Properties

Label 370.2.bd.a.187.7
Level $370$
Weight $2$
Character 370.187
Analytic conductor $2.954$
Analytic rank $0$
Dimension $108$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.bd (of order \(36\), degree \(12\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(9\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 187.7
Character \(\chi\) \(=\) 370.187
Dual form 370.2.bd.a.93.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.642788 + 0.766044i) q^{2} +(0.112127 + 1.28162i) q^{3} +(-0.173648 + 0.984808i) q^{4} +(1.49430 - 1.66345i) q^{5} +(-0.909704 + 0.909704i) q^{6} +(1.94794 + 0.908339i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(1.32445 - 0.233535i) q^{9} +O(q^{10})\) \(q+(0.642788 + 0.766044i) q^{2} +(0.112127 + 1.28162i) q^{3} +(-0.173648 + 0.984808i) q^{4} +(1.49430 - 1.66345i) q^{5} +(-0.909704 + 0.909704i) q^{6} +(1.94794 + 0.908339i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(1.32445 - 0.233535i) q^{9} +(2.23479 + 0.0754544i) q^{10} +(-1.69236 + 0.977083i) q^{11} +(-1.28162 - 0.112127i) q^{12} +(0.842036 + 0.148474i) q^{13} +(0.556283 + 2.07608i) q^{14} +(2.29946 + 1.72861i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(-0.444995 - 2.52369i) q^{17} +(1.03024 + 0.864470i) q^{18} +(0.481756 + 5.50650i) q^{19} +(1.37870 + 1.76045i) q^{20} +(-0.945728 + 2.59837i) q^{21} +(-1.83631 - 0.668364i) q^{22} +(-7.35617 - 4.24708i) q^{23} +(-0.737915 - 1.05385i) q^{24} +(-0.534137 - 4.97139i) q^{25} +(0.427513 + 0.740474i) q^{26} +(1.44673 + 5.39929i) q^{27} +(-1.23280 + 1.76061i) q^{28} +(1.74937 + 0.468743i) q^{29} +(0.153877 + 2.87262i) q^{30} +(0.659479 + 0.659479i) q^{31} +(-0.342020 - 0.939693i) q^{32} +(-1.44201 - 2.05940i) q^{33} +(1.64722 - 1.96308i) q^{34} +(4.42178 - 1.88297i) q^{35} +1.34488i q^{36} +(-4.29578 + 4.30653i) q^{37} +(-3.90855 + 3.90855i) q^{38} +(-0.0958717 + 1.09582i) q^{39} +(-0.462376 + 2.18774i) q^{40} +(-4.13852 - 0.729733i) q^{41} +(-2.59837 + 0.945728i) q^{42} -8.65527i q^{43} +(-0.668364 - 1.83631i) q^{44} +(1.59064 - 2.55212i) q^{45} +(-1.47500 - 8.36512i) q^{46} +(-3.61275 + 0.968032i) q^{47} +(0.332975 - 1.24268i) q^{48} +(-1.53013 - 1.82353i) q^{49} +(3.46497 - 3.60472i) q^{50} +(3.18452 - 0.853289i) q^{51} +(-0.292436 + 0.803461i) q^{52} +(10.3097 - 4.80748i) q^{53} +(-3.20615 + 4.57886i) q^{54} +(-0.903559 + 4.27521i) q^{55} +(-2.14113 + 0.187325i) q^{56} +(-7.00322 + 1.23486i) q^{57} +(0.765397 + 1.64140i) q^{58} +(-0.501030 - 1.07446i) q^{59} +(-2.10164 + 1.96436i) q^{60} +(9.37515 - 6.56455i) q^{61} +(-0.0812853 + 0.929096i) q^{62} +(2.79207 + 0.748132i) q^{63} +(0.500000 - 0.866025i) q^{64} +(1.50523 - 1.17882i) q^{65} +(0.650688 - 2.42840i) q^{66} +(1.04130 - 2.23307i) q^{67} +2.56262 q^{68} +(4.61832 - 9.90403i) q^{69} +(4.28471 + 2.17693i) q^{70} +(3.65536 + 3.06721i) q^{71} +(-1.03024 + 0.864470i) q^{72} +(-5.65375 - 5.65375i) q^{73} +(-6.06027 - 0.522575i) q^{74} +(6.31154 - 1.24199i) q^{75} +(-5.50650 - 0.481756i) q^{76} +(-4.18413 + 0.366064i) q^{77} +(-0.901071 + 0.630936i) q^{78} +(10.9948 + 5.12694i) q^{79} +(-1.97312 + 1.05205i) q^{80} +(-2.96630 + 1.07965i) q^{81} +(-2.10118 - 3.63935i) q^{82} +(-9.35023 - 6.54710i) q^{83} +(-2.39467 - 1.38256i) q^{84} +(-4.86299 - 3.03092i) q^{85} +(6.63032 - 5.56350i) q^{86} +(-0.404598 + 2.29459i) q^{87} +(0.977083 - 1.69236i) q^{88} +(8.72875 - 4.07028i) q^{89} +(2.97748 - 0.421968i) q^{90} +(1.50537 + 1.05407i) q^{91} +(5.45995 - 6.50691i) q^{92} +(-0.771256 + 0.919148i) q^{93} +(-3.06378 - 2.14528i) q^{94} +(9.87967 + 7.42698i) q^{95} +(1.16598 - 0.543705i) q^{96} +(-4.63948 + 8.03582i) q^{97} +(0.413362 - 2.34429i) q^{98} +(-2.01325 + 1.68932i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 6 q^{3} + O(q^{10}) \) \( 108 q + 6 q^{3} + 6 q^{10} + 36 q^{11} - 6 q^{12} - 12 q^{14} - 12 q^{17} - 12 q^{19} - 42 q^{21} - 36 q^{23} + 6 q^{24} - 6 q^{25} - 6 q^{26} - 6 q^{27} - 24 q^{30} + 6 q^{33} - 66 q^{35} + 48 q^{38} - 12 q^{40} + 48 q^{41} + 66 q^{42} - 6 q^{44} - 162 q^{45} + 6 q^{46} + 24 q^{47} + 12 q^{49} + 36 q^{50} - 12 q^{51} + 12 q^{53} + 18 q^{54} + 48 q^{57} + 6 q^{58} - 24 q^{59} - 36 q^{61} - 30 q^{62} + 102 q^{63} + 54 q^{64} + 54 q^{65} - 54 q^{67} + 96 q^{69} - 36 q^{70} - 48 q^{71} - 84 q^{73} - 42 q^{74} + 252 q^{75} - 6 q^{76} + 36 q^{77} - 36 q^{78} - 66 q^{79} - 6 q^{80} - 108 q^{81} + 6 q^{82} - 60 q^{83} - 18 q^{85} - 168 q^{87} + 12 q^{88} + 66 q^{89} + 12 q^{90} - 18 q^{91} - 18 q^{92} - 18 q^{94} - 18 q^{95} + 12 q^{96} - 36 q^{97} - 60 q^{98} + 42 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.642788 + 0.766044i 0.454519 + 0.541675i
\(3\) 0.112127 + 1.28162i 0.0647367 + 0.739944i 0.957314 + 0.289050i \(0.0933393\pi\)
−0.892577 + 0.450894i \(0.851105\pi\)
\(4\) −0.173648 + 0.984808i −0.0868241 + 0.492404i
\(5\) 1.49430 1.66345i 0.668271 0.743918i
\(6\) −0.909704 + 0.909704i −0.371385 + 0.371385i
\(7\) 1.94794 + 0.908339i 0.736252 + 0.343320i 0.754311 0.656517i \(-0.227971\pi\)
−0.0180594 + 0.999837i \(0.505749\pi\)
\(8\) −0.866025 + 0.500000i −0.306186 + 0.176777i
\(9\) 1.32445 0.233535i 0.441482 0.0778451i
