Properties

Label 370.2.q.b.103.1
Level $370$
Weight $2$
Character 370.103
Analytic conductor $2.954$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.q (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 103.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 370.103
Dual form 370.2.q.b.97.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.633975 + 2.36603i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.23205 - 1.86603i) q^{5} +(1.73205 - 1.73205i) q^{6} +(0.366025 + 1.36603i) q^{7} +1.00000 q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.633975 + 2.36603i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.23205 - 1.86603i) q^{5} +(1.73205 - 1.73205i) q^{6} +(0.366025 + 1.36603i) q^{7} +1.00000 q^{8} +(-2.59808 + 1.50000i) q^{9} +(-1.00000 + 2.00000i) q^{10} +6.46410i q^{11} +(-2.36603 - 0.633975i) q^{12} +(0.133975 - 0.232051i) q^{13} +(1.00000 - 1.00000i) q^{14} +(3.63397 - 4.09808i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.36603 + 1.36603i) q^{17} +(2.59808 + 1.50000i) q^{18} +(1.86603 - 0.500000i) q^{19} +(2.23205 - 0.133975i) q^{20} +(-3.00000 + 1.73205i) q^{21} +(5.59808 - 3.23205i) q^{22} -3.73205 q^{23} +(0.633975 + 2.36603i) q^{24} +(-1.96410 + 4.59808i) q^{25} -0.267949 q^{26} +(-1.36603 - 0.366025i) q^{28} +(-5.46410 + 5.46410i) q^{29} +(-5.36603 - 1.09808i) q^{30} +(4.19615 + 4.19615i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-15.2942 + 4.09808i) q^{33} +(2.36603 + 1.36603i) q^{34} +(2.09808 - 2.36603i) q^{35} -3.00000i q^{36} +(0.500000 - 6.06218i) q^{37} +(-1.36603 - 1.36603i) q^{38} +(0.633975 + 0.169873i) q^{39} +(-1.23205 - 1.86603i) q^{40} +(2.19615 + 1.26795i) q^{41} +(3.00000 + 1.73205i) q^{42} +4.00000 q^{43} +(-5.59808 - 3.23205i) q^{44} +(6.00000 + 3.00000i) q^{45} +(1.86603 + 3.23205i) q^{46} +(-3.09808 + 3.09808i) q^{47} +(1.73205 - 1.73205i) q^{48} +(4.33013 - 2.50000i) q^{49} +(4.96410 - 0.598076i) q^{50} +(-4.73205 - 4.73205i) q^{51} +(0.133975 + 0.232051i) q^{52} +(3.56218 - 13.2942i) q^{53} +(12.0622 - 7.96410i) q^{55} +(0.366025 + 1.36603i) q^{56} +(2.36603 + 4.09808i) q^{57} +(7.46410 + 2.00000i) q^{58} +(0.598076 - 2.23205i) q^{59} +(1.73205 + 5.19615i) q^{60} +(11.5622 - 3.09808i) q^{61} +(1.53590 - 5.73205i) q^{62} +(-3.00000 - 3.00000i) q^{63} +1.00000 q^{64} +(-0.598076 + 0.0358984i) q^{65} +(11.1962 + 11.1962i) q^{66} +(-5.83013 + 1.56218i) q^{67} -2.73205i q^{68} +(-2.36603 - 8.83013i) q^{69} +(-3.09808 - 0.633975i) q^{70} +(3.00000 - 5.19615i) q^{71} +(-2.59808 + 1.50000i) q^{72} +(-7.92820 + 7.92820i) q^{73} +(-5.50000 + 2.59808i) q^{74} +(-12.1244 - 1.73205i) q^{75} +(-0.500000 + 1.86603i) q^{76} +(-8.83013 + 2.36603i) q^{77} +(-0.169873 - 0.633975i) q^{78} +(12.9282 - 3.46410i) q^{79} +(-1.00000 + 2.00000i) q^{80} +(-4.50000 + 7.79423i) q^{81} -2.53590i q^{82} +(1.46410 - 5.46410i) q^{83} -3.46410i q^{84} +(5.46410 + 2.73205i) q^{85} +(-2.00000 - 3.46410i) q^{86} +(-16.3923 - 9.46410i) q^{87} +6.46410i q^{88} +(11.7942 + 3.16025i) q^{89} +(-0.401924 - 6.69615i) q^{90} +(0.366025 + 0.0980762i) q^{91} +(1.86603 - 3.23205i) q^{92} +(-7.26795 + 12.5885i) q^{93} +(4.23205 + 1.13397i) q^{94} +(-3.23205 - 2.86603i) q^{95} +(-2.36603 - 0.633975i) q^{96} -2.53590i q^{97} +(-4.33013 - 2.50000i) q^{98} +(-9.69615 - 16.7942i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{3} - 2 q^{4} + 2 q^{5} - 2 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} + 6 q^{3} - 2 q^{4} + 2 q^{5} - 2 q^{7} + 4 q^{8} - 4 q^{10} - 6 q^{12} + 4 q^{13} + 4 q^{14} + 18 q^{15} - 2 q^{16} - 6 q^{17} + 4 q^{19} + 2 q^{20} - 12 q^{21} + 12 q^{22} - 8 q^{23} + 6 q^{24} + 6 q^{25} - 8 q^{26} - 2 q^{28} - 8 q^{29} - 18 q^{30} - 4 q^{31} - 2 q^{32} - 30 q^{33} + 6 q^{34} - 2 q^{35} + 2 q^{37} - 2 q^{38} + 6 q^{39} + 2 q^{40} - 12 q^{41} + 12 q^{42} + 16 q^{43} - 12 q^{44} + 24 q^{45} + 4 q^{46} - 2 q^{47} + 6 q^{50} - 12 q^{51} + 4 q^{52} - 10 q^{53} + 24 q^{55} - 2 q^{56} + 6 q^{57} + 16 q^{58} - 8 q^{59} + 22 q^{61} + 20 q^{62} - 12 q^{63} + 4 q^{64} + 8 q^{65} + 24 q^{66} - 6 q^{67} - 6 q^{69} - 2 q^{70} + 12 q^{71} - 4 q^{73} - 22 q^{74} - 2 q^{76} - 18 q^{77} - 18 q^{78} + 24 q^{79} - 4 q^{80} - 18 q^{81} - 8 q^{83} + 8 q^{85} - 8 q^{86} - 24 q^{87} + 16 q^{89} - 12 q^{90} - 2 q^{91} + 4 q^{92} - 36 q^{93} + 10 q^{94} - 6 q^{95} - 6 q^{96} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.633975 + 2.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i \(0.166667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.23205 1.86603i −0.550990 0.834512i
\(6\) 1.73205 1.73205i 0.707107 0.707107i
\(7\) 0.366025 + 1.36603i 0.138345 + 0.516309i 0.999962 + 0.00875026i \(0.00278533\pi\)
−0.861617 + 0.507559i \(0.830548\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.59808 + 1.50000i −0.866025 + 0.500000i
\(10\) −1.00000 + 2.00000i −0.316228 + 0.632456i
\(11\) 6.46410i 1.94900i 0.224388 + 0.974500i \(0.427962\pi\)
−0.224388 + 0.974500i \(0.572038\pi\)
\(12\) −2.36603 0.633975i −0.683013 0.183013i
\(13\) 0.133975 0.232051i 0.0371579 0.0643593i −0.846848 0.531834i \(-0.821503\pi\)
0.884006 + 0.467475i \(0.154836\pi\)
\(14\) 1.00000 1.00000i 0.267261 0.267261i
\(15\) 3.63397 4.09808i 0.938288 1.05812i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.36603 + 1.36603i −0.573845 + 0.331310i −0.758684 0.651459i \(-0.774157\pi\)
0.184838 + 0.982769i \(0.440824\pi\)
\(18\) 2.59808 + 1.50000i 0.612372 + 0.353553i
\(19\) 1.86603 0.500000i 0.428096 0.114708i −0.0383365 0.999265i \(-0.512206\pi\)
0.466432 + 0.884557i \(0.345539\pi\)
\(20\) 2.23205 0.133975i 0.499102 0.0299576i
\(21\) −3.00000 + 1.73205i −0.654654 + 0.377964i
\(22\) 5.59808 3.23205i 1.19351 0.689076i
\(23\) −3.73205 −0.778186 −0.389093 0.921198i \(-0.627212\pi\)
−0.389093 + 0.921198i \(0.627212\pi\)
\(24\) 0.633975 + 2.36603i 0.129410 + 0.482963i
\(25\) −1.96410 + 4.59808i −0.392820 + 0.919615i
\(26\) −0.267949 −0.0525492
\(27\) 0 0
\(28\) −1.36603 0.366025i −0.258155 0.0691723i
