Properties

Label 370.2.g
Level $370$
Weight $2$
Character orbit 370.g
Rep. character $\chi_{370}(43,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $38$
Newform subspaces $5$
Sturm bound $114$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(114\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).

Total New Old
Modular forms 122 38 84
Cusp forms 106 38 68
Eisenstein series 16 0 16

Trace form

\( 38q - 8q^{3} - 38q^{4} + 4q^{5} + O(q^{10}) \) \( 38q - 8q^{3} - 38q^{4} + 4q^{5} + 2q^{10} + 8q^{12} - 4q^{14} + 38q^{16} + 4q^{17} + 10q^{18} - 12q^{19} - 4q^{20} - 16q^{22} - 10q^{25} - 8q^{26} + 40q^{27} - 18q^{29} - 16q^{31} + 8q^{35} - 12q^{37} + 8q^{39} - 2q^{40} - 56q^{42} - 6q^{45} - 8q^{47} - 8q^{48} - 8q^{50} - 6q^{53} - 12q^{55} + 4q^{56} + 18q^{58} + 20q^{59} + 22q^{61} + 40q^{62} - 38q^{64} - 24q^{65} - 8q^{66} - 16q^{67} - 4q^{68} + 88q^{69} + 16q^{70} - 16q^{71} - 10q^{72} - 2q^{73} - 26q^{74} - 72q^{75} + 12q^{76} + 40q^{77} + 20q^{78} + 32q^{79} + 4q^{80} + 10q^{81} + 48q^{82} + 20q^{83} - 16q^{86} + 24q^{87} + 16q^{88} + 46q^{89} - 40q^{90} - 40q^{91} - 36q^{94} - 40q^{95} - 112q^{97} + 34q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
370.2.g.a \(2\) \(2.954\) \(\Q(\sqrt{-1}) \) None \(0\) \(-2\) \(4\) \(2\) \(q+iq^{2}+(-1-i)q^{3}-q^{4}+(2+i)q^{5}+\cdots\)
370.2.g.b \(2\) \(2.954\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-4\) \(-4\) \(q+iq^{2}-q^{4}+(-2+i)q^{5}+(-2-2i)q^{7}+\cdots\)
370.2.g.c \(4\) \(2.954\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(8\) \(q+\zeta_{8}^{2}q^{2}+2\zeta_{8}q^{3}-q^{4}+(2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots\)
370.2.g.d \(10\) \(2.954\) \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None \(0\) \(-2\) \(2\) \(-4\) \(q-\beta _{6}q^{2}+(-\beta _{2}-\beta _{3}-\beta _{8})q^{3}-q^{4}+\cdots\)
370.2.g.e \(20\) \(2.954\) \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(0\) \(-4\) \(2\) \(-2\) \(q-\beta _{10}q^{2}-\beta _{1}q^{3}-q^{4}-\beta _{8}q^{5}+\beta _{4}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(370, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)