\(10\) 2.23479 + 0.0754544i 0.706704 + 0.0238608i
\(11\) −1.69236 + 0.977083i −0.510265 + 0.294601i −0.732942 0.680291i \(-0.761854\pi\)
0.222678 + 0.974892i \(0.428520\pi\)
\(12\) −1.28162 0.112127i −0.369972 0.0323683i
\(13\) 0.842036 + 0.148474i 0.233539 + 0.0411792i 0.289193 0.957271i \(-0.406613\pi\)
−0.0556538 + 0.998450i \(0.517724\pi\)
\(14\) 0.556283 + 2.07608i 0.148673 + 0.554855i
\(15\) 2.29946 + 1.72861i 0.593719 + 0.446324i
\(16\) −0.939693 0.342020i −0.234923 0.0855050i
\(17\) −0.444995 2.52369i −0.107927 0.612085i −0.990011 0.140992i \(-0.954971\pi\)
0.882084 0.471093i \(-0.156140\pi\)
\(18\) 1.03024 + 0.864470i 0.242829 + 0.203758i
\(19\) 0.481756 + 5.50650i 0.110522 + 1.26328i 0.825610 + 0.564242i \(0.190831\pi\)
−0.715087 + 0.699035i \(0.753613\pi\)
\(20\) 1.37870 + 1.76045i 0.308286 + 0.393649i
\(21\) −0.945728 + 2.59837i −0.206375 + 0.567010i
\(22\) −1.83631 0.668364i −0.391504 0.142496i
\(23\) −7.35617 4.24708i −1.53387 0.885578i −0.999178 0.0405292i \(-0.987096\pi\)
−0.534688 0.845049i \(-0.679571\pi\)
\(24\) −0.737915 1.05385i −0.150626 0.215117i
\(25\) −0.534137 4.97139i −0.106827 0.994278i
\(26\) 0.427513 + 0.740474i 0.0838422 + 0.145219i
\(27\) 1.44673 + 5.39929i 0.278424 + 1.03909i
\(28\) −1.23280 + 1.76061i −0.232976 + 0.332725i
\(29\) 1.74937 + 0.468743i 0.324850 + 0.0870434i 0.417559 0.908650i \(-0.362886\pi\)
−0.0927085 + 0.995693i \(0.529552\pi\)
\(30\) 0.153877 + 2.87262i 0.0280940 + 0.524466i
\(31\) 0.659479 + 0.659479i 0.118446 + 0.118446i 0.763845 0.645399i \(-0.223309\pi\)
−0.645399 + 0.763845i \(0.723309\pi\)
\(32\) −0.342020 0.939693i −0.0604612 0.166116i
\(33\) −1.44201 2.05940i −0.251021 0.358496i
\(34\) 1.64722 1.96308i 0.282496 0.336666i
\(35\) 4.42178 1.88297i 0.747417 0.318280i
\(36\) 1.34488i 0.224146i
\(37\) −4.29578 + 4.30653i −0.706223 + 0.707990i
\(38\) −3.90855 + 3.90855i −0.634051 + 0.634051i
\(39\) −0.0958717 + 1.09582i −0.0153518 + 0.175471i
\(40\) −0.462376 + 2.18774i −0.0731081 + 0.345912i
\(41\) −4.13852 0.729733i −0.646328 0.113965i −0.159132 0.987257i \(-0.550869\pi\)
−0.487197 + 0.873292i \(0.661981\pi\)
\(42\) −2.59837 + 0.945728i −0.400937 + 0.145929i
\(43\) 8.65527i 1.31992i −0.751303 0.659958i \(-0.770574\pi\)
0.751303 0.659958i \(-0.229426\pi\)
\(44\) −0.668364 1.83631i −0.100760 0.276835i
\(45\) 1.59064 2.55212i 0.237119 0.380448i
\(46\) −1.47500 8.36512i −0.217476 1.23337i
\(47\) −3.61275 + 0.968032i −0.526973 + 0.141202i −0.512490 0.858693i \(-0.671277\pi\)
−0.0144830 + 0.999895i \(0.504610\pi\)