\(29\) −5.46410 + 5.46410i −1.01466 + 1.01466i −0.0147672 + 0.999891i \(0.504701\pi\)
−0.999891 + 0.0147672i \(0.995299\pi\)
\(30\) −5.36603 1.09808i −0.979698 0.200480i
\(31\) 4.19615 + 4.19615i 0.753651 + 0.753651i 0.975159 0.221507i \(-0.0710977\pi\)
−0.221507 + 0.975159i \(0.571098\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −15.2942 + 4.09808i −2.66238 + 0.713384i
\(34\) 2.36603 + 1.36603i 0.405770 + 0.234271i
\(35\) 2.09808 2.36603i 0.354640 0.399931i
\(36\) 3.00000i 0.500000i
\(37\) 0.500000 6.06218i 0.0821995 0.996616i
\(38\) −1.36603 1.36603i −0.221599 0.221599i
\(39\) 0.633975 + 0.169873i 0.101517 + 0.0272014i
\(40\) −1.23205 1.86603i −0.194804 0.295045i
\(41\) 2.19615 + 1.26795i 0.342981 + 0.198020i 0.661590 0.749866i \(-0.269882\pi\)
−0.318608 + 0.947886i \(0.603215\pi\)
\(42\) 3.00000 + 1.73205i 0.462910 + 0.267261i
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −5.59808 3.23205i −0.843942 0.487250i
\(45\) 6.00000 + 3.00000i 0.894427 + 0.447214i
\(46\) 1.86603 + 3.23205i 0.275130 + 0.476540i
\(47\) −3.09808 + 3.09808i −0.451901 + 0.451901i −0.895985 0.444084i \(-0.853529\pi\)
0.444084 + 0.895985i \(0.353529\pi\)
\(48\) 1.73205 1.73205i 0.250000 0.250000i
\(49\) 4.33013 2.50000i 0.618590 0.357143i
\(50\) 4.96410 0.598076i 0.702030 0.0845807i
\(51\) −4.73205 4.73205i −0.662620 0.662620i
\(52\) 0.133975 + 0.232051i 0.0185789 + 0.0321797i
\(53\) 3.56218 13.2942i 0.489303 1.82610i −0.0705468 0.997508i \(-0.522474\pi\)
0.559850 0.828594i \(-0.310859\pi\)
\(54\) 0 0
\(55\) 12.0622 7.96410i 1.62646 1.07388i
\(56\) 0.366025 + 1.36603i 0.0489122 + 0.182543i
\(57\) 2.36603 + 4.09808i 0.313388 + 0.542803i
\(58\) 7.46410 + 2.00000i 0.980085 + 0.262613i
\(59\) 0.598076 2.23205i 0.0778629 0.290588i −0.916004 0.401168i \(-0.868604\pi\)
0.993867 + 0.110580i \(0.0352709\pi\)
\(60\) 1.73205 + 5.19615i 0.223607 + 0.670820i
\(61\) 11.5622 3.09808i 1.48039 0.396668i 0.573907 0.818921i \(-0.305427\pi\)
0.906478 + 0.422253i \(0.138760\pi\)
\(62\) 1.53590 5.73205i 0.195059 0.727971i
\(63\) −3.00000 3.00000i −0.377964 0.377964i
\(64\) 1.00000 0.125000
\(65\) −0.598076 + 0.0358984i −0.0741822 + 0.00445265i
\(66\) 11.1962 + 11.1962i 1.37815 + 1.37815i
\(67\) −5.83013 + 1.56218i −0.712263 + 0.190850i −0.596717 0.802452i \(-0.703529\pi\)
−0.115546 + 0.993302i \(0.536862\pi\)
\(68\) 2.73205i 0.331310i
\(69\) −2.36603 8.83013i −0.284836 1.06302i
\(70\) −3.09808 0.633975i −0.370291 0.0757745i
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) −2.59808 + 1.50000i −0.306186 + 0.176777i
\(73\) −7.92820 + 7.92820i −0.927926 + 0.927926i −0.997572 0.0696458i \(-0.977813\pi\)
0.0696458 + 0.997572i \(0.477813\pi\)
\(74\) −5.50000 + 2.59808i −0.639362 + 0.302020i
\(75\) −12.1244 1.73205i −1.40000 0.200000i
\(76\) −0.500000 + 1.86603i −0.0573539 + 0.214048i
\(77\) −8.83013 + 2.36603i −1.00629 + 0.269634i
\(78\) −0.169873 0.633975i −0.0192343 0.0717835i
\(79\) 12.9282 3.46410i 1.45454 0.389742i 0.556937 0.830555i \(-0.311976\pi\)
0.897599 + 0.440813i \(0.145310\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 2.53590i 0.280043i
\(83\) 1.46410 5.46410i 0.160706 0.599763i −0.837843 0.545911i \(-0.816184\pi\)
0.998549 0.0538517i \(-0.0171498\pi\)
\(84\) 3.46410i 0.377964i
\(85\) 5.46410 + 2.73205i 0.592665 + 0.296333i
\(86\) −2.00000 3.46410i −0.215666 0.373544i
\(87\) −16.3923 9.46410i −1.75744 1.01466i
\(88\) 6.46410i 0.689076i
\(89\) 11.7942 + 3.16025i 1.25019 + 0.334986i 0.822408 0.568898i \(-0.192630\pi\)
0.427778 + 0.903884i \(0.359297\pi\)
\(90\) −0.401924 6.69615i −0.0423665 0.705836i
\(91\) 0.366025 + 0.0980762i 0.0383699 + 0.0102812i
\(92\) 1.86603 3.23205i 0.194547 0.336965i
\(93\) −7.26795 + 12.5885i −0.753651 + 1.30536i
\(94\) 4.23205 + 1.13397i 0.436503 + 0.116961i
\(95\) −3.23205 2.86603i −0.331601 0.294048i
\(96\) −2.36603 0.633975i −0.241481 0.0647048i
\(97\) 2.53590i 0.257481i −0.991678 0.128741i \(-0.958906\pi\)
0.991678 0.128741i \(-0.0410935\pi\)
\(98\) −4.33013 2.50000i −0.437409 0.252538i
\(99\) −9.69615 16.7942i −0.974500 1.68788i
\(100\) −3.00000 4.00000i −0.300000 0.400000i
\(101\) 8.39230i 0.835066i −0.908662 0.417533i \(-0.862895\pi\)
0.908662 0.417533i \(-0.137105\pi\)
\(102\) −1.73205 + 6.46410i −0.171499 + 0.640041i
\(103\) 3.39230i 0.334254i 0.985935 + 0.167127i \(0.0534489\pi\)
−0.985935 + 0.167127i \(0.946551\pi\)
\(104\) 0.133975 0.232051i 0.0131373 0.0227545i
\(105\) 6.92820 + 3.46410i 0.676123 + 0.338062i
\(106\) −13.2942 + 3.56218i −1.29125 + 0.345989i
\(107\) −0.196152 0.732051i −0.0189628 0.0707700i 0.955796 0.294030i \(-0.0949967\pi\)
−0.974759 + 0.223260i \(0.928330\pi\)
\(108\) 0 0
\(109\) 2.83013 10.5622i 0.271077 1.01167i −0.687348 0.726328i \(-0.741225\pi\)
0.958425 0.285345i \(-0.0921081\pi\)
\(110\) −12.9282 6.46410i −1.23266 0.616328i
\(111\) 14.6603 2.66025i 1.39149 0.252500i
\(112\) 1.00000 1.00000i 0.0944911 0.0944911i
\(113\) 3.63397 2.09808i 0.341856 0.197370i −0.319237 0.947675i \(-0.603427\pi\)
0.661092 + 0.750305i \(0.270093\pi\)
\(114\) 2.36603 4.09808i 0.221599 0.383820i
\(115\) 4.59808 + 6.96410i 0.428773 + 0.649406i
\(116\) −2.00000 7.46410i −0.185695 0.693024i
\(117\) 0.803848i 0.0743157i
\(118\) −2.23205 + 0.598076i −0.205477 + 0.0550574i
\(119\) −2.73205 2.73205i −0.250447 0.250447i
\(120\) 3.63397 4.09808i 0.331735 0.374101i
\(121\) −30.7846 −2.79860
\(122\) −8.46410 8.46410i −0.766304 0.766304i
\(123\) −1.60770 + 6.00000i −0.144961 + 0.541002i
\(124\) −5.73205 + 1.53590i −0.514753 + 0.137928i
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) −1.09808 + 4.09808i −0.0978244 + 0.365086i
\(127\) −5.86603 1.57180i −0.520526 0.139474i −0.0110159 0.999939i \(-0.503507\pi\)
−0.509510 + 0.860465i \(0.670173\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 2.53590 + 9.46410i 0.223273 + 0.833268i
\(130\) 0.330127 + 0.500000i 0.0289541 + 0.0438529i
\(131\) −3.63397 + 13.5622i −0.317502 + 1.18493i 0.604136 + 0.796881i \(0.293518\pi\)
−0.921638 + 0.388052i \(0.873148\pi\)
\(132\) 4.09808 15.2942i 0.356692 1.33119i
