# Properties

 Label 370.2.n.b Level $370$ Weight $2$ Character orbit 370.n Analytic conductor $2.954$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.n (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} + ( -\zeta_{12} + 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{5} + ( 4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{7} + \zeta_{12}^{3} q^{8} + ( -3 + 3 \zeta_{12}^{2} ) q^{9} +O(q^{10})$$ $$q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} + ( -\zeta_{12} + 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{5} + ( 4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{7} + \zeta_{12}^{3} q^{8} + ( -3 + 3 \zeta_{12}^{2} ) q^{9} + ( -1 + 2 \zeta_{12}^{3} ) q^{10} -3 q^{11} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{13} + 4 q^{14} + ( -1 + \zeta_{12}^{2} ) q^{16} + 6 \zeta_{12} q^{17} + ( -3 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{18} -3 \zeta_{12}^{2} q^{19} + ( -2 - \zeta_{12} + 2 \zeta_{12}^{2} ) q^{20} -3 \zeta_{12} q^{22} -\zeta_{12}^{3} q^{23} + ( -3 - 4 \zeta_{12} + 3 \zeta_{12}^{2} ) q^{25} + q^{26} + 4 \zeta_{12} q^{28} + 6 q^{29} -4 q^{31} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{32} + 6 \zeta_{12}^{2} q^{34} + ( -4 + 8 \zeta_{12} + 4 \zeta_{12}^{2} ) q^{35} -3 q^{36} + ( -3 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{37} -3 \zeta_{12}^{3} q^{38} + ( -2 \zeta_{12} - \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{40} + 10 \zeta_{12}^{2} q^{41} -2 \zeta_{12}^{3} q^{43} -3 \zeta_{12}^{2} q^{44} + ( -6 - 3 \zeta_{12}^{3} ) q^{45} + ( 1 - \zeta_{12}^{2} ) q^{46} -11 \zeta_{12}^{3} q^{47} + ( 9 - 9 \zeta_{12}^{2} ) q^{49} + ( -3 \zeta_{12} - 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{50} + \zeta_{12} q^{52} -10 \zeta_{12} q^{53} + ( 3 \zeta_{12} - 6 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{55} + 4 \zeta_{12}^{2} q^{56} + 6 \zeta_{12} q^{58} + ( 15 - 15 \zeta_{12}^{2} ) q^{59} -12 \zeta_{12}^{2} q^{61} -4 \zeta_{12} q^{62} + 12 \zeta_{12}^{3} q^{63} - q^{64} + ( -1 + 2 \zeta_{12} + \zeta_{12}^{2} ) q^{65} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{67} + 6 \zeta_{12}^{3} q^{68} + ( -4 \zeta_{12} + 8 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{70} + 6 \zeta_{12}^{2} q^{71} -3 \zeta_{12} q^{72} -2 \zeta_{12}^{3} q^{73} + ( 4 - 7 \zeta_{12}^{2} ) q^{74} + ( 3 - 3 \zeta_{12}^{2} ) q^{76} + ( -12 \zeta_{12} + 12 \zeta_{12}^{3} ) q^{77} + 4 \zeta_{12}^{2} q^{79} + ( -2 - \zeta_{12}^{3} ) q^{80} -9 \zeta_{12}^{2} q^{81} + 10 \zeta_{12}^{3} q^{82} -6 \zeta_{12} q^{83} + ( -6 + 12 \zeta_{12}^{3} ) q^{85} + ( 2 - 2 \zeta_{12}^{2} ) q^{86} -3 \zeta_{12}^{3} q^{88} + ( -15 + 15 \zeta_{12}^{2} ) q^{89} + ( 3 - 6 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{90} + ( 4 - 4 \zeta_{12}^{2} ) q^{91} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{92} + ( 