\(48\) 0.332975 1.24268i 0.0480608 0.179365i
\(49\) −1.53013 1.82353i −0.218590 0.260505i
\(50\) 3.46497 3.60472i 0.490020 0.509784i
\(51\) 3.18452 0.853289i 0.445921 0.119484i
\(52\) −0.292436 + 0.803461i −0.0405536 + 0.111420i
\(53\) 10.3097 4.80748i 1.41614 0.660358i 0.444275 0.895890i \(-0.353461\pi\)
0.971866 + 0.235533i \(0.0756835\pi\)
\(54\) −3.20615 + 4.57886i −0.436302 + 0.623104i
\(55\) −0.903559 + 4.27521i −0.121836 + 0.576469i
\(56\) −2.14113 + 0.187325i −0.286121 + 0.0250323i
\(57\) −7.00322 + 1.23486i −0.927599 + 0.163561i
\(58\) 0.765397 + 1.64140i 0.100502 + 0.215526i
\(59\) −0.501030 1.07446i −0.0652285 0.139883i 0.870991 0.491299i \(-0.163478\pi\)
−0.936219 + 0.351416i \(0.885700\pi\)
\(60\) −2.10164 + 1.96436i −0.271321 + 0.253598i
\(61\) 9.37515 6.56455i 1.20036 0.840504i 0.209826 0.977739i \(-0.432710\pi\)
0.990539 + 0.137235i \(0.0438214\pi\)
\(62\) −0.0812853 + 0.929096i −0.0103232 + 0.117995i
\(63\) 2.79207 + 0.748132i 0.351767 + 0.0942558i
\(64\) 0.500000 0.866025i 0.0625000 0.108253i
\(65\) 1.50523 1.17882i 0.186701 0.146215i
\(66\) 0.650688 2.42840i 0.0800941 0.298915i
\(67\) 1.04130 2.23307i 0.127215 0.272813i −0.832377 0.554210i \(-0.813020\pi\)
0.959591 + 0.281398i \(0.0907980\pi\)
\(68\) 2.56262 0.310764
\(69\) 4.61832 9.90403i 0.555981 1.19230i
\(70\) 4.28471 + 2.17693i 0.512120 + 0.260193i
\(71\) 3.65536 + 3.06721i 0.433811 + 0.364011i 0.833387 0.552689i \(-0.186398\pi\)
−0.399576 + 0.916700i \(0.630843\pi\)
\(72\) −1.03024 + 0.864470i −0.121414 + 0.101879i
\(73\) −5.65375 5.65375i −0.661721 0.661721i 0.294065 0.955786i \(-0.404992\pi\)
−0.955786 + 0.294065i \(0.904992\pi\)
\(74\) −6.06027 0.522575i −0.704492 0.0607481i
\(75\) 6.31154 1.24199i 0.728794 0.143412i
\(76\) −5.50650 0.481756i −0.631638 0.0552612i
\(77\) −4.18413 + 0.366064i −0.476826 + 0.0417169i
\(78\) −0.901071 + 0.630936i −0.102026 + 0.0714395i
\(79\) 10.9948 + 5.12694i 1.23701 + 0.576826i 0.927412 0.374042i \(-0.122028\pi\)
0.309596 + 0.950868i \(0.399806\pi\)
\(80\) −1.97312 + 1.05205i −0.220601 + 0.117623i
\(81\) −2.96630 + 1.07965i −0.329589 + 0.119961i
\(82\) −2.10118 3.63935i −0.232037 0.401899i
\(83\) −9.35023 6.54710i −1.02632 0.718638i −0.0660812 0.997814i \(-0.521050\pi\)
−0.960240 + 0.279177i \(0.909939\pi\)
\(84\) −2.39467 1.38256i −0.261280 0.150850i
\(85\) −4.86299 3.03092i −0.527465 0.328750i
\(86\) 6.63032 5.56350i 0.714966 0.599927i
\(87\) −0.404598 + 2.29459i −0.0433775 + 0.246006i
\(88\) 0.977083 1.69236i 0.104157 0.180406i
\(89\) 8.72875 4.07028i 0.925245 0.431449i 0.0992095 0.995067i \(-0.468369\pi\)