\(133\) 1.36603 + 2.36603i 0.118449 + 0.205160i
\(134\) 4.26795 + 4.26795i 0.368695 + 0.368695i
\(135\) 0 0
\(136\) −2.36603 + 1.36603i −0.202885 + 0.117136i
\(137\) 4.19615 4.19615i 0.358501 0.358501i −0.504759 0.863260i \(-0.668419\pi\)
0.863260 + 0.504759i \(0.168419\pi\)
\(138\) −6.46410 + 6.46410i −0.550261 + 0.550261i
\(139\) −5.86603 10.1603i −0.497550 0.861781i 0.502446 0.864608i \(-0.332433\pi\)
−0.999996 + 0.00282696i \(0.999100\pi\)
\(140\) 1.00000 + 3.00000i 0.0845154 + 0.253546i
\(141\) −9.29423 5.36603i −0.782715 0.451901i
\(142\) −6.00000 −0.503509
\(143\) 1.50000 + 0.866025i 0.125436 + 0.0724207i
\(144\) 2.59808 + 1.50000i 0.216506 + 0.125000i
\(145\) 16.9282 + 3.46410i 1.40581 + 0.287678i
\(146\) 10.8301 + 2.90192i 0.896308 + 0.240165i
\(147\) 8.66025 + 8.66025i 0.714286 + 0.714286i
\(148\) 5.00000 + 3.46410i 0.410997 + 0.284747i
\(149\) 21.4641i 1.75841i 0.476446 + 0.879204i \(0.341925\pi\)
−0.476446 + 0.879204i \(0.658075\pi\)
\(150\) 4.56218 + 11.3660i 0.372500 + 0.928032i
\(151\) 2.83013 + 1.63397i 0.230312 + 0.132971i 0.610716 0.791850i \(-0.290882\pi\)
−0.380404 + 0.924821i \(0.624215\pi\)
\(152\) 1.86603 0.500000i 0.151355 0.0405554i
\(153\) 4.09808 7.09808i 0.331310 0.573845i
\(154\) 6.46410 + 6.46410i 0.520892 + 0.520892i
\(155\) 2.66025 13.0000i 0.213677 1.04419i
\(156\) −0.464102 + 0.464102i −0.0371579 + 0.0371579i
\(157\) 1.76795 + 0.473721i 0.141098 + 0.0378070i 0.328677 0.944443i \(-0.393397\pi\)
−0.187579 + 0.982250i \(0.560064\pi\)
\(158\) −9.46410 9.46410i −0.752923 0.752923i
\(159\) 33.7128 2.67360
\(160\) 2.23205 0.133975i 0.176459 0.0105916i
\(161\) −1.36603 5.09808i −0.107658 0.401785i
\(162\) 9.00000 0.707107
\(163\) −1.09808 + 0.633975i −0.0860080 + 0.0496567i −0.542387 0.840129i \(-0.682479\pi\)
0.456379 + 0.889785i \(0.349146\pi\)
\(164\) −2.19615 + 1.26795i −0.171491 + 0.0990102i
\(165\) 26.4904 + 23.4904i 2.06227 + 1.82872i
\(166\) −5.46410 + 1.46410i −0.424097 + 0.113636i
\(167\) −13.8564 8.00000i −1.07224 0.619059i −0.143448 0.989658i \(-0.545819\pi\)
−0.928793 + 0.370599i \(0.879152\pi\)
\(168\) −3.00000 + 1.73205i −0.231455 + 0.133631i
\(169\) 6.46410 + 11.1962i 0.497239 + 0.861242i
\(170\) −0.366025 6.09808i −0.0280729 0.467701i
\(171\) −4.09808 + 4.09808i −0.313388 + 0.313388i
\(172\) −2.00000 + 3.46410i −0.152499 + 0.264135i
\(173\) 23.1603 + 6.20577i 1.76084 + 0.471816i 0.986885 0.161423i \(-0.0516084\pi\)
0.773956 + 0.633239i \(0.218275\pi\)
\(174\) 18.9282i 1.43494i
\(175\) −7.00000 1.00000i −0.529150 0.0755929i
\(176\) 5.59808 3.23205i 0.421971 0.243625i
\(177\) 5.66025 0.425451
\(178\) −3.16025 11.7942i −0.236871 0.884015i
\(179\) 0.437822 0.437822i 0.0327244 0.0327244i −0.690555 0.723280i \(-0.742634\pi\)
0.723280 + 0.690555i \(0.242634\pi\)
\(180\) −5.59808 + 3.69615i −0.417256 + 0.275495i
\(181\) −13.0263 + 22.5622i −0.968236 + 1.67703i −0.267578 + 0.963536i \(0.586223\pi\)
−0.700658 + 0.713497i \(0.747110\pi\)
\(182\) −0.0980762 0.366025i −0.00726989 0.0271316i
\(183\) 14.6603 + 25.3923i 1.08372 + 1.87705i
\(184\) −3.73205 −0.275130
\(185\) −11.9282 + 6.53590i −0.876979 + 0.480529i
\(186\) 14.5359 1.06582
\(187\) −8.83013 15.2942i −0.645723 1.11842i
\(188\) −1.13397 4.23205i −0.0827036 0.308654i
\(189\) 0 0
\(190\) −0.866025 + 4.23205i −0.0628281 + 0.307025i
\(191\) −5.80385 + 5.80385i −0.419952 + 0.419952i −0.885187 0.465235i \(-0.845970\pi\)
0.465235 + 0.885187i \(0.345970\pi\)
\(192\) 0.633975 + 2.36603i 0.0457532 + 0.170753i
\(193\) 11.8038 0.849660 0.424830 0.905273i \(-0.360334\pi\)
0.424830 + 0.905273i \(0.360334\pi\)
\(194\) −2.19615 + 1.26795i −0.157675 + 0.0910334i
\(195\) −0.464102 1.39230i −0.0332350 0.0997050i
\(196\) 5.00000i 0.357143i
\(197\) −7.56218 2.02628i −0.538783 0.144366i −0.0208419 0.999783i \(-0.506635\pi\)
−0.517941 + 0.855416i \(0.673301\pi\)
\(198\) −9.69615 + 16.7942i −0.689076 + 1.19351i
\(199\) −2.92820 + 2.92820i −0.207575 + 0.207575i −0.803236 0.595661i \(-0.796890\pi\)
0.595661 + 0.803236i \(0.296890\pi\)
\(200\) −1.96410 + 4.59808i −0.138883 + 0.325133i
\(201\) −7.39230 12.8038i −0.521413 0.903114i
\(202\) −7.26795 + 4.19615i −0.511371 + 0.295240i
\(203\) −9.46410 5.46410i −0.664250 0.383505i
\(204\) 6.46410 1.73205i 0.452578 0.121268i
\(205\) −0.339746 5.66025i −0.0237289 0.395329i
\(206\) 2.93782 1.69615i 0.204688 0.118177i
\(207\) 9.69615 5.59808i 0.673929 0.389093i
\(208\) −0.267949 −0.0185789
\(209\) 3.23205 + 12.0622i 0.223566 + 0.834358i
\(210\) −0.464102 7.73205i −0.0320261 0.533562i
\(211\) 26.8564 1.84887 0.924436 0.381338i \(-0.124537\pi\)
0.924436 + 0.381338i \(0.124537\pi\)
\(212\) 9.73205 + 9.73205i 0.668400 + 0.668400i
\(213\) 14.1962 + 3.80385i 0.972704 + 0.260635i
\(214\) −0.535898 + 0.535898i −0.0366333 + 0.0366333i
\(215\) −4.92820 7.46410i −0.336101 0.509048i
\(216\) 0 0
\(217\) −4.19615 + 7.26795i −0.284853 + 0.493381i
\(218\) −10.5622 + 2.83013i −0.715361 + 0.191680i
\(219\) −23.7846 13.7321i −1.60721 0.927926i
\(220\) 0.866025 + 14.4282i 0.0583874 + 0.972749i
\(221\) 0.732051i 0.0492431i
\(222\) −9.63397 11.3660i −0.646590 0.762838i
\(223\) 9.63397 + 9.63397i 0.645139 + 0.645139i 0.951814 0.306675i \(-0.0992166\pi\)
−0.306675 + 0.951814i \(0.599217\pi\)
\(224\) −1.36603 0.366025i −0.0912714 0.0244561i
\(225\) −1.79423 14.8923i −0.119615 0.992820i
\(226\) −3.63397 2.09808i −0.241728 0.139562i
\(227\) −19.9019 11.4904i −1.32094 0.762643i −0.337059 0.941484i \(-0.609432\pi\)
−0.983878 + 0.178840i \(0.942765\pi\)
\(228\) −4.73205 −0.313388
\(229\) −16.8564 9.73205i −1.11390 0.643112i −0.174065 0.984734i \(-0.555690\pi\)
−0.939837 + 0.341622i \(0.889024\pi\)
\(230\) 3.73205 7.46410i 0.246084 0.492168i
\(231\) −11.1962 19.3923i −0.736653 1.27592i
\(232\) −5.46410 + 5.46410i −0.358736 + 0.358736i
\(233\) 7.19615 7.19615i 0.471436 0.471436i −0.430943 0.902379i \(-0.641819\pi\)
0.902379 + 0.430943i \(0.141819\pi\)
\(234\) 0.696152 0.401924i 0.0455089 0.0262746i
\(235\) 9.59808 + 1.96410i 0.626109 + 0.128124i
