Properties

Label 370.2.g
Level $370$
Weight $2$
Character orbit 370.g
Rep. character $\chi_{370}(43,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $38$
Newform subspaces $5$
Sturm bound $114$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(114\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).

Total New Old
Modular forms 122 38 84
Cusp forms 106 38 68
Eisenstein series 16 0 16

Trace form

\( 38 q - 8 q^{3} - 38 q^{4} + 4 q^{5} + 2 q^{10} + 8 q^{12} - 4 q^{14} + 38 q^{16} + 4 q^{17} + 10 q^{18} - 12 q^{19} - 4 q^{20} - 16 q^{22} - 10 q^{25} - 8 q^{26} + 40 q^{27} - 18 q^{29} - 16 q^{31} + 8 q^{35}+ \cdots + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
370.2.g.a 370.g 185.f $2$ $2.954$ \(\Q(\sqrt{-1}) \) None 370.2.g.a \(0\) \(-2\) \(4\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}+(-i-1)q^{3}-q^{4}+(i+2)q^{5}+\cdots\)
370.2.g.b 370.g 185.f $2$ $2.954$ \(\Q(\sqrt{-1}) \) None 370.2.g.b \(0\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}-q^{4}+(i-2)q^{5}+(-2 i-2)q^{7}+\cdots\)
370.2.g.c 370.g 185.f $4$ $2.954$ \(\Q(\zeta_{8})\) None 370.2.g.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}^{2}q^{2}+2\zeta_{8}q^{3}-q^{4}+(2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots\)
370.2.g.d 370.g 185.f $10$ $2.954$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 370.2.g.d \(0\) \(-2\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}+(-\beta _{2}-\beta _{3}-\beta _{8})q^{3}-q^{4}+\cdots\)
370.2.g.e 370.g 185.f $20$ $2.954$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 370.2.g.e \(0\) \(-4\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{10}q^{2}-\beta _{1}q^{3}-q^{4}-\beta _{8}q^{5}+\beta _{4}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)