0.826036 + 0.563618i \(0.190591\pi\)
\(90\) 2.97748 0.421968i 0.313854 0.0444794i
\(91\) 1.50537 + 1.05407i 0.157806 + 0.110497i
\(92\) 5.45995 6.50691i 0.569239 0.678392i
\(93\) −0.771256 + 0.919148i −0.0799756 + 0.0953112i
\(94\) −3.06378 2.14528i −0.316005 0.221269i
\(95\) 9.87967 + 7.42698i 1.01363 + 0.761992i
\(96\) 1.16598 0.543705i 0.119002 0.0554917i
\(97\) −4.63948 + 8.03582i −0.471068 + 0.815914i −0.999452 0.0330914i \(-0.989465\pi\)
0.528384 + 0.849005i \(0.322798\pi\)
\(98\) 0.413362 2.34429i 0.0417558 0.236809i
\(99\) −2.01325 + 1.68932i −0.202339 + 0.169783i
\(100\) 4.98861 + 0.337250i 0.498861 + 0.0337250i
\(101\) −5.19562 2.99969i −0.516983 0.298480i 0.218716 0.975788i \(-0.429813\pi\)
−0.735699 + 0.677308i \(0.763146\pi\)
\(102\) 2.70062 + 1.89100i 0.267402 + 0.187237i
\(103\) −4.69863 8.13827i −0.462970 0.801888i 0.536137 0.844131i \(-0.319883\pi\)
−0.999107 + 0.0422430i \(0.986550\pi\)
\(104\) −0.803461 + 0.292436i −0.0787859 + 0.0286757i
\(105\) 2.90905 + 5.45591i 0.283895 + 0.532443i
\(106\) 10.3097 + 4.80748i 1.00136 + 0.466943i
\(107\) −3.03809 + 2.12730i −0.293704 + 0.205653i −0.711136 0.703055i \(-0.751819\pi\)
0.417432 + 0.908708i \(0.362930\pi\)
\(108\) −5.56848 + 0.487179i −0.535827 + 0.0468788i
\(109\) −5.73727 0.501946i −0.549531 0.0480777i −0.190990 0.981592i \(-0.561170\pi\)
−0.358540 + 0.933514i \(0.616725\pi\)
\(110\) −3.85579 + 2.05588i −0.367636 + 0.196021i
\(111\) −6.00102 5.02268i −0.569591 0.476732i
\(112\) −1.51979 1.51979i −0.143607 0.143607i
\(113\) −14.7054 + 12.3393i −1.38337 + 1.16078i −0.415418 + 0.909630i \(0.636365\pi\)
−0.967948 + 0.251152i \(0.919191\pi\)
\(114\) −5.44754 4.57103i −0.510209 0.428116i
\(115\) −18.0571 + 5.89020i −1.68384 + 0.549264i
\(116\) −0.765397 + 1.64140i −0.0710653 + 0.152400i
\(117\) 1.14990 0.106309
\(118\) 0.501030 1.07446i 0.0461235 0.0989122i
\(119\) 1.42554 5.32020i 0.130679 0.487702i
\(120\) −2.85570 0.347285i −0.260688 0.0317027i
\(121\) −3.59062 + 6.21914i −0.326420 + 0.565376i
\(122\) 11.0550 + 2.96217i 1.00087 + 0.268182i
\(123\) 0.471200 5.38584i 0.0424866 0.485624i
\(124\) −0.763978 + 0.534943i −0.0686072 + 0.0480393i
\(125\) −9.06782 6.54023i −0.811050 0.584976i
\(126\) 1.22160 + 2.61974i 0.108829 + 0.233385i
\(127\) 5.29731 + 11.3601i 0.470061 + 1.00805i 0.988259 + 0.152788i \(0.0488251\pi\)
−0.518198 + 0.855260i \(0.673397\pi\)
\(128\) 0.984808 0.173648i 0.0870455 0.0153485i
\(129\) 11.0928 0.970491i 0.976663 0.0854470i
\(130\) 1.87057 + 0.395343i 0.164060 + 0.0346739i