\(236\) 1.63397 + 1.63397i 0.106363 + 0.106363i
\(237\) 16.3923 + 28.3923i 1.06479 + 1.84428i
\(238\) −1.00000 + 3.73205i −0.0648204 + 0.241913i
\(239\) 1.49038 5.56218i 0.0964047 0.359787i −0.900824 0.434185i \(-0.857037\pi\)
0.997229 + 0.0743971i \(0.0237032\pi\)
\(240\) −5.36603 1.09808i −0.346375 0.0708805i
\(241\) −2.03590 7.59808i −0.131144 0.489435i 0.868840 0.495093i \(-0.164866\pi\)
−0.999984 + 0.00565742i \(0.998199\pi\)
\(242\) 15.3923 + 26.6603i 0.989455 + 1.71379i
\(243\) −21.2942 5.70577i −1.36603 0.366025i
\(244\) −3.09808 + 11.5622i −0.198334 + 0.740193i
\(245\) −10.0000 5.00000i −0.638877 0.319438i
\(246\) 6.00000 1.60770i 0.382546 0.102503i
\(247\) 0.133975 0.500000i 0.00852460 0.0318142i
\(248\) 4.19615 + 4.19615i 0.266456 + 0.266456i
\(249\) 13.8564 0.878114
\(250\) −7.23205 8.52628i −0.457395 0.539249i
\(251\) −6.90192 6.90192i −0.435646 0.435646i 0.454898 0.890544i \(-0.349676\pi\)
−0.890544 + 0.454898i \(0.849676\pi\)
\(252\) 4.09808 1.09808i 0.258155 0.0691723i
\(253\) 24.1244i 1.51669i
\(254\) 1.57180 + 5.86603i 0.0986233 + 0.368067i
\(255\) −3.00000 + 14.6603i −0.187867 + 0.918061i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.90192 4.56218i 0.492908 0.284581i −0.232872 0.972507i \(-0.574812\pi\)
0.725780 + 0.687927i \(0.241479\pi\)
\(258\) 6.92820 6.92820i 0.431331 0.431331i
\(259\) 8.46410 1.53590i 0.525934 0.0954361i
\(260\) 0.267949 0.535898i 0.0166175 0.0332350i
\(261\) 6.00000 22.3923i 0.371391 1.38605i
\(262\) 13.5622 3.63397i 0.837874 0.224508i
\(263\) 2.50000 + 9.33013i 0.154157 + 0.575320i 0.999176 + 0.0405848i \(0.0129221\pi\)
−0.845019 + 0.534735i \(0.820411\pi\)
\(264\) −15.2942 + 4.09808i −0.941295 + 0.252219i
\(265\) −29.1962 + 9.73205i −1.79351 + 0.597835i
\(266\) 1.36603 2.36603i 0.0837564 0.145070i
\(267\) 29.9090i 1.83040i
\(268\) 1.56218 5.83013i 0.0954252 0.356132i
\(269\) 12.7321i 0.776287i −0.921599 0.388143i \(-0.873117\pi\)
0.921599 0.388143i \(-0.126883\pi\)
\(270\) 0 0
\(271\) 12.8564 + 22.2679i 0.780971 + 1.35268i 0.931377 + 0.364057i \(0.118609\pi\)
−0.150406 + 0.988624i \(0.548058\pi\)
\(272\) 2.36603 + 1.36603i 0.143461 + 0.0828275i
\(273\) 0.928203i 0.0561774i
\(274\) −5.73205 1.53590i −0.346286 0.0927870i
\(275\) −29.7224 12.6962i −1.79233 0.765607i
\(276\) 8.83013 + 2.36603i 0.531511 + 0.142418i
\(277\) 10.7321 18.5885i 0.644826 1.11687i −0.339515 0.940601i \(-0.610263\pi\)
0.984342 0.176272i \(-0.0564037\pi\)
\(278\) −5.86603 + 10.1603i −0.351821 + 0.609372i
\(279\) −17.1962 4.60770i −1.02951 0.275855i
\(280\) 2.09808 2.36603i 0.125384 0.141397i
\(281\) −6.50000 1.74167i −0.387757 0.103899i 0.0596731 0.998218i \(-0.480994\pi\)
−0.447431 + 0.894319i \(0.647661\pi\)
\(282\) 10.7321i 0.639084i
\(283\) −3.29423 1.90192i −0.195822 0.113058i 0.398883 0.917002i \(-0.369398\pi\)
−0.594705 + 0.803944i \(0.702731\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 4.73205 9.46410i 0.280302 0.560605i
\(286\) 1.73205i 0.102418i
\(287\) −0.928203 + 3.46410i −0.0547901 + 0.204479i
\(288\) 3.00000i 0.176777i
\(289\) −4.76795 + 8.25833i −0.280468 + 0.485784i
\(290\) −5.46410 16.3923i −0.320863 0.962589i
\(291\) 6.00000 1.60770i 0.351726 0.0942448i
\(292\) −2.90192 10.8301i −0.169822 0.633785i
\(293\) −9.06218 + 2.42820i −0.529418 + 0.141857i −0.513620 0.858018i \(-0.671696\pi\)
−0.0157985 + 0.999875i \(0.505029\pi\)
\(294\) 3.16987 11.8301i 0.184871 0.689947i
\(295\) −4.90192 + 1.63397i −0.285401 + 0.0951337i
\(296\) 0.500000 6.06218i 0.0290619 0.352357i
\(297\) 0 0
\(298\) 18.5885 10.7321i 1.07680 0.621691i
\(299\) −0.500000 + 0.866025i −0.0289157 + 0.0500835i
\(300\) 7.56218 9.63397i 0.436603 0.556218i
\(301\) 1.46410 + 5.46410i 0.0843894 + 0.314946i
\(302\) 3.26795i 0.188049i
\(303\) 19.8564 5.32051i 1.14072 0.305655i
\(304\) −1.36603 1.36603i −0.0783469 0.0783469i
\(305\) −20.0263 17.7583i −1.14670 1.01684i
\(306\) −8.19615 −0.468543
\(307\) −1.73205 1.73205i −0.0988534 0.0988534i 0.655951 0.754804i \(-0.272268\pi\)
−0.754804 + 0.655951i \(0.772268\pi\)
\(308\) 2.36603 8.83013i 0.134817 0.503143i
\(309\) −8.02628 + 2.15064i −0.456599 + 0.122345i
\(310\) −12.5885 + 4.19615i −0.714976 + 0.238325i
\(311\) 1.36603 5.09808i 0.0774602 0.289085i −0.916320 0.400448i \(-0.868855\pi\)
0.993780 + 0.111362i \(0.0355213\pi\)
\(312\) 0.633975 + 0.169873i 0.0358917 + 0.00961716i
\(313\) 13.9282 + 24.1244i 0.787269 + 1.36359i 0.927634 + 0.373489i \(0.121839\pi\)
−0.140366 + 0.990100i \(0.544828\pi\)
\(314\) −0.473721 1.76795i −0.0267336 0.0997711i
\(315\) −1.90192 + 9.29423i −0.107161 + 0.523670i
\(316\) −3.46410 + 12.9282i −0.194871 + 0.727268i
\(317\) −3.47372 + 12.9641i −0.195104 + 0.728136i 0.797136 + 0.603799i \(0.206347\pi\)
−0.992240 + 0.124337i \(0.960320\pi\)
\(318\) −16.8564 29.1962i −0.945260 1.63724i
\(319\) −35.3205 35.3205i −1.97757 1.97757i
\(320\) −1.23205 1.86603i −0.0688737 0.104314i
\(321\) 1.60770 0.928203i 0.0897328 0.0518073i
\(322\) −3.73205 + 3.73205i −0.207979 + 0.207979i
\(323\) −3.73205 + 3.73205i −0.207657 + 0.207657i
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) 0.803848 + 1.07180i 0.0445894 + 0.0594526i
\(326\) 1.09808 + 0.633975i 0.0608168 + 0.0351126i
\(327\) 26.7846 1.48119
\(328\) 2.19615 + 1.26795i 0.121262 + 0.0700108i
\(329\) −5.36603 3.09808i −0.295839 0.170802i
\(330\) 7.09808 34.6865i 0.390736 1.90943i
\(331\) −7.33013 1.96410i −0.402900 0.107957i 0.0516776 0.998664i \(-0.483543\pi\)
−0.454578 + 0.890707i \(0.650210\pi\)
\(332\) 4.00000 + 4.00000i 0.219529 + 0.219529i
\(333\) 7.79423 + 16.5000i 0.427121 + 0.904194i
\(334\) 16.0000i 0.875481i
\(335\) 10.0981 + 8.95448i 0.551717 + 0.489236i
\(336\) 3.00000 + 1.73205i 0.163663 + 0.0944911i
\(337\) 35.3205 9.46410i 1.92403 0.515542i 0.938750 0.344600i \(-0.111985\pi\)
0.985281 0.170943i \(-0.0546813\pi\)
\(338\) 6.46410 11.1962i 0.351601 0.608990i
\(339\) 7.26795 + 7.26795i 0.394741 + 0.394741i
\(340\) −5.09808 + 3.36603i −0.276482 + 0.182548i
\(341\) −27.1244 + 27.1244i −1.46887 + 1.46887i
