Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [370,2,Mod(71,370)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(370, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("370.71");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.o (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.95446487479\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
71.1 | 0.766044 | + | 0.642788i | −1.72501 | + | 1.44746i | 0.173648 | + | 0.984808i | 0.939693 | + | 0.342020i | −2.25184 | −2.62554 | − | 0.955619i | −0.500000 | + | 0.866025i | 0.359591 | − | 2.03934i | 0.500000 | + | 0.866025i | ||
71.2 | 0.766044 | + | 0.642788i | −0.599525 | + | 0.503061i | 0.173648 | + | 0.984808i | 0.939693 | + | 0.342020i | −0.782624 | 2.34566 | + | 0.853751i | −0.500000 | + | 0.866025i | −0.414585 | + | 2.35123i | 0.500000 | + | 0.866025i | ||
71.3 | 0.766044 | + | 0.642788i | 0.479302 | − | 0.402182i | 0.173648 | + | 0.984808i | 0.939693 | + | 0.342020i | 0.625684 | 0.117038 | + | 0.0425983i | −0.500000 | + | 0.866025i | −0.452965 | + | 2.56889i | 0.500000 | + | 0.866025i | ||
71.4 | 0.766044 | + | 0.642788i | 2.61128 | − | 2.19112i | 0.173648 | + | 0.984808i | 0.939693 | + | 0.342020i | 3.40878 | −2.86925 | − | 1.04432i | −0.500000 | + | 0.866025i | 1.49681 | − | 8.48886i | 0.500000 | + | 0.866025i | ||
81.1 | −0.939693 | + | 0.342020i | −3.13308 | − | 1.14035i | 0.766044 | − | 0.642788i | −0.173648 | − | 0.984808i | 3.33416 | 0.599161 | + | 3.39801i | −0.500000 | + | 0.866025i | 6.21768 | + | 5.21726i | 0.500000 | + | 0.866025i | ||
81.2 | −0.939693 | + | 0.342020i | −0.436963 | − | 0.159041i | 0.766044 | − | 0.642788i | −0.173648 | − | 0.984808i | 0.465006 | 0.593088 | + | 3.36357i | −0.500000 | + | 0.866025i | −2.13249 | − | 1.78937i | 0.500000 | + | 0.866025i | ||
81.3 | −0.939693 | + | 0.342020i | −0.142661 | − | 0.0519243i | 0.766044 | − | 0.642788i | −0.173648 | − | 0.984808i | 0.151817 | −0.282147 | − | 1.60013i | −0.500000 | + | 0.866025i | −2.28048 | − | 1.91355i | 0.500000 | + | 0.866025i | ||
81.4 | −0.939693 | + | 0.342020i | 2.77301 | + | 1.00929i | 0.766044 | − | 0.642788i | −0.173648 | − | 0.984808i | −2.95098 | −0.530717 | − | 3.00985i | −0.500000 | + | 0.866025i | 4.37280 | + | 3.66922i | 0.500000 | + | 0.866025i | ||
181.1 | 0.173648 | − | 0.984808i | −0.471123 | − | 2.67187i | −0.939693 | − | 0.342020i | −0.766044 | + | 0.642788i | −2.71309 | −2.35481 | + | 1.97592i | −0.500000 | + | 0.866025i | −4.09785 | + | 1.49149i | 0.500000 | + | 0.866025i | ||
181.2 | 0.173648 | − | 0.984808i | 0.0797653 | + | 0.452371i | −0.939693 | − | 0.342020i | −0.766044 | + | 0.642788i | 0.459350 | −0.742184 | + | 0.622767i | −0.500000 | + | 0.866025i | 2.62080 | − | 0.953893i | 0.500000 | + | 0.866025i | ||
