Properties

Label 370.2.h.d
Level $370$
Weight $2$
Character orbit 370.h
Analytic conductor $2.954$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.h (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Defining polynomial: \(x^{10} + 3 x^{8} - 8 x^{7} - 26 x^{6} + 12 x^{5} + 24 x^{4} + 166 x^{3} + 113 x^{2} - 152 x + 160\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( \beta_{1} - \beta_{4} ) q^{3} + q^{4} + ( -\beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{9} ) q^{5} + ( \beta_{1} - \beta_{4} ) q^{6} + ( -\beta_{1} + \beta_{4} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{7} + q^{8} + ( \beta_{1} + \beta_{6} - \beta_{7} - \beta_{8} ) q^{9} +O(q^{10})\) \( q + q^{2} + ( \beta_{1} - \beta_{4} ) q^{3} + q^{4} + ( -\beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{9} ) q^{5} + ( \beta_{1} - \beta_{4} ) q^{6} + ( -\beta_{1} + \beta_{4} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{7} + q^{8} + ( \beta_{1} + \beta_{6} - \beta_{7} - \beta_{8} ) q^{9} + ( -\beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{9} ) q^{10} + ( \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + \beta_{7} - \beta_{8} + 2 \beta_{9} ) q^{11} + ( \beta_{1} - \beta_{4} ) q^{12} + ( -1 - \beta_{1} + \beta_{2} + 2 \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - \beta_{9} ) q^{13} + ( -\beta_{1} + \beta_{4} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{14} + ( -1 + \beta_{1} + \beta_{2} - 2 \beta_{7} + \beta_{8} - 2 \beta_{9} ) q^{15} + q^{16} + ( -\beta_{1} - \beta_{4} - 2 \beta_{6} + \beta_{7} + \beta_{8} - \beta_{9} ) q^{17} + ( \beta_{1} + \beta_{6} - \beta_{7} - \beta_{8} ) q^{18} + ( 2 + \beta_{1} + 3 \beta_{2} + \beta_{3} + \beta_{4} + \beta_{8} ) q^{19} + ( -\beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{9} ) q^{20} + ( -2 - 3 \beta_{2} - \beta_{3} - 2 \beta_{5} - 2 \beta_{6} + \beta_{7} + 2 \beta_{8} + \beta_{9} ) q^{21} + ( \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + \beta_{7} - \beta_{8} + 2 \beta_{9} ) q^{22} + ( 1 - \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{8} + \beta_{9} ) q^{23} + ( \beta_{1} - \beta_{4} ) q^{24} + ( 4 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{25} + ( -1 - \beta_{1} + \beta_{2} + 2 \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - \beta_{9} ) q^{26} + ( -2 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{6} + \beta_{7} - \beta_{8} - 2 \beta_{9} ) q^{27} + ( -\beta_{1} + \beta_{4} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{28} + ( -3 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} - 5 \beta_{6} - \beta_{7} - \beta_{9} ) q^{29} + ( -1 + \beta_{1} + \beta_{2} - 2 \beta_{7} + \beta_{8} - 2 \beta_{9} ) q^{30} + ( -2 + 2 \beta_{6} - \beta_{8} - \beta_{9} ) q^{31} + q^{32} + ( -6 + \beta_{1} - 3 \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{6} - 3 \beta_{7} + 3 \beta_{8} + 2 \beta_{9} ) q^{33} + ( -\beta_{1} - \beta_{4} - 2 \beta_{6} + \beta_{7} + \beta_{8} - \beta_{9} ) q^{34} + ( 1 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} + 2 \beta_{4} - \beta_{5} - \beta_{6} + 2 \beta_{9} ) q^{35} + ( \beta_{1} + \beta_{6} - \beta_{7} - \beta_{8} ) q^{36} + ( -1 + \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{6} - 2 \beta_{7} + 3 \beta_{8} ) q^{37} + ( 2 + \beta_{1} + 3 \beta_{2} + \beta_{3} + \beta_{4} + \beta_{8} ) q^{38} + ( -\beta_{2} - \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} - \beta_{7} + \beta_{8} ) q^{39} + ( -\beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{9} ) q^{40} + ( 1 - \beta_{1} + 3 \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} - \beta_{9} ) q^{41} + ( -2 - 3 \beta_{2} - \beta_{3} - 2 \beta_{5} - 2 \beta_{6} + \beta_{7} + 2 \beta_{8} + \beta_{9} ) q^{42} + ( -\beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{8} + 2 \beta_{9} ) q^{43} + ( \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + \beta_{7} - \beta_{8} + 2 \beta_{9} ) q^{44} + ( 1 - 2 \beta_{1} + 3 \beta_{2} + 2 \beta_{3} + \beta_{4} - \beta_{6} - 2 \beta_{8} - 3 \beta_{9} ) q^{45} + ( 1 - \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{8} + \beta_{9} ) q^{46} + ( 4 - \beta_{2} - \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 6 \beta_{6} - \beta_{7} + \beta_{9} ) q^{47} + ( \beta_{1} - \beta_{4} ) q^{48} + ( 2 + 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} - \beta_{6} - 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} ) q^{49} + ( 4 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{50} + ( 2 + 2 \beta_{1} + 5 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} - \beta_{7} + 4 \beta_{8} + \beta_{9} ) q^{51} + ( -1 - \beta_{1} + \beta_{2} + 2 \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - \beta_{9} ) q^{52} + ( -1 + \beta_{1} - 4 \beta_{2} - 4 \beta_{3} + \beta_{4} + \beta_{6} - \beta_{7} - \beta_{8} + 3 \beta_{9} ) q^{53} + ( -2 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{6} + \beta_{7} - \beta_{8} - 2 \beta_{9} ) q^{54} + ( -\beta_{1} + 2 \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} + 5 \beta_{8} - 3 \beta_{9} ) q^{55} + ( -\beta_{1} + \beta_{4} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{56} + ( 8 - 3 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 3 \beta_{4} + 5 \beta_{7} - 3 \beta_{8} + \beta_{9} ) q^{57} + ( -3 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} - 5 \beta_{6} - \beta_{7} - \beta_{9} ) q^{58} + ( -2 + 4 \beta_{1} - 3 \beta_{2} - 5 \beta_{3} + 4 \beta_{4} + 4 \beta_{6} - 3 \beta_{7} + 5 \beta_{9} ) q^{59} + ( -1 + \beta_{1} + \beta_{2} - 2 \beta_{7} + \beta_{8} - 2 \beta_{9} ) q^{60} + ( -1 + \beta_{2} - \beta_{3} + 3 \beta_{6} + \beta_{7} - \beta_{8} ) q^{61} + ( -2 + 2 \beta_{6} - \beta_{8} - \beta_{9} ) q^{62} + ( -2 + 2 \beta_{1} - \beta_{2} + \beta_{3} + 2 \beta_{4} - 3 \beta_{7} + 6 \beta_{8} + 5 \beta_{9} ) q^{63} + q^{64} + ( 4 + 2 \beta_{1} - \beta_{2} - 3 \beta_{3} + 3 \beta_{4} - \beta_{5} + \beta_{6} - \beta_{7} + \beta_{9} ) q^{65} + ( -6 + \beta_{1} - 3 \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{6} - 3 \beta_{7} + 3 \beta_{8} + 2 \beta_{9} ) q^{66} + ( -2 - 2 \beta_{1} - 2 \beta_{4} + 2 \beta_{6} + 2 \beta_{7} + \beta_{8} + \beta_{9} ) q^{67} + ( -\beta_{1} - \beta_{4} - 2 \beta_{6} + \beta_{7} + \beta_{8} - \beta_{9} ) q^{68} + ( -4 + 2 \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{5} - 2 \beta_{6} + 3 \beta_{7} + \beta_{8} ) q^{69} + ( 1 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} + 2 \beta_{4} - \beta_{5} - \beta_{6} + 2 \beta_{9} ) q^{70} + ( -2 + 2 \beta_{1} - 2 \beta_{2} - 4 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} + 2 \beta_{9} ) q^{71} + ( \beta_{1} + \beta_{6} - \beta_{7} - \beta_{8} ) q^{72} + ( 1 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} - \beta_{6} + 2 \beta_{7} - 4 \beta_{8} + 3 \beta_{9} ) q^{73} + ( -1 + \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{6} - 2 \beta_{7} + 3 \beta_{8} ) q^{74} + ( -3 + 3 \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{5} + 5 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} ) q^{75} + ( 2 + \beta_{1} + 3 \beta_{2} + \beta_{3} + \beta_{4} + \beta_{8} ) q^{76} + ( -2 - 3 \beta_{1} - \beta_{2} + \beta_{3} - 3 \beta_{4} + 2 \beta_{7} - 3 \beta_{8} - 4 \beta_{9} ) q^{77} + ( -\beta_{2} - \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} - \beta_{7} + \beta_{8} ) q^{78} + ( 2 + \beta_{1} + 4 \beta_{2} + 2 \beta_{3} + \beta_{4} - 2 \beta_{9} ) q^{79} + ( -\beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{9} ) q^{80} + ( 2 - \beta_{1} - \beta_{2} - 4 \beta_{3} + 2 \beta_{4} - 3 \beta_{5} + 3 \beta_{6} + 3 \beta_{7} - 4 \beta_{8} + 2 \beta_{9} ) q^{81} + ( 1 - \beta_{1} + 3 \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} - \beta_{9} ) q^{82} + ( 4 + 2 \beta_{1} + \beta_{2} - 5 \beta_{3} + 2 \beta_{4} + 2 \beta_{6} + \beta_{7} - 2 \beta_{8} + 3 \beta_{9} ) q^{83} + ( -2 - 3 \beta_{2} - \beta_{3} - 2 \beta_{5} - 2 \beta_{6} + \beta_{7} + 2 \beta_{8} + \beta_{9} ) q^{84} + ( -3 + 4 \beta_{1} - 4 \beta_{2} - 3 \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} + 2 \beta_{8} + 2 \beta_{9} ) q^{85} + ( -\beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{8} + 2 \beta_{9} ) q^{86} + ( 2 - 5 \beta_{1} + 8 \beta_{2} + 6 \beta_{3} + 