\(342\) 5.59808 + 1.50000i 0.302709 + 0.0811107i
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 4.00000 0.215666
\(345\) −13.5622 + 15.2942i −0.730163 + 0.823414i
\(346\) −6.20577 23.1603i −0.333624 1.24510i
\(347\) 15.1244 0.811918 0.405959 0.913891i \(-0.366938\pi\)
0.405959 + 0.913891i \(0.366938\pi\)
\(348\) 16.3923 9.46410i 0.878720 0.507329i
\(349\) 2.07180 1.19615i 0.110901 0.0640286i −0.443524 0.896263i \(-0.646272\pi\)
0.554424 + 0.832234i \(0.312938\pi\)
\(350\) 2.63397 + 6.56218i 0.140792 + 0.350763i
\(351\) 0 0
\(352\) −5.59808 3.23205i −0.298378 0.172269i
\(353\) −14.4904 + 8.36603i −0.771245 + 0.445279i −0.833319 0.552793i \(-0.813562\pi\)
0.0620735 + 0.998072i \(0.480229\pi\)
\(354\) −2.83013 4.90192i −0.150420 0.260534i
\(355\) −13.3923 + 0.803848i −0.710790 + 0.0426638i
\(356\) −8.63397 + 8.63397i −0.457600 + 0.457600i
\(357\) 4.73205 8.19615i 0.250447 0.433786i
\(358\) −0.598076 0.160254i −0.0316093 0.00846969i
\(359\) 21.1244i 1.11490i 0.830210 + 0.557450i \(0.188220\pi\)
−0.830210 + 0.557450i \(0.811780\pi\)
\(360\) 6.00000 + 3.00000i 0.316228 + 0.158114i
\(361\) −13.2224 + 7.63397i −0.695917 + 0.401788i
\(362\) 26.0526 1.36929
\(363\) −19.5167 72.8372i −1.02436 3.82296i
\(364\) −0.267949 + 0.267949i −0.0140444 + 0.0140444i
\(365\) 24.5622 + 5.02628i 1.28564 + 0.263087i
\(366\) 14.6603 25.3923i 0.766304 1.32728i
\(367\) 8.25833 + 30.8205i 0.431081 + 1.60882i 0.750274 + 0.661127i \(0.229922\pi\)
−0.319192 + 0.947690i \(0.603412\pi\)
\(368\) 1.86603 + 3.23205i 0.0972733 + 0.168482i
\(369\) −7.60770 −0.396041
\(370\) 11.6244 + 7.06218i 0.604321 + 0.367145i
\(371\) 19.4641 1.01053
\(372\) −7.26795 12.5885i −0.376826 0.652681i
\(373\) −5.23205 19.5263i −0.270905 1.01103i −0.958536 0.284972i \(-0.908016\pi\)
0.687631 0.726061i \(-0.258651\pi\)
\(374\) −8.83013 + 15.2942i −0.456595 + 0.790846i
\(375\) 11.7058 + 24.7583i 0.604483 + 1.27851i
\(376\) −3.09808 + 3.09808i −0.159771 + 0.159771i
\(377\) 0.535898 + 2.00000i 0.0276002 + 0.103005i
\(378\) 0 0
\(379\) 33.1244 19.1244i 1.70148 0.982352i 0.757222 0.653158i \(-0.226556\pi\)
0.944262 0.329194i \(-0.106777\pi\)
\(380\) 4.09808 1.36603i 0.210227 0.0700756i
\(381\) 14.8756i 0.762102i
\(382\) 7.92820 + 2.12436i 0.405642 + 0.108691i
\(383\) 1.66987 2.89230i 0.0853265 0.147790i −0.820204 0.572071i \(-0.806140\pi\)
0.905530 + 0.424282i \(0.139473\pi\)
\(384\) 1.73205 1.73205i 0.0883883 0.0883883i
\(385\) 15.2942 + 13.5622i 0.779466 + 0.691193i
\(386\) −5.90192 10.2224i −0.300400 0.520308i
\(387\) −10.3923 + 6.00000i −0.528271 + 0.304997i
\(388\) 2.19615 + 1.26795i 0.111493 + 0.0643704i
\(389\) 4.00000 1.07180i 0.202808 0.0543423i −0.155985 0.987759i \(-0.549855\pi\)
0.358793 + 0.933417i \(0.383188\pi\)
\(390\) −0.973721 + 1.09808i −0.0493063 + 0.0556033i
\(391\) 8.83013 5.09808i 0.446559 0.257821i
\(392\) 4.33013 2.50000i 0.218704 0.126269i
\(393\) −34.3923 −1.73486
\(394\) 2.02628 + 7.56218i 0.102082 + 0.380977i
\(395\) −22.3923 19.8564i −1.12668 0.999084i
\(396\) 19.3923 0.974500
\(397\) −17.0981 17.0981i −0.858128 0.858128i 0.132990 0.991117i \(-0.457542\pi\)
−0.991117 + 0.132990i \(0.957542\pi\)
\(398\) 4.00000 + 1.07180i 0.200502 + 0.0537243i
\(399\) −4.73205 + 4.73205i −0.236899 + 0.236899i
\(400\) 4.96410 0.598076i 0.248205 0.0299038i
\(401\) 2.43782 + 2.43782i 0.121739 + 0.121739i 0.765352 0.643612i \(-0.222565\pi\)
−0.643612 + 0.765352i \(0.722565\pi\)
\(402\) −7.39230 + 12.8038i −0.368695 + 0.638598i
\(403\) 1.53590 0.411543i 0.0765085 0.0205004i
\(404\) 7.26795 + 4.19615i 0.361594 + 0.208766i
\(405\) 20.0885 1.20577i 0.998203 0.0599153i
\(406\) 10.9282i 0.542358i
\(407\) 39.1865 + 3.23205i 1.94240 + 0.160207i
\(408\) −4.73205 4.73205i −0.234271 0.234271i
\(409\) −14.5622 3.90192i −0.720053 0.192938i −0.119858 0.992791i \(-0.538244\pi\)
−0.600195 + 0.799853i \(0.704911\pi\)
\(410\) −4.73205 + 3.12436i −0.233699 + 0.154301i
\(411\) 12.5885 + 7.26795i 0.620943 + 0.358501i
\(412\) −2.93782 1.69615i −0.144736 0.0835634i
\(413\) 3.26795 0.160805
\(414\) −9.69615 5.59808i −0.476540 0.275130i
\(415\) −12.0000 + 4.00000i −0.589057 + 0.196352i
\(416\) 0.133975 + 0.232051i 0.00656865 + 0.0113772i
\(417\) 20.3205 20.3205i 0.995100 0.995100i
\(418\) 8.83013 8.83013i 0.431896 0.431896i
\(419\) −8.08846 + 4.66987i −0.395147 + 0.228138i −0.684388 0.729118i \(-0.739930\pi\)
0.289241 + 0.957256i \(0.406597\pi\)
\(420\) −6.46410 + 4.26795i −0.315416 + 0.208255i
\(421\) −15.3205 15.3205i −0.746676 0.746676i 0.227177 0.973853i \(-0.427050\pi\)
−0.973853 + 0.227177i \(0.927050\pi\)
\(422\) −13.4282 23.2583i −0.653675 1.13220i
\(423\) 3.40192 12.6962i 0.165407 0.617308i
\(424\) 3.56218 13.2942i 0.172995 0.645625i
\(425\) −1.63397 13.5622i −0.0792594 0.657862i
\(426\) −3.80385 14.1962i −0.184297 0.687806i
\(427\) 8.46410 + 14.6603i 0.409607 + 0.709459i
\(428\) 0.732051 + 0.196152i 0.0353850 + 0.00948139i
\(429\) −1.09808 + 4.09808i −0.0530156 + 0.197857i
\(430\) −4.00000 + 8.00000i −0.192897 + 0.385794i
\(431\) 29.7583 7.97372i 1.43341 0.384081i 0.543188 0.839611i \(-0.317217\pi\)
0.890220 + 0.455530i \(0.150550\pi\)
\(432\) 0 0
\(433\) −16.5167 16.5167i −0.793740 0.793740i 0.188360 0.982100i \(-0.439683\pi\)
−0.982100 + 0.188360i \(0.939683\pi\)
\(434\) 8.39230 0.402844
\(435\) 2.53590 + 42.2487i 0.121587 + 2.02567i
\(436\) 7.73205 + 7.73205i 0.370298 + 0.370298i
\(437\) −6.96410 + 1.86603i −0.333138 + 0.0892641i
\(438\) 27.4641i 1.31229i
\(439\) 4.63397 + 17.2942i 0.221168 + 0.825408i 0.983904 + 0.178699i \(0.0571888\pi\)
−0.762736 + 0.646710i \(0.776145\pi\)
\(440\) 12.0622 7.96410i 0.575042 0.379674i
\(441\) −7.50000 + 12.9904i −0.357143 + 0.618590i
\(442\) 0.633975 0.366025i 0.0301551 0.0174101i
\(443\) 17.8564 17.8564i 0.848383 0.848383i −0.141548 0.989931i \(-0.545208\pi\)
0.989931 + 0.141548i \(0.0452079\pi\)
\(444\) −5.02628 + 14.0263i −0.238537 + 0.665658i
\(445\) −8.63397 25.9019i −0.409290 1.22787i
\(446\) 3.52628 13.1603i 0.166974 0.623156i
\(447\) −50.7846 + 13.6077i −2.40203 + 0.643622i