\(131\) 9.29671 13.2771i 0.812258 1.16002i −0.172314 0.985042i \(-0.555124\pi\)
0.984572 0.174982i \(-0.0559867\pi\)
\(132\) 2.27852 1.06249i 0.198319 0.0924778i
\(133\) −4.06333 + 11.1639i −0.352336 + 0.968034i
\(134\) 2.37996 0.637709i 0.205597 0.0550897i
\(135\) 11.1433 + 5.66158i 0.959063 + 0.487271i
\(136\) 1.64722 + 1.96308i 0.141248 + 0.168333i
\(137\) 1.04185 3.88825i 0.0890114 0.332195i −0.907032 0.421061i \(-0.861658\pi\)
0.996044 + 0.0888662i \(0.0283244\pi\)
\(138\) 10.5555 2.82834i 0.898546 0.240765i
\(139\) 0.658903 + 3.73683i 0.0558874 + 0.316953i 0.999917 0.0129084i \(-0.00410897\pi\)
−0.944029 + 0.329862i \(0.892998\pi\)
\(140\) 1.08653 + 4.68158i 0.0918285 + 0.395666i
\(141\) −1.64574 4.52163i −0.138596 0.380790i
\(142\) 4.77173i 0.400435i
\(143\) −1.57010 + 0.571468i −0.131298 + 0.0477886i
\(144\) −1.32445 0.233535i −0.110370 0.0194613i
\(145\) 3.39382 2.20955i 0.281841 0.183493i
\(146\) 0.696863 7.96518i 0.0576728 0.659203i
\(147\) 2.16551 2.16551i 0.178608 0.178608i
\(148\) −3.49515 4.97834i −0.287300 0.409217i
\(149\) 5.80363i 0.475452i −0.971332 0.237726i \(-0.923598\pi\)
0.971332 0.237726i \(-0.0764020\pi\)
\(150\) 5.00840 + 4.03659i 0.408934 + 0.329586i
\(151\) −11.5042 + 13.7101i −0.936196 + 1.11572i 0.0568962 + 0.998380i \(0.481880\pi\)
−0.993092 + 0.117335i \(0.962565\pi\)
\(152\) −3.17046 4.52789i −0.257158 0.367260i
\(153\) −1.17874 3.23857i −0.0952956 0.261823i
\(154\) −2.96993 2.96993i −0.239324 0.239324i
\(155\) 2.08247 0.111552i 0.167268 0.00896004i
\(156\) −1.06252 0.284702i −0.0850699 0.0227944i
\(157\) −8.37760 + 11.9645i −0.668606 + 0.954868i 0.331330 + 0.943515i \(0.392503\pi\)
−0.999936 + 0.0113528i \(0.996386\pi\)
\(158\) 3.13983 + 11.7180i 0.249792 + 0.932235i
\(159\) 7.31735 + 12.6740i 0.580304 + 1.00512i
\(160\) −2.07421 0.835249i −0.163981 0.0660322i
\(161\) −10.4716 14.9550i −0.825275 1.17862i
\(162\) −2.73376 1.57834i −0.214785 0.124006i
\(163\) 9.44521 + 3.43777i 0.739806 + 0.269267i 0.684309 0.729192i \(-0.260104\pi\)
0.0554961 + 0.998459i \(0.482326\pi\)
\(164\) 1.43729 3.94893i 0.112234 0.308360i
\(165\) −5.58050 0.678653i −0.434442 0.0528331i
\(166\) −0.994841 11.3711i −0.0772146 0.882567i
\(167\) −9.48324 7.95739i −0.733836 0.615761i 0.197339 0.980335i \(-0.436770\pi\)
−0.931174 + 0.364574i \(0.881215\pi\)
\(168\) −0.480159 2.72312i −0.0370451 0.210093i
\(169\) −11.5290 4.19622i −0.886848 0.322786i
\(170\) −0.804048 5.67351i −0.0616677 0.435138i
\(171\) 1.92402 + 7.18054i 0.147134 + 0.549110i
\(172\) 8.52377 + 1.50297i 0.649932 + 0.114600i