2 \beta_{5} - 2 \beta_{6} - \beta_{7} + 3 \beta_{8} - 6 \beta_{9} ) q^{87} + ( \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + \beta_{7} - \beta_{8} + 2 \beta_{9} ) q^{88} + ( -1 + 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 4 \beta_{5} + 3 \beta_{6} + 2 \beta_{8} ) q^{89} + ( 1 - 2 \beta_{1} + 3 \beta_{2} + 2 \beta_{3} + \beta_{4} - \beta_{6} - 2 \beta_{8} - 3 \beta_{9} ) q^{90} + ( 2 \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{5} + 2 \beta_{6} - 3 \beta_{7} + 2 \beta_{8} - \beta_{9} ) q^{91} + ( 1 - \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{8} + \beta_{9} ) q^{92} + ( -3 - 3 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} + 4 \beta_{4} - \beta_{5} + \beta_{6} + 2 \beta_{7} - 4 \beta_{8} - \beta_{9} ) q^{93} + ( 4 - \beta_{2} - \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 6 \beta_{6} - \beta_{7} + \beta_{9} ) q^{94} + ( -5 - 2 \beta_{2} + \beta_{3} + 3 \beta_{4} + \beta_{5} + 5 \beta_{6} - 4 \beta_{7} + \beta_{8} + 2 \beta_{9} ) q^{95} + ( \beta_{1} - \beta_{4} ) q^{96} + ( -\beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} + \beta_{8} ) q^{97} + ( 2 + 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} - \beta_{6} - 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} ) q^{98} + ( -1 - 3 \beta_{1} - 3 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 5 \beta_{5} - 5 \beta_{6} - 5 \beta_{7} + 2 \beta_{8} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 10q^{2} + 2q^{3} + 10q^{4} + 2q^{5} + 2q^{6} - 4q^{7} + 10q^{8} + O(q^{10}) \) \( 10q + 10q^{2} + 2q^{3} + 10q^{4} + 2q^{5} + 2q^{6} - 4q^{7} + 10q^{8} + 2q^{10} + 2q^{12} - 12q^{13} - 4q^{14} - 14q^{15} + 10q^{16} + 8q^{19} + 2q^{20} + 4q^{23} + 2q^{24} + 28q^{25} - 12q^{26} - 28q^{27} - 4q^{28} - 32q^{29} - 14q^{30} - 26q^{31} + 10q^{32} - 24q^{33} + 22q^{35} - 2q^{37} + 8q^{38} + 6q^{39} + 2q^{40} + 12q^{43} - 10q^{45} + 4q^{46} + 48q^{47} + 2q^{48} + 28q^{50} + 16q^{51} - 12q^{52} - 2q^{53} - 28q^{54} + 12q^{55} - 4q^{56} + 76q^{57} - 32q^{58} - 20q^{59} - 14q^{60} - 24q^{61} - 26q^{62} + 20q^{63} + 10q^{64} + 28q^{65} - 24q^{66} - 10q^{67} - 46q^{69} + 22q^{70} - 16q^{71} + 4q^{73} - 2q^{74} - 48q^{75} + 8q^{76} - 24q^{77} + 6q^{78} - 2q^{79} + 2q^{80} + 2q^{81} + 8q^{83} - 10q^{85} + 12q^{86} - 2q^{89} - 10q^{90} + 16q^{91} + 4q^{92} - 60q^{93} + 48q^{94} - 28q^{95} + 2q^{96} + 28q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{10} + 3 x^{8} - 8 x^{7} - 26 x^{6} + 12 x^{5} + 24 x^{4} + 166 x^{3} + 113 x^{2} - 152 x + 160\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( 105 \nu^{9} + 3868 \nu^{8} - 17854 \nu^{7} + 34822 \nu^{6} - 123604 \nu^{5} + 73205 \nu^{4} + 120257 \nu^{3} - 211635 \nu^{2} + 840473 \nu - 881880 \)\()/887851\)
