.776807i $$0.283162\pi$$
$$762$$ −12.8827 + 7.43782i −0.466690 + 0.269444i
$$763$$ 15.4641 0.559838
$$764$$ −2.12436 7.92820i −0.0768565 0.286832i
$$765$$ −18.2942 + 1.09808i −0.661429 + 0.0397010i
$$766$$ −3.33975 −0.120670
$$767$$ −0.437822 0.437822i −0.0158088 0.0158088i
$$768$$ −2.36603 0.633975i −0.0853766 0.0228766i
$$769$$ −27.5885 + 27.5885i −0.994865 + 0.994865i −0.999987 0.00512167i $$-0.998370\pi$$
0.00512167 + 0.999987i $$0.498370\pi$$
$$770$$ 4.09808 20.0263i 0.147684 0.721697i