\(448\) 0.366025 + 1.36603i 0.0172931 + 0.0645386i
\(449\) −26.2224 + 7.02628i −1.23751 + 0.331591i −0.817501 0.575928i \(-0.804641\pi\)
−0.420012 + 0.907518i \(0.637974\pi\)
\(450\) −12.0000 + 9.00000i −0.565685 + 0.424264i
\(451\) −8.19615 + 14.1962i −0.385942 + 0.668471i
\(452\) 4.19615i 0.197370i
\(453\) −2.07180 + 7.73205i −0.0973415 + 0.363283i
\(454\) 22.9808i 1.07854i
\(455\) −0.267949 0.803848i −0.0125617 0.0376850i
\(456\) 2.36603 + 4.09808i 0.110799 + 0.191910i
\(457\) −4.73205 2.73205i −0.221356 0.127800i 0.385222 0.922824i \(-0.374125\pi\)
−0.606578 + 0.795024i \(0.707458\pi\)
\(458\) 19.4641i 0.909498i
\(459\) 0 0
\(460\) −8.33013 + 0.500000i −0.388394 + 0.0233126i
\(461\) −11.0981 2.97372i −0.516889 0.138500i −0.00906176 0.999959i \(-0.502884\pi\)
−0.507827 + 0.861459i \(0.669551\pi\)
\(462\) −11.1962 + 19.3923i −0.520892 + 0.902212i
\(463\) 2.39230 4.14359i 0.111180 0.192569i −0.805066 0.593185i \(-0.797870\pi\)
0.916246 + 0.400616i \(0.131204\pi\)
\(464\) 7.46410 + 2.00000i 0.346512 + 0.0928477i
\(465\) 32.4449 1.94744i 1.50459 0.0903104i
\(466\) −9.83013 2.63397i −0.455372 0.122017i
\(467\) 27.6603i 1.27996i 0.768390 + 0.639982i \(0.221058\pi\)
−0.768390 + 0.639982i \(0.778942\pi\)
\(468\) −0.696152 0.401924i −0.0321797 0.0185789i
\(469\) −4.26795 7.39230i −0.197076 0.341345i
\(470\) −3.09808 9.29423i −0.142904 0.428711i
\(471\) 4.48334i 0.206581i
\(472\) 0.598076 2.23205i 0.0275287 0.102738i
\(473\) 25.8564i 1.18888i
\(474\) 16.3923 28.3923i 0.752923 1.30410i
\(475\) −1.36603 + 9.56218i −0.0626775 + 0.438743i
\(476\) 3.73205 1.00000i 0.171058 0.0458349i
\(477\) 10.6865 + 39.8827i 0.489303 + 1.82610i
\(478\) −5.56218 + 1.49038i −0.254408 + 0.0681684i
\(479\) 4.92820 18.3923i 0.225175 0.840366i −0.757159 0.653231i \(-0.773413\pi\)
0.982334 0.187135i \(-0.0599202\pi\)
\(480\) 1.73205 + 5.19615i 0.0790569 + 0.237171i
\(481\) −1.33975 0.928203i −0.0610872 0.0423224i
\(482\) −5.56218 + 5.56218i −0.253350 + 0.253350i
\(483\) 11.1962 6.46410i 0.509443 0.294127i
\(484\) 15.3923 26.6603i 0.699650 1.21183i
\(485\) −4.73205 + 3.12436i −0.214871 + 0.141870i
\(486\) 5.70577 + 21.2942i 0.258819 + 0.965926i
\(487\) 30.7846i 1.39498i −0.716593 0.697492i \(-0.754299\pi\)
0.716593 0.697492i \(-0.245701\pi\)
\(488\) 11.5622 3.09808i 0.523395 0.140243i
\(489\) −2.19615 2.19615i −0.0993134 0.0993134i
\(490\) 0.669873 + 11.1603i 0.0302618 + 0.504169i
\(491\) 23.3923 1.05568 0.527840 0.849344i \(-0.323002\pi\)
0.527840 + 0.849344i \(0.323002\pi\)
\(492\) −4.39230 4.39230i −0.198020 0.198020i
\(493\) 5.46410 20.3923i 0.246091 0.918423i
\(494\) −0.500000 + 0.133975i −0.0224961 + 0.00602780i
\(495\) −19.3923 + 38.7846i −0.871619 + 1.74324i
\(496\) 1.53590 5.73205i 0.0689639 0.257377i
\(497\) 8.19615 + 2.19615i 0.367648 + 0.0985109i
\(498\) −6.92820 12.0000i −0.310460 0.537733i
\(499\) −8.22243 30.6865i −0.368087 1.37372i −0.863188 0.504883i \(-0.831536\pi\)
0.495101 0.868835i \(-0.335131\pi\)
\(500\) −3.76795 + 10.5263i −0.168508 + 0.470750i
\(501\) 10.1436 37.8564i 0.453182 1.69130i
\(502\) −2.52628 + 9.42820i −0.112753 + 0.420801i
\(503\) −6.66025 11.5359i −0.296966 0.514360i 0.678474 0.734624i \(-0.262641\pi\)
−0.975440 + 0.220264i \(0.929308\pi\)
\(504\) −3.00000 3.00000i −0.133631 0.133631i
\(505\) −15.6603 + 10.3397i −0.696872 + 0.460113i
\(506\) −20.8923 + 12.0622i −0.928776 + 0.536229i
\(507\) −22.3923 + 22.3923i −0.994477 + 0.994477i
\(508\) 4.29423 4.29423i 0.190526 0.190526i
\(509\) −13.2679 22.9808i −0.588092 1.01860i −0.994482 0.104905i \(-0.966546\pi\)
0.406391 0.913699i \(-0.366787\pi\)
\(510\) 14.1962 4.73205i 0.628616 0.209539i
\(511\) −13.7321 7.92820i −0.607470 0.350723i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −7.90192 4.56218i −0.348539 0.201229i
\(515\) 6.33013 4.17949i 0.278939 0.184170i
\(516\) −9.46410 2.53590i −0.416634 0.111637i
\(517\) −20.0263 20.0263i −0.880755 0.880755i
\(518\) −5.56218 6.56218i −0.244388 0.288326i
\(519\) 58.7321i 2.57805i
\(520\) −0.598076 + 0.0358984i −0.0262274 + 0.00157425i
\(521\) 17.1340 + 9.89230i 0.750653 + 0.433390i 0.825930 0.563773i \(-0.190651\pi\)
−0.0752768 + 0.997163i \(0.523984\pi\)
\(522\) −22.3923 + 6.00000i −0.980085 + 0.262613i
\(523\) −20.9545 + 36.2942i −0.916276 + 1.58704i −0.111253 + 0.993792i \(0.535486\pi\)
−0.805023 + 0.593244i \(0.797847\pi\)
\(524\) −9.92820 9.92820i −0.433716 0.433716i
\(525\) −2.07180 17.1962i −0.0904206 0.750502i
\(526\) 6.83013 6.83013i 0.297808 0.297808i
\(527\) −15.6603 4.19615i −0.682171 0.182787i
\(528\) 11.1962 + 11.1962i 0.487250 + 0.487250i
\(529\) −9.07180 −0.394426
\(530\) 23.0263 + 20.4186i 1.00020 + 0.886927i
\(531\) 1.79423 + 6.69615i 0.0778629 + 0.290588i
\(532\) −2.73205 −0.118449
\(533\) 0.588457 0.339746i 0.0254889 0.0147160i
\(534\) 25.9019 14.9545i 1.12089 0.647144i
\(535\) −1.12436 + 1.26795i −0.0486101 + 0.0548182i
\(536\) −5.83013 + 1.56218i −0.251823 + 0.0674758i
\(537\) 1.31347 + 0.758330i 0.0566803 + 0.0327244i
\(538\) −11.0263 + 6.36603i −0.475377 + 0.274459i
\(539\) 16.1603 + 27.9904i 0.696071 + 1.20563i
\(540\) 0 0
\(541\) 14.9282 14.9282i 0.641814 0.641814i −0.309188 0.951001i \(-0.600057\pi\)
0.951001 + 0.309188i \(0.100057\pi\)
\(542\) 12.8564 22.2679i 0.552230 0.956490i
\(543\) −61.6410 16.5167i −2.64527 0.708798i
\(544\) 2.73205i 0.117136i
\(545\) −23.1962 + 7.73205i −0.993614 + 0.331205i
\(546\) 0.803848 0.464102i 0.0344015 0.0198617i
\(547\) −7.46410 −0.319142 −0.159571 0.987186i \(-0.551011\pi\)
−0.159571 + 0.987186i \(0.551011\pi\)
\(548\) 1.53590 + 5.73205i 0.0656103 + 0.244861i
\(549\) −25.3923 + 25.3923i −1.08372 + 1.08372i
\(550\) 3.86603 + 32.0885i 0.164848 + 1.36826i
\(551\) −7.46410 + 12.9282i −0.317981 + 0.550760i
\(552\) −2.36603 8.83013i −0.100705 0.375835i
\(553\) 9.46410 + 16.3923i 0.402455 + 0.697072i
\(554\) −21.4641 −0.911922
\(555\) −23.0263 24.0788i −0.977411 1.02209i
\(556\) 11.7321 0.497550
\(557\) 8.59808 + 14.8923i 0.364312 + 0.631007i 0.988666 0.150135i \(-0.0479708\pi\)