\(\beta_{2}\)\(=\)\((\)\(4830421 \nu^{9} + 27279422 \nu^{8} + 39766871 \nu^{7} + 36230609 \nu^{6} - 248412067 \nu^{5} - 422935188 \nu^{4} - 51534513 \nu^{3} + 4194704142 \nu^{2} + 5881796255 \nu - 1481360957\)\()/ 5161077863 \)
\(\beta_{3}\)\(=\)\((\)\(-4830421 \nu^{9} - 27279422 \nu^{8} - 39766871 \nu^{7} - 36230609 \nu^{6} + 248412067 \nu^{5} + 422935188 \nu^{4} + 51534513 \nu^{3} - 4194704142 \nu^{2} - 720718392 \nu + 1481360957\)\()/ 5161077863 \)
\(\beta_{4}\)\(=\)\((\)\(-12470333 \nu^{9} - 79772050 \nu^{8} - 195227485 \nu^{7} + 26574182 \nu^{6} + 577196282 \nu^{5} + 3464752928 \nu^{4} + 731490770 \nu^{3} - 9133030804 \nu^{2} - 20817063063 \nu - 18775197608\)\()/ 10322155726 \)
\(\beta_{5}\)\(=\)\((\)\(-40939147 \nu^{9} + 281415368 \nu^{8} - 506483273 \nu^{7} + 1711086296 \nu^{6} - 2353824822 \nu^{5} - 3136611584 \nu^{4} + 3432795828 \nu^{3} - 11350242598 \nu^{2} + 18569839845 \nu + 1358343716\)\()/ 20644311452 \)
\(\beta_{6}\)\(=\)\((\)\( 22047 \nu^{9} + 420 \nu^{8} + 81613 \nu^{7} - 247792 \nu^{6} - 433934 \nu^{5} - 229852 \nu^{4} + 821948 \nu^{3} + 4140830 \nu^{2} + 1644771 \nu + 10748 \)\()/3551404\)
\(\beta_{7}\)\(=\)\((\)\(-78590417 \nu^{9} - 53270874 \nu^{8} - 432258509 \nu^{7} + 565223046 \nu^{6} + 1835553924 \nu^{5} + 1991880712 \nu^{4} + 1196070998 \nu^{3} - 17048329972 \nu^{2} - 23630326501 \nu - 13883295960\)\()/ 10322155726 \)
\(\beta_{8}\)\(=\)\((\)\(-106312323 \nu^{9} - 59569470 \nu^{8} - 234376097 \nu^{7} + 621147016 \nu^{6} + 3952005236 \nu^{5} - 910662862 \nu^{4} - 3262671660 \nu^{3} - 19246167516 \nu^{2} - 28243314479 \nu + 27078850384\)\()/ 10322155726 \)
\(\beta_{9}\)\(=\)\((\)\(-151550159 \nu^{9} + 32728460 \nu^{8} - 412250275 \nu^{7} + 1324404682 \nu^{6} + 3598338044 \nu^{5} - 2322899252 \nu^{4} - 5878785400 \nu^{3} - 22346975474 \nu^{2} - 6371750919 \nu + 25888295120\)\()/ 10322155726 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{3} + \beta_{2}\)
\(\nu^{2}\)\(=\)\(\beta_{8} + \beta_{6} - \beta_{5} - \beta_{3} + \beta_{2} + 2 \beta_{1}\)
\(\nu^{3}\)\(=\)\(-4 \beta_{9} + 4 \beta_{7} - 5 \beta_{6} + \beta_{5} - 5 \beta_{4} + 2 \beta_{3} + \beta_{2} - 3 \beta_{1} + 3\)
\(\nu^{4}\)\(=\)\(\beta_{9} - 7 \beta_{8} + 2 \beta_{7} - 5 \beta_{6} + 3 \beta_{5} + 4 \beta_{4} + 3 \beta_{3} + 4 \beta_{2} - 11 \beta_{1} + 15\)
\(\nu^{5}\)\(=\)\(2 \beta_{9} + 12 \beta_{8} - 9 \beta_{7} + 16 \beta_{6} + 4 \beta_{5} + 17 \beta_{4} + 17 \beta_{3} + 31 \beta_{2} + 4 \beta_{1} - 10\)
\(\nu^{6}\)\(=\)\(-44 \beta_{9} + 54 \beta_{8} - 11 \beta_{7} - 41 \beta_{6} - 11 \beta_{5} - 30 \beta_{4} - 5 \beta_{3} + 13 \beta_{2} + 51 \beta_{1} - 44\)
\(\nu^{7}\)\(=\)\(-79 \beta_{9} - 72 \beta_{8} + 70 \beta_{7} - 221 \beta_{6} + 27 \beta_{5} - 123 \beta_{4} - 18 \beta_{3} - 96 \beta_{2} - 157 \beta_{1} + 78\)
