Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [370,2,Mod(13,370)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(370, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([27, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("370.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.bd (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.95446487479\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | 0.984808 | + | 0.173648i | −2.74835 | − | 1.92441i | 0.939693 | + | 0.342020i | 2.05400 | + | 0.883787i | −2.37242 | − | 2.37242i | −0.306526 | + | 3.50361i | 0.866025 | + | 0.500000i | 2.82399 | + | 7.75885i | 1.86933 | + | 1.22703i |
13.2 | 0.984808 | + | 0.173648i | −2.15928 | − | 1.51194i | 0.939693 | + | 0.342020i | −1.95696 | + | 1.08182i | −1.86393 | − | 1.86393i | −0.00262850 | + | 0.0300439i | 0.866025 | + | 0.500000i | 1.35045 | + | 3.71033i | −2.11508 | + | 0.725559i |
13.3 | 0.984808 | + | 0.173648i | −1.25779 | − | 0.880716i | 0.939693 | + | 0.342020i | −1.20384 | − | 1.88435i | −1.08575 | − | 1.08575i | −0.0418072 | + | 0.477859i | 0.866025 | + | 0.500000i | −0.219679 | − | 0.603563i | −0.858332 | − | 2.06477i |
13.4 | 0.984808 | + | 0.173648i | −0.961804 | − | 0.673462i | 0.939693 | + | 0.342020i | −1.64326 | + | 1.51648i | −0.830246 | − | 0.830246i | 0.403339 | − | 4.61019i | 0.866025 | + | 0.500000i | −0.554545 | − | 1.52360i | −1.88163 | + | 1.20809i |
13.5 | 0.984808 | + | 0.173648i | −0.817959 | − | 0.572741i | 0.939693 | + | 0.342020i | 1.91023 | − | 1.16234i | −0.706077 | − | 0.706077i | 0.132313 | − | 1.51235i | 0.866025 | + | 0.500000i | −0.685035 | − | 1.88212i | 2.08304 | − | 0.812974i |
13.6 | 0.984808 | + | 0.173648i | −0.439891 | − | 0.308015i | 0.939693 | + | 0.342020i | 0.778763 | + | 2.09607i | −0.379722 | − | 0.379722i | −0.222195 | + | 2.53970i | 0.866025 | + | 0.500000i | −0.927429 | − | 2.54809i | 0.402953 | + | 2.19946i |
13.7 | 0.984808 | + | 0.173648i | 0.973365 | + | 0.681558i | 0.939693 | + | 0.342020i | −1.73741 | + | 1.40762i | 0.840226 | + | 0.840226i | −0.357026 | + | 4.08083i | 0.866025 | + | 0.500000i | −0.543142 | − | 1.49227i | −1.95545 | + | 1.08454i |
13.8 | 0.984808 | + | 0.173648i | 1.42219 | + | 0.995829i | 0.939693 | + | 0.342020i | 1.75371 | + | 1.38727i | 1.22766 | + | 1.22766i | 0.179675 | − | 2.05370i | 0.866025 | + | 0.500000i | 0.00489254 | + | 0.0134421i | 1.48617 | + | 1.67072i |
13.9 | 0.984808 | + | 0.173648i | 1.49696 | + | 1.04818i | 0.939693 | + | 0.342020i | −0.337481 | − | 2.21045i | 1.29220 | + | 1.29220i | 0.0435029 | − | 0.497240i | 0.866025 | + | 0.500000i | 0.116144 | + | 0.319104i | 0.0514870 | − | 2.23548i |
13.10 | 0.984808 | + | 0.173648i | 2.71770 | + | 1.90295i | 0.939693 | + | 0.342020i | −2.16097 | + | 0.574640i | 2.34597 | + | 2.34597i | 0.126237 | − | 1.44290i | 0.866025 | + | 0.500000i | 2.73859 | + | 7.52423i | −2.22792 | + | 0.190662i |
57.1 | 0.984808 | − | 0.173648i | −2.74835 | + | 1.92441i | 0.939693 | − | 0.342020i | 2.05400 | − | 0.883787i | −2.37242 | + | 2.37242i | −0.306526 | − | 3.50361i | 0.866025 | − | 0.500000i | 2.82399 | − | 7.75885i | 1.86933 | − | 1.22703i |
