Defining parameters
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 20 | 100 |
Cusp forms | 104 | 20 | 84 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
370.2.e.a | $2$ | $2.954$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-2\) | \(-1\) | \(0\) | \(q+(1-\zeta_{6})q^{2}-2\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots\) |
370.2.e.b | $2$ | $2.954$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-1\) | \(1\) | \(-2\) | \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots\) |
370.2.e.c | $2$ | $2.954$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(3\) | \(1\) | \(0\) | \(q+(1-\zeta_{6})q^{2}+3\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots\) |
370.2.e.d | $4$ | $2.954$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(2\) | \(-2\) | \(0\) | \(q+(\beta_1-1)q^{2}+\beta_1 q^{3}-\beta_1 q^{4}+\cdots\) |
370.2.e.e | $4$ | $2.954$ | \(\Q(\sqrt{-3}, \sqrt{10})\) | None | \(2\) | \(2\) | \(-2\) | \(-4\) | \(q-\beta _{2}q^{2}+(1+\beta _{2})q^{3}+(-1-\beta _{2})q^{4}+\cdots\) |
370.2.e.f | $6$ | $2.954$ | 6.0.2696112.1 | None | \(-3\) | \(0\) | \(3\) | \(-2\) | \(q-\beta _{4}q^{2}+\beta _{5}q^{3}+(-1+\beta _{4})q^{4}+(1+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)