Properties

Label 370.2.n.e
Level $370$
Weight $2$
Character orbit 370.n
Analytic conductor $2.954$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.303595776.1
Defining polynomial: \(x^{8} + 5 x^{6} + 16 x^{4} + 45 x^{2} + 81\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{3} q^{2} -2 \beta_{5} q^{3} -\beta_{4} q^{4} + ( \beta_{1} + \beta_{5} ) q^{5} -2 q^{6} + ( -2 \beta_{2} + \beta_{4} - \beta_{5} ) q^{7} + ( -\beta_{3} - \beta_{5} ) q^{8} + ( 1 + \beta_{4} ) q^{9} +O(q^{10})\) \( q -\beta_{3} q^{2} -2 \beta_{5} q^{3} -\beta_{4} q^{4} + ( \beta_{1} + \beta_{5} ) q^{5} -2 q^{6} + ( -2 \beta_{2} + \beta_{4} - \beta_{5} ) q^{7} + ( -\beta_{3} - \beta_{5} ) q^{8} + ( 1 + \beta_{4} ) q^{9} + ( 2 + \beta_{6} ) q^{10} + ( 1 + 2 \beta_{1} - \beta_{3} - \beta_{5} - 2 \beta_{7} ) q^{11} + 2 \beta_{3} q^{12} -4 \beta_{5} q^{13} + ( -1 + 2 \beta_{1} - \beta_{3} - \beta_{5} - 2 \beta_{7} ) q^{14} + ( -4 + 2 \beta_{2} - 4 \beta_{4} - 2 \beta_{6} ) q^{15} + ( -1 - \beta_{4} ) q^{16} + ( -1 + 2 \beta_{2} + 2 \beta_{3} - \beta_{4} - 2 \beta_{6} ) q^{17} + \beta_{5} q^{18} + ( 2 \beta_{1} - \beta_{4} - \beta_{5} ) q^{19} + ( -\beta_{3} + \beta_{7} ) q^{20} + ( 2 + 2 \beta_{3} + 2 \beta_{4} + 4 \beta_{7} ) q^{21} + ( 1 - 2 \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{6} ) q^{22} + ( -6 \beta_{3} - 6 \beta_{5} ) q^{23} + 2 \beta_{4} q^{24} + ( 1 - 3 \beta_{2} + \beta_{4} + 3 \beta_{6} ) q^{25} -4 q^{26} + ( 4 \beta_{3} + 4 \beta_{5} ) q^{27} + ( 1 - 2 \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{6} ) q^{28} + ( -2 \beta_{1} + \beta_{3} + \beta_{5} + 2 \beta_{7} ) q^{29} + ( -2 \beta_{1} - 2 \beta_{5} ) q^{30} + ( -1 + 2 \beta_{1} - \beta_{3} - \beta_{5} - 2 \beta_{7} ) q^{31} -\beta_{5} q^{32} + ( 4 \beta_{2} - 2 \beta_{4} - 2 \beta_{5} ) q^{33} + ( -2 \beta_{1} + 2 \beta_{4} + \beta_{5} ) q^{34} + ( -2 + \beta_{2} - 7 \beta_{3} - 2 \beta_{4} - \beta_{6} - 3 \beta_{7} ) q^{35} + q^{36} + ( 4 \beta_{3} + 7 \beta_{5} ) q^{37} + ( 1 - \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{38} + ( 8 + 8 \beta_{4} ) q^{39} + ( \beta_{2} - 2 \beta_{4} ) q^{40} + ( -4 \beta_{1} + \beta_{4} + 2 \beta_{5} ) q^{41} + ( 4 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} ) q^{42} + ( -3 - \beta_{3} - \beta_{5} - 6 \beta_{6} ) q^{43} + ( 2 \beta_{1} - \beta_{4} - \beta_{5} ) q^{44} + ( \beta_{1} + \beta_{3} + \beta_{5} - \beta_{7} ) q^{45} + ( -6 - 6 \beta_{4} ) q^{46} + ( 1 - \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{47} + ( 2 \beta_{3} + 2 \beta_{5} ) q^{48} + ( 