\(\nu^{8}\)\(=\)\(201 \beta_{9} - 271 \beta_{8} - 9 \beta_{7} + 144 \beta_{6} + 208 \beta_{5} + 307 \beta_{4} + 103 \beta_{3} + 138 \beta_{2} - 439 \beta_{1} + 313\)
\(\nu^{9}\)\(=\)\(-7 \beta_{9} + 854 \beta_{8} - 688 \beta_{7} + 777 \beta_{6} + 33 \beta_{5} + 675 \beta_{4} + 413 \beta_{3} + 851 \beta_{2} + 863 \beta_{1} - 942\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(-\beta_{6}\) \(\beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
117.1
−0.287871 + 2.59703i
−1.66045 + 0.156295i
−0.551861 1.73844i
2.03431 0.602710i
0.465873 + 0.587826i
−0.287871 2.59703i
−1.66045 0.156295i
−0.551861 + 1.73844i
2.03431 + 0.602710i
0.465873 0.587826i
1.00000 −1.70160 1.70160i 1.00000 1.73245 1.41373i −1.70160 1.70160i 2.82745 + 2.82745i 1.00000 2.79087i 1.73245 1.41373i
117.2 1.00000 −1.05122 1.05122i 1.00000 −2.15147 + 0.609231i −1.05122 1.05122i −1.21846 1.21846i 1.00000 0.789858i −2.15147 + 0.609231i
117.3 1.00000 −0.215231 0.215231i 1.00000 2.21058 + 0.336630i −0.215231 0.215231i −0.673260 0.673260i 1.00000 2.90735i 2.21058 + 0.336630i
117.4 1.00000 1.78347 + 1.78347i 1.00000 −2.22195 0.250846i 1.78347 + 1.78347i 0.501691 + 0.501691i 1.00000 3.36152i −2.22195 0.250846i
117.5 1.00000 2.18458 + 2.18458i 1.00000 1.43040 + 1.71871i 2.18458 + 2.18458i −3.43742 3.43742i 1.00000 6.54482i 1.43040 + 1.71871i
253.1 1.00000 −1.70160 + 1.70160i 1.00000 1.73245 + 1.41373i −1.70160 + 1.70160i 2.82745 2.82745i 1.00000 2.79087i 1.73245 + 1.41373i
253.2 1.00000 −1.05122 + 1.05122i 1.00000 −2.15147 0.609231i −1.05122 + 1.05122i −1.21846 + 1.21846i 1.00000 0.789858i −2.15147 0.609231i
253.3 1.00000 −0.215231 + 0.215231i 1.00000 2.21058 0.336630i −0.215231 + 0.215231i −0.673260 + 0.673260i 1.00000 2.90735i 2.21058 0.336630i
253.4 1.00000 1.78347 1.78347i 1.00000 −2.22195 + 0.250846i 1.78347 1.78347i 0.501691 0.501691i 1.00000 3.36152i −2.22195 + 0.250846i
253.5 1.00000 2.18458 2.18458i 1.00000 1.43040 1.71871i 2.18458 2.18458i −3.43742 + 3.43742i 1.00000 6.54482i 1.43040 1.71871i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 253.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
185.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.2.h.d yes 10
5.c odd 4 1 370.2.g.d 10
37.d odd 4 1 370.2.g.d 10
185.k even 4 1 inner 370.2.h.d yes 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.g.d 10 5.c odd 4 1
370.2.g.d 10 37.d odd 4 1
370.2.h.d yes 10 1.a even 1 1 trivial
370.2.h.d yes 10 185.k even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{10} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{10} \)
$3$ \( 72 + 372 T + 961 T^{2} + 442 T^{3} + 74 T^{4} - 60 T^{5} + 59 T^{6} + 12 T^{7} + 2 T^{8} - 2 T^{9} + T^{10} \)
