Defining parameters
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 62 | 10 | 52 |
Cusp forms | 54 | 10 | 44 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
370.2.d.a | $2$ | $2.954$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+i q^{2}-q^{4}+i q^{5}-2 q^{7}-i q^{8}+\cdots\) |
370.2.d.b | $2$ | $2.954$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(10\) | \(q+i q^{2}-q^{4}+i q^{5}+5 q^{7}-i q^{8}+\cdots\) |
370.2.d.c | $6$ | $2.954$ | 6.0.399424.1 | None | \(0\) | \(-4\) | \(0\) | \(10\) | \(q+\beta _{2}q^{2}+(-1-\beta _{1}-\beta _{3})q^{3}-q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)