5 + 2 \beta_{3} + 5 \beta_{4} + 4 \beta_{7} ) q^{49} + ( 3 \beta_{1} - 2 \beta_{5} ) q^{50} + ( 4 + 4 \beta_{1} - 2 \beta_{3} - 2 \beta_{5} - 4 \beta_{7} ) q^{51} + 4 \beta_{3} q^{52} + ( 2 - 4 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 4 \beta_{6} ) q^{53} + ( 4 + 4 \beta_{4} ) q^{54} + ( \beta_{1} - 3 \beta_{2} - 4 \beta_{4} + \beta_{5} ) q^{55} + ( 2 \beta_{1} + \beta_{4} - \beta_{5} ) q^{56} + ( -2 + 4 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - 4 \beta_{6} ) q^{57} + ( -1 + 2 \beta_{2} - \beta_{4} - 2 \beta_{6} ) q^{58} + ( 6 - 2 \beta_{3} + 6 \beta_{4} - 4 \beta_{7} ) q^{59} + ( -4 - 2 \beta_{6} ) q^{60} + ( -6 \beta_{1} + 2 \beta_{4} + 3 \beta_{5} ) q^{61} + ( 1 - 2 \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{6} ) q^{62} + ( -1 - \beta_{3} - \beta_{5} - 2 \beta_{6} ) q^{63} - q^{64} + ( -8 + 4 \beta_{2} - 8 \beta_{4} - 4 \beta_{6} ) q^{65} + ( -2 - 4 \beta_{1} + 2 \beta_{3} + 2 \beta_{5} + 4 \beta_{7} ) q^{66} + ( 2 \beta_{2} - \beta_{4} + 5 \beta_{5} ) q^{67} + ( -1 + 2 \beta_{3} + 2 \beta_{5} - 2 \beta_{6} ) q^{68} + 12 \beta_{4} q^{69} + ( -\beta_{1} - 3 \beta_{2} - 4 \beta_{4} - \beta_{5} ) q^{70} + ( -2 \beta_{1} - 11 \beta_{4} + \beta_{5} ) q^{71} -\beta_{3} q^{72} + ( -2 - 4 \beta_{3} - 4 \beta_{5} - 4 \beta_{6} ) q^{73} + ( 7 + 4 \beta_{4} ) q^{74} + ( -6 \beta_{1} + 4 \beta_{3} + 4 \beta_{5} + 6 \beta_{7} ) q^{75} + ( -1 + \beta_{3} - \beta_{4} + 2 \beta_{7} ) q^{76} + 10 \beta_{5} q^{77} + 8 \beta_{5} q^{78} + ( -6 \beta_{1} + \beta_{4} + 3 \beta_{5} ) q^{79} + ( -\beta_{1} - \beta_{3} - \beta_{5} + \beta_{7} ) q^{80} -11 \beta_{4} q^{81} + ( -2 + \beta_{3} + \beta_{5} - 4 \beta_{6} ) q^{82} + ( 2 - 4 \beta_{2} + 2 \beta_{4} + 4 \beta_{6} ) q^{83} + ( 2 - 4 \beta_{1} + 2 \beta_{3} + 2 \beta_{5} + 4 \beta_{7} ) q^{84} + ( -4 - 3 \beta_{1} + 7 \beta_{3} + 7 \beta_{5} - 2 \beta_{6} + 3 \beta_{7} ) q^{85} + ( -1 - 3 \beta_{3} - \beta_{4} - 6 \beta_{7} ) q^{86} + ( -4 \beta_{2} + 2 \beta_{4} ) q^{87} + ( 1 - \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{88} + ( 5 - 2 \beta_{3} + 5 \beta_{4} - 4 \beta_{7} ) q^{89} + ( 2 - \beta_{2} + 2 \beta_{4} + \beta_{6} ) q^{90} + ( 4 + 4 \beta_{3} + 4 \beta_{4} + 8 \beta_{7} ) q^{91} -6 \beta_{5} q^{92} + ( 4 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} ) q^{93} + ( -1 + \beta_{3} - \beta_{4} + 2 \beta_{7} ) q^{94} + ( -4 - 3 \beta_{2} - \beta_{3} - 4 \beta_{4} + 3 \beta_{6} + \beta_{7} ) q^{95} + ( 2 + 2 \beta_{4} ) q^{96} + ( 3 + 6 \beta_{6} ) q^{97} + ( 4 \beta_{2} - 2 \beta_{4} + 5 \beta_{5} ) q^{98} + ( 1 - \beta_{3} + \beta_{4} - 2 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{4} - 16q^{6} + 4q^{9} + O(q^{10}) \) \( 8q + 4q^{4} - 16q^{6} + 4q^{9} + 12q^{10} + 8q^{11} - 8q^{14} - 12q^{15} - 4q^{16} + 4q^{19} + 8q^{21} - 8q^{24} - 2q^{25} - 32q^{26} - 8q^{31} - 8q^{34} - 6q^{35} + 8q^{36} + 32q^{39} + 6q^{40} - 4q^{41} + 4q^{44} - 24q^{46} + 20q^{49} + 32q^{51} + 16q^{54} + 22q^{55} - 4q^{56} + 24q^{59} - 24q^{60} - 8q^{61} - 8q^{64} - 24q^{65} - 16q^{66} - 48q^{69} + 22q^{70} + 44q^{71} + 40q^{74} - 4q^{76} - 4q^{79} + 44q^{81} + 16q^{84} - 24q^{85} - 4q^{86} + 20q^{89} + 6q^{90} + 16q^{91} - 4q^{94} - 22q^{95} + 8q^{96} + 4q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 5 x^{6} + 16 x^{4} + 45 x^{2} + 81\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{6} + 32 \nu^{4} + 16 \nu^{2} + 45 \)\()/144\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{7} + 32 \nu^{5} + 16 \nu^{3} + 45 \nu \)\()/432\)
\(\beta_{4}\)\(=\)\((\)\( -5 \nu^{6} - 16 \nu^{4} - 80 \nu^{2} - 225 \)\()/144\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{7} + 13 \nu \)\()/48\)
\(\beta_{6}\)\(=\)\((\)\( -\nu^{6} - 13 \)\()/16\)
\(\beta_{7}\)\(=\)\((\)\( 5 \nu^{7} + 16 \nu^{5} + 80 \nu^{3} + 225 \nu \)\()/144\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{6} - 2 \beta_{4} - \beta_{2} - 2\)
\(\nu^{3}\)\(=\)\(2 \beta_{7} - 3 \beta_{5} - 3 \beta_{3} - 2 \beta_{1}\)
\(\nu^{4}\)\(=\)\(\beta_{4} + 5 \beta_{2}\)
\(\nu^{5}\)\(=\)\(-\beta_{7} + 15 \beta_{3}\)
\(\nu^{6}\)\(=\)\(-16 \beta_{6} - 13\)
\(\nu^{7}\)\(=\)\(48 \beta_{5} - 13 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(\beta_{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
269.1
−1.26217 1.18614i
0.396143 + 1.68614i
−0.396143 1.68614i
1.26217 + 1.18614i
−1.26217 + 1.18614i
0.396143 1.68614i
−0.396143 + 1.68614i
1.26217 1.18614i
−0.866025 0.500000i 1.73205 1.00000i 0.500000 + 0.866025i −2.12819 0.686141i −2.00000 3.73831 2.15831i 1.00000i 0.500000 0.866025i 1.50000 + 1.65831i
269.2 −0.866025 0.500000i 1.73205 1.00000i 0.500000 + 0.866025i −0.469882 + 2.18614i −2.00000 −2.00626 + 1.15831i 1.00000i 0.500000 0.866025i 1.50000 1.65831i
269.3 0.866025 + 0.500000i −1.73205 + 1.00000i 0.500000 + 0.866025i 0.469882 2.18614i −2.00000 −3.73831 + 2.15831i 1.00000i 0.500000 0.866025i 1.50000 1.65831i
269.4 0.866025 + 0.500000i −1.73205 + 1.00000i 0.500000 + 0.866025i 2.12819 + 0.686141i −2.00000 2.00626 1.15831i 1.00000i 0.500000 0.866025i 1.50000 + 1.65831i
