Defining parameters
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.l (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 124 | 20 | 104 |
Cusp forms | 108 | 20 | 88 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
370.2.l.a | $4$ | $2.954$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q+\zeta_{12}q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
370.2.l.b | $4$ | $2.954$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\zeta_{12}q^{2}+(\zeta_{12}+\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
370.2.l.c | $12$ | $2.954$ | 12.0.\(\cdots\).2 | None | \(0\) | \(4\) | \(0\) | \(2\) | \(q-\beta _{2}q^{2}+(1-\beta _{6}+\beta _{10})q^{3}+(1-\beta _{6}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)