57.2 | 0.984808 | − | 0.173648i | −2.15928 | + | 1.51194i | 0.939693 | − | 0.342020i | −1.95696 | − | 1.08182i | −1.86393 | + | 1.86393i | −0.00262850 | − | 0.0300439i | 0.866025 | − | 0.500000i | 1.35045 | − | 3.71033i | −2.11508 | − | 0.725559i |
57.3 | 0.984808 | − | 0.173648i | −1.25779 | + | 0.880716i | 0.939693 | − | 0.342020i | −1.20384 | + | 1.88435i | −1.08575 | + | 1.08575i | −0.0418072 | − | 0.477859i | 0.866025 | − | 0.500000i | −0.219679 | + | 0.603563i | −0.858332 | + | 2.06477i |
57.4 | 0.984808 | − | 0.173648i | −0.961804 | + | 0.673462i | 0.939693 | − | 0.342020i | −1.64326 | − | 1.51648i | −0.830246 | + | 0.830246i | 0.403339 | + | 4.61019i | 0.866025 | − | 0.500000i | −0.554545 | + | 1.52360i | −1.88163 | − | 1.20809i |
57.5 | 0.984808 | − | 0.173648i | −0.817959 | + | 0.572741i | 0.939693 | − | 0.342020i | 1.91023 | + | 1.16234i | −0.706077 | + | 0.706077i | 0.132313 | + | 1.51235i | 0.866025 | − | 0.500000i | −0.685035 | + | 1.88212i | 2.08304 | + | 0.812974i |
57.6 | 0.984808 | − | 0.173648i | −0.439891 | + | 0.308015i | 0.939693 | − | 0.342020i | 0.778763 | − | 2.09607i | −0.379722 | + | 0.379722i | −0.222195 | − | 2.53970i | 0.866025 | − | 0.500000i | −0.927429 | + | 2.54809i | 0.402953 | − | 2.19946i |
57.7 | 0.984808 | − | 0.173648i | 0.973365 | − | 0.681558i | 0.939693 | − | 0.342020i | −1.73741 | − | 1.40762i | 0.840226 | − | 0.840226i | −0.357026 | − | 4.08083i | 0.866025 | − | 0.500000i | −0.543142 | + | 1.49227i | −1.95545 | − | 1.08454i |
57.8 | 0.984808 | − | 0.173648i | 1.42219 | − | 0.995829i | 0.939693 | − | 0.342020i | 1.75371 | − | 1.38727i | 1.22766 | − | 1.22766i | 0.179675 | + | 2.05370i | 0.866025 | − | 0.500000i | 0.00489254 | − | 0.0134421i | 1.48617 | − | 1.67072i |
57.9 | 0.984808 | − | 0.173648i | 1.49696 | − | 1.04818i | 0.939693 | − | 0.342020i | −0.337481 | + | 2.21045i | 1.29220 | − | 1.29220i | 0.0435029 | + | 0.497240i | 0.866025 | − | 0.500000i | 0.116144 | − | 0.319104i | 0.0514870 | + | 2.23548i |
57.10 | 0.984808 | − | 0.173648i | 2.71770 | − | 1.90295i | 0.939693 | − | 0.342020i | −2.16097 | − | 0.574640i | 2.34597 | − | 2.34597i | 0.126237 | + | 1.44290i | 0.866025 | − | 0.500000i | 2.73859 | − | 7.52423i | −2.22792 | − | 0.190662i |
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.bc | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 370.2.bd.b | yes | 120 |
5.c | odd | 4 | 1 | 370.2.ba.b | ✓ | 120 | |
37.i | odd | 36 | 1 | 370.2.ba.b | ✓ | 120 | |
185.bc | even | 36 | 1 | inner | 370.2.bd.b | yes | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
370.2.ba.b | ✓ | 120 | 5.c | odd | 4 | 1 | |
370.2.ba.b | ✓ | 120 | 37.i | odd | 36 | 1 | |
370.2.bd.b | yes | 120 | 1.a | even | 1 | 1 | trivial |
370.2.bd.b | yes | 120 | 185.bc | even | 36 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{120} - 6 T_{3}^{119} + 18 T_{3}^{118} - 34 T_{3}^{117} + 69 T_{3}^{116} - 336 T_{3}^{115} + \cdots + 17\!\cdots\!36 \) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\).