\(173\) 8.14379 + 0.712489i 0.619161 + 0.0541696i 0.392421 0.919786i \(-0.371638\pi\)
0.226740 + 0.973955i \(0.427193\pi\)
\(174\) −2.01783 + 1.16499i −0.152971 + 0.0883179i
\(175\) 3.47524 10.1691i 0.262703 0.768715i
\(176\) 1.92448 0.339337i 0.145063 0.0255785i
\(177\) 1.32087 0.762606i 0.0992828 0.0573210i
\(178\) 8.72875 + 4.07028i 0.654247 + 0.305080i
\(179\) 7.53047 7.53047i 0.562854 0.562854i −0.367263 0.930117i \(-0.619705\pi\)
0.930117 + 0.367263i \(0.119705\pi\)
\(180\) 2.23714 + 2.00965i 0.166746 + 0.149790i
\(181\) −1.11704 + 6.33503i −0.0830287 + 0.470879i 0.914736 + 0.404052i \(0.132399\pi\)
−0.997765 + 0.0668270i \(0.978712\pi\)
\(182\) 0.160168 + 1.83072i 0.0118724 + 0.135702i
\(183\) 9.46447 + 11.2793i 0.699633 + 0.833791i
\(184\) 8.49417 0.626199
\(185\) 0.744519 + 13.5811i 0.0547381 + 0.998501i
\(186\) −1.19986 −0.0879781
\(187\) 3.21894 + 3.83619i 0.235392 + 0.280530i
\(188\) −0.325979 3.72596i −0.0237745 0.271743i
\(189\) −2.08623 + 11.8316i −0.151751 + 0.860623i
\(190\) 0.661136 + 12.3422i 0.0479638 + 0.895400i
\(191\) −4.05404 + 4.05404i −0.293340 + 0.293340i −0.838398 0.545058i \(-0.816508\pi\)
0.545058 + 0.838398i \(0.316508\pi\)
\(192\) 1.16598 + 0.543705i 0.0841473 + 0.0392385i
\(193\) −0.215418 + 0.124371i −0.0155061 + 0.00895245i −0.507733 0.861514i \(-0.669516\pi\)
0.492227 + 0.870467i \(0.336183\pi\)
\(194\) −9.13800 + 1.61128i −0.656070 + 0.115683i
\(195\) 1.67958 + 1.79696i 0.120277 + 0.128683i
\(196\) 2.06153 1.19023i 0.147252 0.0850162i
\(197\) 2.25580 + 0.197357i 0.160719 + 0.0140611i 0.167231 0.985918i \(-0.446517\pi\)
−0.00651213 + 0.999979i \(0.502073\pi\)
\(198\) −2.58818 0.456367i −0.183934 0.0324326i
\(199\) 4.90563 + 18.3081i 0.347751 + 1.29783i 0.889365 + 0.457198i \(0.151147\pi\)
−0.541614 + 0.840627i \(0.682187\pi\)
\(200\) 2.94827 + 4.03828i 0.208474 + 0.285550i
\(201\) 2.97870 + 1.08416i 0.210102 + 0.0764707i
\(202\) −1.04178 5.90824i −0.0732995 0.415702i
\(203\) 2.98189 + 2.50210i 0.209288 + 0.175613i
\(204\) 0.287340 + 3.28431i 0.0201178 + 0.229948i
\(205\) −7.39807 + 5.79379i −0.516703 + 0.404656i
\(206\) 3.21405 8.83054i 0.223934 0.615253i
\(207\) −10.7347 3.90711i −0.746112 0.271563i
\(208\) −0.740474 0.427513i −0.0513426 0.0296427i
\(209\) −6.19560 8.84824i −0.428559 0.612045i
\(210\) −2.30957 + 5.73546i −0.159375 + 0.395784i
\(211\) 8.53624 + 14.7852i 0.587659 + 1.01785i 0.994538 + 0.104373i \(0.0332836\pi\)
−0.406879 + 0.913482i \(0.633383\pi\)
\(212\) 2.94419 + 10.9878i 0.202207 + 0.754649i
\(213\) −3.52113 + 5.02870i −0.241264 + 0.344561i