359.1 −0.866025 + 0.500000i 1.73205 + 1.00000i 0.500000 0.866025i −2.12819 + 0.686141i −2.00000 3.73831 + 2.15831i 1.00000i 0.500000 + 0.866025i 1.50000 1.65831i
359.2 −0.866025 + 0.500000i 1.73205 + 1.00000i 0.500000 0.866025i −0.469882 2.18614i −2.00000 −2.00626 1.15831i 1.00000i 0.500000 + 0.866025i 1.50000 + 1.65831i
359.3 0.866025 0.500000i −1.73205 1.00000i 0.500000 0.866025i 0.469882 + 2.18614i −2.00000 −3.73831 2.15831i 1.00000i 0.500000 + 0.866025i 1.50000 + 1.65831i
359.4 0.866025 0.500000i −1.73205 1.00000i 0.500000 0.866025i 2.12819 0.686141i −2.00000 2.00626 + 1.15831i 1.00000i 0.500000 + 0.866025i 1.50000 1.65831i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 359.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
37.c even 3 1 inner
185.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.2.n.e 8
5.b even 2 1 inner 370.2.n.e 8
37.c even 3 1 inner 370.2.n.e 8
185.n even 6 1 inner 370.2.n.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.n.e 8 1.a even 1 1 trivial
370.2.n.e 8 5.b even 2 1 inner
370.2.n.e 8 37.c even 3 1 inner
370.2.n.e 8 185.n even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\):

\( T_{3}^{4} - 4 T_{3}^{2} + 16 \)
\( T_{7}^{8} - 24 T_{7}^{6} + 476 T_{7}^{4} - 2400 T_{7}^{2} + 10000 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
$3$ \( ( 16 - 4 T^{2} + T^{4} )^{2} \)
$5$ \( 625 + 25 T^{2} - 24 T^{4} + T^{6} + T^{8} \)
$7$ \( 10000 - 2400 T^{2} + 476 T^{4} - 24 T^{6} + T^{8} \)
$11$ \( ( -10 - 2 T + T^{2} )^{4} \)
$13$ \( ( 256 - 16 T^{2} + T^{4} )^{2} \)
$17$ \( 2401 - 1470 T^{2} + 851 T^{4} - 30 T^{6} + T^{8} \)
$19$ \( ( 100 + 20 T + 14 T^{2} - 2 T^{3} + T^{4} )^{2} \)
$23$ \( ( 36 + T^{2} )^{4} \)
$29$ \( ( -11 + T^{2} )^{4} \)
$31$ \( ( -10 + 2 T + T^{2} )^{4} \)
$37$ \( ( 1369 + 47 T^{2} + T^{4} )^{2} \)
$41$ \( ( 1849 - 86 T + 47 T^{2} + 2 T^{3} + T^{4} )^{2} \)
$43$ \( ( 9604 + 200 T^{2} + T^{4} )^{2} \)
$47$ \( ( 100 + 24 T^{2} + T^{4} )^{2} \)
$53$ \( 2560000 - 153600 T^{2} + 7616 T^{4} - 96 T^{6} + T^{8} \)
$59$ \( ( 64 + 96 T + 152 T^{2} - 12 T^{3} + T^{4} )^{2} \)
$61$ \( ( 9025 - 380 T + 111 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$67$ \( 38416 - 14112 T^{2} + 4988 T^{4} - 72 T^{6} + T^{8} \)
$71$ \( ( 12100 - 2420 T + 374 T^{2} - 22 T^{3} + T^{4} )^{2} \)
$73$ \( ( 784 + 120 T^{2} + T^{4} )^{2} \)
$79$ \( ( 9604 - 196 T + 102 T^{2} + 2 T^{3} + T^{4} )^{2} \)
$83$ \( ( 1936 - 44 T^{2} + T^{4} )^{2} \)
$89$ \( ( 361 + 190 T + 119 T^{2} - 10 T^{3} + T^{4} )^{2} \)
$97$ \( ( 99 + T^{2} )^{4} \)
show more
show less