181.3 | 0.173648 | − | 0.984808i | 0.207212 | + | 1.17516i | −0.939693 | − | 0.342020i | −0.766044 | + | 0.642788i | 1.19329 | −2.54999 | + | 2.13970i | −0.500000 | + | 0.866025i | 1.48102 | − | 0.539047i | 0.500000 | + | 0.866025i | ||
181.4 | 0.173648 | − | 0.984808i | 0.357794 | + | 2.02915i | −0.939693 | − | 0.342020i | −0.766044 | + | 0.642788i | 2.06045 | 3.79969 | − | 3.18832i | −0.500000 | + | 0.866025i | −1.17035 | + | 0.425971i | 0.500000 | + | 0.866025i | ||
201.1 | −0.939693 | − | 0.342020i | −3.13308 | + | 1.14035i | 0.766044 | + | 0.642788i | −0.173648 | + | 0.984808i | 3.33416 | 0.599161 | − | 3.39801i | −0.500000 | − | 0.866025i | 6.21768 | − | 5.21726i | 0.500000 | − | 0.866025i | ||
201.2 | −0.939693 | − | 0.342020i | −0.436963 | + | 0.159041i | 0.766044 | + | 0.642788i | −0.173648 | + | 0.984808i | 0.465006 | 0.593088 | − | 3.36357i | −0.500000 | − | 0.866025i | −2.13249 | + | 1.78937i | 0.500000 | − | 0.866025i | ||
201.3 | −0.939693 | − | 0.342020i | −0.142661 | + | 0.0519243i | 0.766044 | + | 0.642788i | −0.173648 | + | 0.984808i | 0.151817 | −0.282147 | + | 1.60013i | −0.500000 | − | 0.866025i | −2.28048 | + | 1.91355i | 0.500000 | − | 0.866025i | ||
201.4 | −0.939693 | − | 0.342020i | 2.77301 | − | 1.00929i | 0.766044 | + | 0.642788i | −0.173648 | + | 0.984808i | −2.95098 | −0.530717 | + | 3.00985i | −0.500000 | − | 0.866025i | 4.37280 | − | 3.66922i | 0.500000 | − | 0.866025i | ||
231.1 | 0.173648 | + | 0.984808i | −0.471123 | + | 2.67187i | −0.939693 | + | 0.342020i | −0.766044 | − | 0.642788i | −2.71309 | −2.35481 | − | 1.97592i | −0.500000 | − | 0.866025i | −4.09785 | − | 1.49149i | 0.500000 | − | 0.866025i | ||
231.2 | 0.173648 | + | 0.984808i | 0.0797653 | − | 0.452371i | −0.939693 | + | 0.342020i | −0.766044 | − | 0.642788i | 0.459350 | −0.742184 | − | 0.622767i | −0.500000 | − | 0.866025i | 2.62080 | + | 0.953893i | 0.500000 | − | 0.866025i | ||
231.3 | 0.173648 | + | 0.984808i | 0.207212 | − | 1.17516i | −0.939693 | + | 0.342020i | −0.766044 | − | 0.642788i | 1.19329 | −2.54999 | − | 2.13970i | −0.500000 | − | 0.866025i | 1.48102 | + | 0.539047i | 0.500000 | − | 0.866025i | ||
231.4 | 0.173648 | + | 0.984808i | 0.357794 | − | 2.02915i | −0.939693 | + | 0.342020i | −0.766044 | − | 0.642788i | 2.06045 | 3.79969 | + | 3.18832i | −0.500000 | − | 0.866025i | −1.17035 | − | 0.425971i | 0.500000 | − | 0.866025i | ||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.f | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 370.2.o.d | ✓ | 24 |
37.f | even | 9 | 1 | inner | 370.2.o.d | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
370.2.o.d | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
370.2.o.d | ✓ | 24 | 37.f | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} - 6 T_{3}^{22} + 10 T_{3}^{21} + 48 T_{3}^{20} + 111 T_{3}^{19} + 536 T_{3}^{18} - 1620 T_{3}^{17} + \cdots + 64 \) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\).