Defining parameters
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.g (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 185 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 122 | 38 | 84 |
Cusp forms | 106 | 38 | 68 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
370.2.g.a | $2$ | $2.954$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(4\) | \(2\) | \(q+i q^{2}+(-i-1)q^{3}-q^{4}+(i+2)q^{5}+\cdots\) |
370.2.g.b | $2$ | $2.954$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(-4\) | \(q+i q^{2}-q^{4}+(i-2)q^{5}+(-2 i-2)q^{7}+\cdots\) |
370.2.g.c | $4$ | $2.954$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\zeta_{8}^{2}q^{2}+2\zeta_{8}q^{3}-q^{4}+(2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots\) |
370.2.g.d | $10$ | $2.954$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(-2\) | \(2\) | \(-4\) | \(q-\beta _{6}q^{2}+(-\beta _{2}-\beta _{3}-\beta _{8})q^{3}-q^{4}+\cdots\) |
370.2.g.e | $20$ | $2.954$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(-4\) | \(2\) | \(-2\) | \(q-\beta _{10}q^{2}-\beta _{1}q^{3}-q^{4}-\beta _{8}q^{5}+\beta _{4}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)