$5$ \( 3125 - 1250 T - 1500 T^{2} + 1050 T^{3} + 180 T^{4} - 318 T^{5} + 36 T^{6} + 42 T^{7} - 12 T^{8} - 2 T^{9} + T^{10} \)
$7$ \( 512 + 128 T + 16 T^{2} + 352 T^{3} + 1440 T^{4} + 960 T^{5} + 316 T^{6} - 16 T^{7} + 8 T^{8} + 4 T^{9} + T^{10} \)
$11$ \( 266256 + 161833 T^{2} + 30378 T^{4} + 2395 T^{6} + 82 T^{8} + T^{10} \)
$13$ \( ( -4 - 19 T - 22 T^{2} - T^{3} + 6 T^{4} + T^{5} )^{2} \)
$17$ \( 118336 + 148880 T^{2} + 34736 T^{4} + 2828 T^{6} + 92 T^{8} + T^{10} \)
$19$ \( 12800 - 58240 T + 132496 T^{2} - 129504 T^{3} + 71968 T^{4} - 20368 T^{5} + 2844 T^{6} - 8 T^{7} + 32 T^{8} - 8 T^{9} + T^{10} \)
$23$ \( ( -500 + 373 T + 62 T^{2} - 45 T^{3} - 2 T^{4} + T^{5} )^{2} \)
$29$ \( 4222418 + 1729070 T + 354025 T^{2} + 192838 T^{3} + 204384 T^{4} + 98882 T^{5} + 27759 T^{6} + 4744 T^{7} + 512 T^{8} + 32 T^{9} + T^{10} \)
$31$ \( 10952 + 47804 T + 104329 T^{2} + 118290 T^{3} + 83514 T^{4} + 38688 T^{5} + 12123 T^{6} + 2520 T^{7} + 338 T^{8} + 26 T^{9} + T^{10} \)
$37$ \( 69343957 + 3748322 T - 2988527 T^{2} + 525696 T^{3} + 80438 T^{4} - 17348 T^{5} + 2174 T^{6} + 384 T^{7} - 59 T^{8} + 2 T^{9} + T^{10} \)
$41$ \( 57600 + 350761 T^{2} + 76634 T^{4} + 5403 T^{6} + 130 T^{8} + T^{10} \)
$43$ \( ( -592 + 204 T + 340 T^{2} - 58 T^{3} - 6 T^{4} + T^{5} )^{2} \)
$47$ \( 18678272 - 32784768 T + 28772496 T^{2} - 14855232 T^{3} + 4981376 T^{4} - 1100576 T^{5} + 165672 T^{6} - 16912 T^{7} + 1152 T^{8} - 48 T^{9} + T^{10} \)
$53$ \( 4310048 - 2712864 T + 853776 T^{2} - 70080 T^{3} + 20664 T^{4} - 12328 T^{5} + 4236 T^{6} - 328 T^{7} + 2 T^{8} + 2 T^{9} + T^{10} \)
$59$ \( 1340377088 + 102930688 T + 3952144 T^{2} + 1124192 T^{3} + 2512928 T^{4} + 238800 T^{5} + 11400 T^{6} + 184 T^{7} + 200 T^{8} + 20 T^{9} + T^{10} \)
$61$ \( 4418 + 4042 T + 1849 T^{2} - 218 T^{3} + 23064 T^{4} + 19690 T^{5} + 8367 T^{6} + 1980 T^{7} + 288 T^{8} + 24 T^{9} + T^{10} \)
$67$ \( 18072072 - 16995924 T + 7991929 T^{2} - 1652486 T^{3} + 130058 T^{4} + 14768 T^{5} + 4147 T^{6} - 616 T^{7} + 50 T^{8} + 10 T^{9} + T^{10} \)
$71$ \( ( -576 - 880 T - 384 T^{2} - 36 T^{3} + 8 T^{4} + T^{5} )^{2} \)
$73$ \( 369430562 - 122563638 T + 20331081 T^{2} + 184758 T^{3} + 505104 T^{4} - 150898 T^{5} + 22311 T^{6} - 400 T^{7} + 8 T^{8} - 4 T^{9} + T^{10} \)
$79$ \( 23970888 - 19435668 T + 7879249 T^{2} - 768938 T^{3} + 13898 T^{4} + 2380 T^{5} + 5835 T^{6} - 204 T^{7} + 2 T^{8} + 2 T^{9} + T^{10} \)
$83$ \( 46851200 + 42166080 T + 18974736 T^{2} + 2799456 T^{3} + 121248 T^{4} - 21008 T^{5} + 15624 T^{6} + 952 T^{7} + 32 T^{8} - 8 T^{9} + T^{10} \)
$89$ \( 3591200 - 7729120 T + 8317456 T^{2} - 745984 T^{3} + 14608 T^{4} + 14864 T^{5} + 11656 T^{6} - 128 T^{7} + 2 T^{8} + 2 T^{9} + T^{10} \)
$97$ \( 2304 + 13456 T^{2} + 5664 T^{4} + 812 T^{6} + 48 T^{8} + T^{10} \)
show more
show less