Properties

Label 370.2.l.b
Level $370$
Weight $2$
Character orbit 370.l
Analytic conductor $2.954$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.l (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{3} + \zeta_{12}^{2} q^{4} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{5} + ( -1 + 2 \zeta_{12}^{2} ) q^{6} + 2 \zeta_{12}^{2} q^{7} + \zeta_{12}^{3} q^{8} +O(q^{10})\) \( q + \zeta_{12} q^{2} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{3} + \zeta_{12}^{2} q^{4} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{5} + ( -1 + 2 \zeta_{12}^{2} ) q^{6} + 2 \zeta_{12}^{2} q^{7} + \zeta_{12}^{3} q^{8} - q^{10} + ( 2 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{11} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{12} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{13} + 2 \zeta_{12}^{3} q^{14} + ( -1 - \zeta_{12}^{2} ) q^{15} + ( -1 + \zeta_{12}^{2} ) q^{16} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{19} -\zeta_{12} q^{20} + ( -2 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{21} + ( -2 + 2 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{22} + ( 2 - 4 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{23} + ( -2 + \zeta_{12}^{2} ) q^{24} + ( 1 - \zeta_{12}^{2} ) q^{25} + q^{26} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{27} + ( -2 + 2 \zeta_{12}^{2} ) q^{28} + ( 2 - 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{29} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{30} + ( -1 + 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{31} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{32} + ( 2 \zeta_{12} - 6 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{33} -2 \zeta_{12} q^{35} + ( 7 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{37} -2 q^{38} + ( 1 + \zeta_{12}^{2} ) q^{39} -\zeta_{12}^{2} q^{40} -\zeta_{12}^{2} q^{41} + ( -4 + 2 \zeta_{12}^{2} ) q^{42} + ( 4 - 8 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{43} + ( -2 \zeta_{12} + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{44} + ( -2 + 2 \zeta_{12} + 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{46} + ( 6 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{47} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{48} + ( 3 - 3 \zeta_{12}^{2} ) q^{49} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{50} + \zeta_{12} q^{52} + ( 3 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{53} + ( 3 + 3 \zeta_{12}^{2} ) q^{54} + ( 4 - 2 \zeta_{12} - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{55} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{56} + ( -2 - 2 \zeta_{12}^{2} ) q^{57} + ( 4 + 2 \zeta_{12} - 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{58} -4 \zeta_{12} q^{59} + ( 1 - 2 \zeta_{12}^{2} ) q^{60} + ( -4 + 4 \zeta_{12} + 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{61} + ( -4 - \zeta_{12} + 4 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{62} - q^{64} + ( -1 + \zeta_{12}^{2} ) q^{65} + ( -2 + 4 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{66} + ( -2 \zeta_{12} + 8 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{67} + ( -4 + 6 \zeta_{12} + 2 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{69} -2 \zeta_{12}^{2} q^{70} + 12 \zeta_{12}^{2} q^{71} + ( -6 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{73} + ( 3 + 4 \zeta_{12}^{2} ) q^{74} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{75} -2 \zeta_{12} q^{76} + ( -4 \zeta_{12} + 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{77} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{78} + ( -4 + 2 \zeta_{12}^{2} ) q^{79} -\zeta_{12}^{3} q^{80} + 9 \zeta_{12}^{2} q^{81} -\zeta_{12}^{3} q^{82} + ( 12 + 2 \zeta_{12} - 12 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{83} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{84} + ( -1 + 4 \zeta_{12} + \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{86} + ( 8 + 6 \zeta_{12} - 4 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{87} + ( 2 - 4 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{88} -8 \zeta_{12} q^{89} + 2 \zeta_{12} q^{91} + ( 4 - 2 \zeta_{12} - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{92} + ( -8 - 3 \zeta_{12} + 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{93} + ( -4 + 6 \zeta_{12} - 4 \zeta_{12}^{2} ) q^{94} + ( 2 - 2 \zeta_{12}^{2} ) q^{95} + ( -1 - \zeta_{12}^{2} ) q^{96} + ( -4 + 8 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{97} + ( 3 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} + 4q^{7} + O(q^{10}) \) \( 4q + 2q^{4} + 4q^{7} - 4q^{10} + 8q^{11} - 6q^{15} - 2q^{16} - 12q^{22} - 6q^{24} + 2q^{25} + 4q^{26} - 4q^{28} - 12q^{33} - 8q^{38} + 6q^{39} - 2q^{40} - 2q^{41} - 12q^{42} + 4q^{44} - 4q^{46} + 24q^{47} + 6q^{49} + 18q^{54} + 12q^{55} - 12q^{57} + 8q^{58} - 12q^{61} - 8q^{62} - 4q^{64} - 2q^{65} + 16q^{67} - 12q^{69} - 4q^{70} + 24q^{71} - 24q^{73} + 20q^{74} + 8q^{77} - 12q^{79} + 18q^{81} + 24q^{83} - 2q^{86} + 24q^{87} + 12q^{92} - 24q^{93} - 24q^{94} + 4q^{95} - 6q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(\zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i −0.866025 + 1.50000i 0.500000 0.866025i 0.866025 + 0.500000i 1.73205i 1.00000 1.73205i 1.00000i 0 −1.00000
11.2 0.866025 0.500000i 0.866025 1.50000i 0.500000 0.866025i −0.866025 0.500000i 1.73205i 1.00000 1.73205i 1.00000i 0 −1.00000
101.1 −0.866025 0.500000i −0.866025 1.50000i 0.500000 + 0.866025i 0.866025 0.500000i 1.73205i 1.00000 + 1.73205i 1.00000i 0 −1.00000
101.2 0.866025 + 0.500000i 0.866025 + 1.50000i 0.500000 + 0.866025i −0.866025 + 0.500000i 1.73205i 1.00000 + 1.73205i 1.00000i 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.2.l.b 4
37.e even 6 1 inner 370.2.l.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.l.b 4 1.a even 1 1 trivial
370.2.l.b 4 37.e even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\):

\( T_{3}^{4} + 3 T_{3}^{2} + 9 \)
\( T_{7}^{2} - 2 T_{7} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + T^{4} \)
$3$ \( 9 + 3 T^{2} + T^{4} \)
$5$ \( 1 - T^{2} + T^{4} \)
$7$ \( ( 4 - 2 T + T^{2} )^{2} \)
$11$ \( ( -8 - 4 T + T^{2} )^{2} \)
$13$ \( 1 - T^{2} + T^{4} \)
$17$ \( T^{4} \)
$19$ \( 16 - 4 T^{2} + T^{4} \)
$23$ \( 64 + 32 T^{2} + T^{4} \)
$29$ \( 16 + 56 T^{2} + T^{4} \)
$31$ \( 169 + 38 T^{2} + T^{4} \)
$37$ \( 1369 - 73 T^{2} + T^{4} \)
$41$ \( ( 1 + T + T^{2} )^{2} \)
$43$ \( 2209 + 98 T^{2} + T^{4} \)
$47$ \( ( -12 - 12 T + T^{2} )^{2} \)
$53$ \( 729 + 27 T^{2} + T^{4} \)
$59$ \( 256 - 16 T^{2} + T^{4} \)
$61$ \( 16 - 48 T + 44 T^{2} + 12 T^{3} + T^{4} \)
$67$ \( 2704 - 832 T + 204 T^{2} - 16 T^{3} + T^{4} \)
$71$ \( ( 144 - 12 T + T^{2} )^{2} \)
$73$ \( ( 24 + 12 T + T^{2} )^{2} \)
$79$ \( ( 12 + 6 T + T^{2} )^{2} \)
$83$ \( 17424 - 3168 T + 444 T^{2} - 24 T^{3} + T^{4} \)
$89$ \( 4096 - 64 T^{2} + T^{4} \)
$97$ \( 1936 + 104 T^{2} + T^{4} \)
show more
show less