−0.624353 + 0.781142i \(0.714637\pi\)
\(558\) 4.60770 + 17.1962i 0.195059 + 0.727971i
\(559\) 0.535898 0.928203i 0.0226661 0.0392588i
\(560\) −3.09808 0.633975i −0.130918 0.0267903i
\(561\) 30.5885 30.5885i 1.29145 1.29145i
\(562\) 1.74167 + 6.50000i 0.0734679 + 0.274186i
\(563\) 8.87564 0.374064 0.187032 0.982354i \(-0.440113\pi\)
0.187032 + 0.982354i \(0.440113\pi\)
\(564\) 9.29423 5.36603i 0.391358 0.225950i
\(565\) −8.39230 4.19615i −0.353067 0.176533i
\(566\) 3.80385i 0.159888i
\(567\) −12.2942 3.29423i −0.516309 0.138345i
\(568\) 3.00000 5.19615i 0.125877 0.218026i
\(569\) 28.3468 28.3468i 1.18836 1.18836i 0.210838 0.977521i \(-0.432381\pi\)
0.977521 0.210838i \(-0.0676193\pi\)
\(570\) −10.5622 + 0.633975i −0.442401 + 0.0265543i
\(571\) −8.72243 15.1077i −0.365022 0.632237i 0.623757 0.781618i \(-0.285605\pi\)
−0.988780 + 0.149381i \(0.952272\pi\)
\(572\) −1.50000 + 0.866025i −0.0627182 + 0.0362103i
\(573\) −17.4115 10.0526i −0.727378 0.419952i
\(574\) 3.46410 0.928203i 0.144589 0.0387425i
\(575\) 7.33013 17.1603i 0.305687 0.715632i
\(576\) −2.59808 + 1.50000i −0.108253 + 0.0625000i
\(577\) 25.1769 14.5359i 1.04813 0.605137i 0.126004 0.992030i \(-0.459785\pi\)
0.922125 + 0.386892i \(0.126452\pi\)
\(578\) 9.53590 0.396641
\(579\) 7.48334 + 27.9282i 0.310997 + 1.16066i
\(580\) −11.4641 + 12.9282i −0.476021 + 0.536814i
\(581\) 8.00000 0.331896
\(582\) −4.39230 4.39230i −0.182067 0.182067i
\(583\) 85.9352 + 23.0263i 3.55907 + 0.953651i
\(584\) −7.92820 + 7.92820i −0.328071 + 0.328071i
\(585\) 1.50000 0.990381i 0.0620174 0.0409472i
\(586\) 6.63397 + 6.63397i 0.274047 + 0.274047i
\(587\) 18.8301 32.6147i 0.777203 1.34615i −0.156346 0.987702i \(-0.549971\pi\)
0.933548 0.358452i \(-0.116695\pi\)
\(588\) −11.8301 + 3.16987i −0.487866 + 0.130723i
\(589\) 9.92820 + 5.73205i 0.409084 + 0.236185i
\(590\) 3.86603 + 3.42820i 0.159162 + 0.141137i
\(591\) 19.1769i 0.788833i
\(592\) −5.50000 + 2.59808i −0.226049 + 0.106780i
\(593\) 10.7846 + 10.7846i 0.442871 + 0.442871i 0.892976 0.450105i \(-0.148613\pi\)
−0.450105 + 0.892976i \(0.648613\pi\)
\(594\) 0 0
\(595\) −1.73205 + 8.46410i −0.0710072 + 0.346994i
\(596\) −18.5885 10.7321i −0.761413 0.439602i
\(597\) −8.78461 5.07180i −0.359530 0.207575i
\(598\) 1.00000 0.0408930
\(599\) 24.5885 + 14.1962i 1.00466 + 0.580039i 0.909623 0.415435i \(-0.136371\pi\)
0.0950342 + 0.995474i \(0.469704\pi\)
\(600\) −12.1244 1.73205i −0.494975 0.0707107i
\(601\) −10.6962 18.5263i −0.436305 0.755703i 0.561096 0.827751i \(-0.310380\pi\)
−0.997401 + 0.0720480i \(0.977047\pi\)
\(602\) 4.00000 4.00000i 0.163028 0.163028i
\(603\) 12.8038 12.8038i 0.521413 0.521413i
\(604\) −2.83013 + 1.63397i −0.115156 + 0.0664855i
\(605\) 37.9282 + 57.4449i 1.54200 + 2.33547i
\(606\) −14.5359 14.5359i −0.590481 0.590481i
\(607\) −1.73205 3.00000i −0.0703018 0.121766i 0.828732 0.559646i \(-0.189063\pi\)
−0.899034 + 0.437880i \(0.855730\pi\)
\(608\) −0.500000 + 1.86603i −0.0202777 + 0.0756773i
\(609\) 6.92820 25.8564i 0.280745 1.04775i
\(610\) −5.36603 + 26.2224i −0.217264 + 1.06172i
\(611\) 0.303848 + 1.13397i 0.0122924 + 0.0458757i
\(612\) 4.09808 + 7.09808i 0.165655 + 0.286923i
\(613\) −3.13397 0.839746i −0.126580 0.0339170i 0.194973 0.980809i \(-0.437538\pi\)
−0.321553 + 0.946892i \(0.604205\pi\)
\(614\) −0.633975 + 2.36603i −0.0255851 + 0.0954850i
\(615\) 13.1769 4.39230i 0.531344 0.177115i
\(616\) −8.83013 + 2.36603i −0.355776 + 0.0953299i
\(617\) −9.46410 + 35.3205i −0.381010 + 1.42195i 0.463350 + 0.886175i \(0.346647\pi\)
−0.844361 + 0.535775i \(0.820020\pi\)
\(618\) 5.87564 + 5.87564i 0.236353 + 0.236353i
\(619\) −6.67949 −0.268471 −0.134236 0.990949i \(-0.542858\pi\)
−0.134236 + 0.990949i \(0.542858\pi\)
\(620\) 9.92820 + 8.80385i 0.398726 + 0.353571i
\(621\) 0 0
\(622\) −5.09808 + 1.36603i −0.204414 + 0.0547726i
\(623\) 17.2679i 0.691826i
\(624\) −0.169873 0.633975i −0.00680036 0.0253793i
\(625\) −17.2846 18.0622i −0.691384 0.722487i
\(626\) 13.9282 24.1244i 0.556683 0.964203i
\(627\) −26.4904 + 15.2942i −1.05792 + 0.610793i
\(628\) −1.29423 + 1.29423i −0.0516453 + 0.0516453i
\(629\) 7.09808 + 15.0263i 0.283019 + 0.599137i
\(630\) 9.00000 3.00000i 0.358569 0.119523i
\(631\) 7.16987 26.7583i 0.285428 1.06523i −0.663098 0.748533i \(-0.730759\pi\)
0.948526 0.316700i \(-0.102575\pi\)
\(632\) 12.9282 3.46410i 0.514256 0.137795i
\(633\) 17.0263 + 63.5429i 0.676734 + 2.52561i
\(634\) 12.9641 3.47372i 0.514870 0.137959i
\(635\) 4.29423 + 12.8827i 0.170411 + 0.511234i
\(636\) −16.8564 + 29.1962i −0.668400 + 1.15770i
\(637\) 1.33975i 0.0530827i
\(638\) −12.9282 + 48.2487i −0.511832 + 1.91018i
\(639\) 18.0000i 0.712069i
\(640\) −1.00000 + 2.00000i −0.0395285 + 0.0790569i
\(641\) −1.16025 2.00962i −0.0458273 0.0793752i 0.842202 0.539162i \(-0.181259\pi\)
−0.888029 + 0.459787i \(0.847926\pi\)
\(642\) −1.60770 0.928203i −0.0634507 0.0366333i
\(643\) 2.24871i 0.0886805i 0.999016 + 0.0443403i \(0.0141186\pi\)
−0.999016 + 0.0443403i \(0.985881\pi\)
\(644\) 5.09808 + 1.36603i 0.200892 + 0.0538289i
\(645\) 14.5359 16.3923i 0.572350 0.645446i
\(646\) 5.09808 + 1.36603i 0.200581 + 0.0537456i
\(647\) −22.0885 + 38.2583i −0.868387 + 1.50409i −0.00474239 + 0.999989i \(0.501510\pi\)
−0.863644 + 0.504101i \(0.831824\pi\)
\(648\) −4.50000 + 7.79423i −0.176777 + 0.306186i
\(649\) 14.4282 + 3.86603i 0.566357 + 0.151755i
\(650\) 0.526279 1.23205i 0.0206424 0.0483250i
\(651\) −19.8564 5.32051i −0.778234 0.208527i
\(652\) 1.26795i 0.0496567i
\(653\) −31.4545 18.1603i −1.23091 0.710666i −0.263690 0.964608i \(-0.584939\pi\)
−0.967219 + 0.253942i \(0.918273\pi\)
\(654\) −13.3923 23.1962i −0.523681 0.907041i
\(655\) 29.7846 9.92820i 1.16378 0.387927i
\(656\) 2.53590i 0.0990102i
\(657\) 8.70577 32.4904i 0.339644 1.26757i
\(658\) 6.19615i 0.241551i
\(659\) 9.79423 16.9641i 0.381529 0.660828i −0.609752 0.792592i \(-0.708731\pi\)
0.991281 + 0.131765i \(0.0420643\pi\)
\(660\) −33.5885 + 11.1962i −1.30743 + 0.435810i