11 - 11 \zeta_{12}^{2} ) q^{94} + ( 6 + 3 \zeta_{12} - 6 \zeta_{12}^{2} ) q^{95} + 2 \zeta_{12}^{3} q^{97} + ( 9 \zeta_{12} - 9 \zeta_{12}^{3} ) q^{98} + ( 9 - 9 \zeta_{12}^{2} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{4} + 4q^{5} - 6q^{9} + O(q^{10})$$ $$4q + 2q^{4} + 4q^{5} - 6q^{9} - 4q^{10} - 12q^{11} + 16q^{14} - 2q^{16} - 6q^{19} - 4q^{20} - 6q^{25} + 4q^{26} + 24q^{29} - 16q^{31} + 12q^{34} - 8q^{35} - 12q^{36} - 2q^{40} + 20q^{41} - 6q^{44} - 24q^{45} + 2q^{46} + 18q^{49} - 8q^{50} - 12q^{55} + 8q^{56} + 30q^{59} - 24q^{61} - 4q^{64} - 2q^{65} + 16q^{70} + 12q^{71} + 2q^{74} + 6q^{76} + 8q^{79} - 8q^{80} - 18q^{81} - 24q^{85} + 4q^{86} - 30q^{89} + 6q^{90} + 8q^{91} + 22q^{94} + 12q^{95} + 18q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$-\zeta_{12}^{2}$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
269.1
 −0.866025 − 0.500000i 0.866025 + 0.500000i −0.866025 + 0.500000i 0.866025 − 0.500000i
−0.866025 0.500000i 0 0.500000 + 0.866025i 1.86603 + 1.23205i 0 −3.46410 + 2.00000i 1.00000i −1.50000 + 2.59808i −1.00000 2.00000i
269.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0.133975 + 2.23205i 0 3.46410 2.00000i 1.00000i −1.50000 + 2.59808i −1.00000 + 2.00000i
359.1 −0.866025 + 0.500000i 0 0.500000 0.866025i 1.86603 1.23205i 0 −3.46410 2.00000i 1.00000i −1.50000 2.59808i −1.00000 + 2.00000i
359.2 0.866025 0.500000i 0 0.500000 0.866025i 0.133975 2.23205i 0 3.46410 + 2.00000i 1.00000i −1.50000 2.59808i −1.00000 2.00000i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
37.c even 3 1 inner
185.n even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.2.n.b 4
5.b even 2 1 inner 370.2.n.b 4
37.c even 3 1 inner 370.2.n.b 4
185.n even 6 1 inner 370.2.n.b 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.n.b 4 1.a even 1 1 trivial
370.2.n.b 4 5.b even 2 1 inner
370.2.n.b 4 37.c even 3 1 inner
370.2.n.b 4 185.n even 6 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(370, [\chi])$$:

 $$T_{3}$$ $$T_{7}^{4} - 16 T_{7}^{2} + 256$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - T^{2} + T^{4}$$
$3$ $$T^{4}$$
$5$ $$25 - 20 T + 11 T^{2} - 4 T^{3} + T^{4}$$
$7$ $$256 - 16 T^{2} + T^{4}$$
$11$ $$( 3 + T )^{4}$$
$13$ $$1 - T^{2} + T^{4}$$
$17$ $$1296 - 36 T^{2} + T^{4}$$
$19$ $$( 9 + 3 T + T^{2} )^{2}$$
$23$ $$( 1 + T^{2} )^{2}$$
$29$ $$( -6 + T )^{4}$$
$31$ $$( 4 + T )^{4}$$
$37$ $$1369 + 47 T^{2} + T^{4}$$
$41$ $$( 100 - 10 T + T^{2} )^{2}$$
$43$ $$( 4 + T^{2} )^{2}$$
$47$ $$( 121 + T^{2} )^{2}$$
$53$ $$10000 - 100 T^{2} + T^{4}$$
$59$ $$( 225 - 15 T + T^{2} )^{2}$$
$61$ $$( 144 + 12 T + T^{2} )^{2}$$
$67$ $$16 - 4 T^{2} + T^{4}$$
$71$ $$( 36 - 6 T + T^{2} )^{2}$$
$73$ $$( 4 + T^{2} )^{2}$$
$79$ $$( 16 - 4 T + T^{2} )^{2}$$
$83$ $$1296 - 36 T^{2} + T^{4}$$
$89$ $$( 225 + 15 T + T^{2} )^{2}$$
$97$ $$( 4 + T^{2} )^{2}$$