Defining parameters
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.m (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 185 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 40 | 80 |
Cusp forms | 104 | 40 | 64 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
370.2.m.a | $4$ | $2.954$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(-2\) | \(-3\) | \(-6\) | \(-12\) | \(q-\beta _{2}q^{2}+(-1+\beta _{1})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\) |
370.2.m.b | $4$ | $2.954$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(2\) | \(3\) | \(-3\) | \(12\) | \(q+\beta _{2}q^{2}+(1-\beta _{1})q^{3}+(-1+\beta _{2})q^{4}+\cdots\) |
370.2.m.c | $16$ | $2.954$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(-8\) | \(3\) | \(6\) | \(12\) | \(q+(-1-\beta _{1})q^{2}+\beta _{10}q^{3}+\beta _{1}q^{4}+\cdots\) |
370.2.m.d | $16$ | $2.954$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(8\) | \(-3\) | \(0\) | \(-12\) | \(q+(1+\beta _{1})q^{2}-\beta _{10}q^{3}+\beta _{1}q^{4}+\beta _{8}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)