\(661\) −6.29423 + 1.68653i −0.244817 + 0.0655985i −0.379141 0.925339i \(-0.623780\pi\)
0.134324 + 0.990937i \(0.457114\pi\)
\(662\) 1.96410 + 7.33013i 0.0763370 + 0.284893i
\(663\) −1.73205 + 0.464102i −0.0672673 + 0.0180242i
\(664\) 1.46410 5.46410i 0.0568182 0.212048i
\(665\) 2.73205 5.46410i 0.105944 0.211889i
\(666\) 10.3923 15.0000i 0.402694 0.581238i
\(667\) 20.3923 20.3923i 0.789593 0.789593i
\(668\) 13.8564 8.00000i 0.536120 0.309529i
\(669\) −16.6865 + 28.9019i −0.645139 + 1.11741i
\(670\) 2.70577 13.2224i 0.104533 0.510827i
\(671\) 20.0263 + 74.7391i 0.773106 + 2.88527i
\(672\) 3.46410i 0.133631i
\(673\) −21.9282 + 5.87564i −0.845270 + 0.226489i −0.655364 0.755313i \(-0.727485\pi\)
−0.189906 + 0.981802i \(0.560818\pi\)
\(674\) −25.8564 25.8564i −0.995952 0.995952i
\(675\) 0 0
\(676\) −12.9282 −0.497239
\(677\) 26.5622 + 26.5622i 1.02087 + 1.02087i 0.999778 + 0.0210898i \(0.00671360\pi\)
0.0210898 + 0.999778i \(0.493286\pi\)
\(678\) 2.66025 9.92820i 0.102166 0.381290i
\(679\) 3.46410 0.928203i 0.132940 0.0356212i
\(680\) 5.46410 + 2.73205i 0.209539 + 0.104769i
\(681\) 14.5692 54.3731i 0.558294 2.08358i
\(682\) 37.0526 + 9.92820i 1.41882 + 0.380171i
\(683\) −11.1962 19.3923i −0.428409 0.742026i 0.568323 0.822805i \(-0.307592\pi\)
−0.996732 + 0.0807795i \(0.974259\pi\)
\(684\) −1.50000 5.59808i −0.0573539 0.214048i
\(685\) −13.0000 2.66025i −0.496704 0.101643i
\(686\) 4.39230 16.3923i 0.167699 0.625861i
\(687\) 12.3397 46.0526i 0.470791 1.75701i
\(688\) −2.00000 3.46410i −0.0762493 0.132068i
\(689\) −2.60770 2.60770i −0.0993453 0.0993453i
\(690\) 20.0263 + 4.09808i 0.762387 + 0.156011i
\(691\) −24.3397 + 14.0526i −0.925928 + 0.534585i −0.885521 0.464599i \(-0.846199\pi\)
−0.0404063 + 0.999183i \(0.512865\pi\)
\(692\) −16.9545 + 16.9545i −0.644513 + 0.644513i
\(693\) 19.3923 19.3923i 0.736653 0.736653i
\(694\) −7.56218 13.0981i −0.287056 0.497196i
\(695\) −11.7321 + 23.4641i −0.445022 + 0.890044i
\(696\) −16.3923 9.46410i −0.621349 0.358736i
\(697\) −6.92820 −0.262424
\(698\) −2.07180 1.19615i −0.0784187 0.0452750i
\(699\) 21.5885 + 12.4641i 0.816550 + 0.471436i
\(700\) 4.36603 5.56218i 0.165020 0.210231i
\(701\) 32.6865 + 8.75833i 1.23455 + 0.330798i 0.816351 0.577556i \(-0.195994\pi\)
0.418202 + 0.908354i \(0.362660\pi\)
\(702\) 0 0
\(703\) −2.09808 11.5622i −0.0791304 0.436076i
\(704\) 6.46410i 0.243625i
\(705\) 1.43782 + 23.9545i 0.0541515 + 0.902178i
\(706\) 14.4904 + 8.36603i 0.545353 + 0.314860i
\(707\) 11.4641 3.07180i 0.431152 0.115527i
\(708\) −2.83013 + 4.90192i −0.106363 + 0.184226i
\(709\) −9.80385 9.80385i −0.368191 0.368191i 0.498626 0.866817i \(-0.333838\pi\)
−0.866817 + 0.498626i \(0.833838\pi\)
\(710\) 7.39230 + 11.1962i 0.277428 + 0.420184i
\(711\) −28.3923 + 28.3923i −1.06479 + 1.06479i
\(712\) 11.7942 + 3.16025i 0.442007 + 0.118436i
\(713\) −15.6603 15.6603i −0.586481 0.586481i
\(714\) −9.46410 −0.354185
\(715\) −0.232051 3.86603i −0.00867821 0.144581i
\(716\) 0.160254 + 0.598076i 0.00598897 + 0.0223512i
\(717\) 14.1051 0.526765
\(718\) 18.2942 10.5622i 0.682735 0.394177i
\(719\) 13.7321 7.92820i 0.512119 0.295672i −0.221585 0.975141i \(-0.571123\pi\)
0.733704 + 0.679469i \(0.237790\pi\)
\(720\) −0.401924 6.69615i −0.0149788 0.249551i
\(721\) −4.63397 + 1.24167i −0.172578 + 0.0462422i
\(722\) 13.2224 + 7.63397i 0.492088 + 0.284107i
\(723\) 16.6865 9.63397i 0.620579 0.358291i
\(724\) −13.0263 22.5622i −0.484118 0.838517i
\(725\) −14.3923 35.8564i −0.534517 1.33167i
\(726\) −53.3205 + 53.3205i −1.97891 + 1.97891i
\(727\) −6.79423 + 11.7679i −0.251984 + 0.436449i −0.964072 0.265641i \(-0.914416\pi\)
0.712088 + 0.702090i \(0.247750\pi\)
\(728\) 0.366025 + 0.0980762i 0.0135658 + 0.00363495i
\(729\) 27.0000i 1.00000i
\(730\) −7.92820 23.7846i −0.293436 0.880308i
\(731\) −9.46410 + 5.46410i −0.350042 + 0.202097i
\(732\) −29.3205 −1.08372
\(733\) −2.30385 8.59808i −0.0850946 0.317577i 0.910238 0.414087i \(-0.135899\pi\)
−0.995332 + 0.0965093i \(0.969232\pi\)
\(734\) 22.5622 22.5622i 0.832785 0.832785i
\(735\) 5.49038 26.8301i 0.202516 0.989644i
\(736\) 1.86603 3.23205i 0.0687826 0.119135i
\(737\) −10.0981 37.6865i −0.371967 1.38820i
\(738\) 3.80385 + 6.58846i 0.140022 + 0.242524i
\(739\) 44.2679 1.62842 0.814211 0.580568i \(-0.197170\pi\)
0.814211 + 0.580568i \(0.197170\pi\)
\(740\) 0.303848 13.5981i 0.0111697 0.499875i
\(741\) 1.26795 0.0465793
\(742\) −9.73205 16.8564i −0.357275 0.618818i
\(743\) −7.57180 28.2583i −0.277782 1.03670i −0.953954 0.299953i \(-0.903029\pi\)
0.676172 0.736744i \(-0.263638\pi\)
\(744\) −7.26795 + 12.5885i −0.266456 + 0.461515i
\(745\) 40.0526 26.4449i 1.46741 0.968865i
\(746\) −14.2942 + 14.2942i −0.523349 + 0.523349i
\(747\) 4.39230 + 16.3923i 0.160706 + 0.599763i
\(748\) 17.6603 0.645723
\(749\) 0.928203 0.535898i 0.0339158 0.0195813i
\(750\) 15.5885 22.5167i 0.569210 0.822192i
\(751\) 17.1769i 0.626795i −0.949622 0.313397i \(-0.898533\pi\)
0.949622 0.313397i \(-0.101467\pi\)
\(752\) 4.23205 + 1.13397i 0.154327 + 0.0413518i
\(753\) 11.9545 20.7058i 0.435646 0.754560i
\(754\) 1.46410 1.46410i 0.0533194 0.0533194i
\(755\) −0.437822 7.29423i −0.0159340 0.265464i
\(756\) 0 0
\(757\) −29.0429 + 16.7679i −1.05558 + 0.609441i −0.924207 0.381891i \(-0.875273\pi\)
−0.131376 + 0.991333i \(0.541940\pi\)
\(758\) −33.1244 19.1244i −1.20313 0.694628i
\(759\) 57.0788 15.2942i 2.07183 0.555145i
\(760\) −3.23205 2.86603i −0.117239 0.103962i
\(761\) 7.50000 4.33013i 0.271875 0.156967i −0.357865 0.933774i \(-0.616495\pi\)
0.629739 + 0.776807i \(0.283162\pi\)
\(762\) −12.8827 + 7.43782i −0.466690 + 0.269444i
\(763\) 15.4641 0.559838
\(764\) −2.12436 7.92820i −0.0768565 0.286832i
\(765\) −18.2942 + 1.09808i −0.661429 + 0.0397010i
\(766\) −3.33975 −0.120670
\(767\) −0.437822 0.437822i −0.0158088 0.0158088i
\(768\) −2.36603 0.633975i −0.0853766 0.0228766i
\(769\) −27.5885 + 27.5885i −0.994865 + 0.994865i −0.999987 0.00512167i \(-0.998370\pi\)
0.00512167 + 0.999987i \(0.498370\pi\)
\(770\) 4.09808 20.0263i 0.147684 0.721697i