\(214\) −3.58245 0.959915i −0.244891 0.0656185i
\(215\) −14.3976 12.9336i −0.981909 0.882062i
\(216\) −3.95255 3.95255i −0.268937 0.268937i
\(217\) 0.685595 + 1.88366i 0.0465412 + 0.127871i
\(218\) −3.30333 4.71765i −0.223730 0.319519i
\(219\) 6.61202 7.87989i 0.446799 0.532474i
\(220\) −4.05335 1.63221i −0.273277 0.110044i
\(221\) 2.19111i 0.147390i
\(222\) −0.00977934 7.82556i −0.000656346 0.525217i
\(223\) −8.94399 + 8.94399i −0.598934 + 0.598934i −0.940029 0.341095i \(-0.889202\pi\)
0.341095 + 0.940029i \(0.389202\pi\)
\(224\) 0.187325 2.14113i 0.0125162 0.143061i
\(225\) −1.86843 6.45959i −0.124562 0.430639i
\(226\) −18.9049 3.33344i −1.25753 0.221737i
\(227\) 13.7078 4.98924i 0.909819 0.331147i 0.155639 0.987814i \(-0.450256\pi\)
0.754181 + 0.656667i \(0.228034\pi\)
\(228\) 7.11125i 0.470954i
\(229\) 7.49649 + 20.5964i 0.495382 + 1.36105i 0.895693 + 0.444672i \(0.146680\pi\)
−0.400311 + 0.916379i \(0.631098\pi\)
\(230\) −16.1191 10.0464i −1.06286 0.662441i
\(231\) −0.938310 5.32142i −0.0617363 0.350124i
\(232\) −1.74937 + 0.468743i −0.114852 + 0.0307745i
\(233\) −6.08975 + 22.7273i −0.398953 + 1.48891i 0.415989 + 0.909370i \(0.363436\pi\)
−0.814942 + 0.579543i \(0.803231\pi\)
\(234\) 0.739144 + 0.880878i 0.0483194 + 0.0575848i
\(235\) −3.78825 + 7.45616i −0.247118 + 0.486386i
\(236\) 1.14514 0.306840i 0.0745423 0.0199736i
\(237\) −5.33798 + 14.6660i −0.346739 + 0.952658i
\(238\) 4.99183 2.32773i 0.323572 0.150884i
\(239\) 1.69322 2.41817i 0.109525 0.156419i −0.760647 0.649165i \(-0.775118\pi\)
0.870173 + 0.492747i \(0.164007\pi\)
\(240\) −1.56957 2.41082i −0.101315 0.155618i
\(241\) 12.5995 1.10231i 0.811604 0.0710062i 0.326205 0.945299i \(-0.394230\pi\)
0.485399 + 0.874293i \(0.338674\pi\)
\(242\) −7.07214 + 1.24701i −0.454614 + 0.0801608i
\(243\) 5.37069 + 11.5175i 0.344530 + 0.738847i
\(244\) 4.83684 + 10.3726i 0.309647 + 0.664040i
\(245\) −5.31983 0.179616i −0.339871 0.0114752i
\(246\) 4.42867 3.10099i 0.282362 0.197712i
\(247\) −0.411914 + 4.70819i −0.0262094 + 0.299575i
\(248\) −0.900865 0.241386i −0.0572050 0.0153280i
\(249\) 7.34248 12.7176i 0.465311 0.805942i
\(250\) −0.818573 11.1503i −0.0517711 0.705209i
\(251\) 3.99600 14.9133i 0.252225 0.941317i −0.717388 0.696674i \(-0.754663\pi\)
0.969613 0.244643i \(-0.0786707\pi\)
\(252\) −1.22160 + 2.61974i −0.0769538 + 0.165028i
\(253\) 16.5990 1.04357
\(254\) −5.29731 + 11.3601i −0.332383 + 0.712798i
\(255\) 3.33922 6.57235i 0.209110 0.411577i
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) 16.2846 13.6644i 1.01580 0.852361i 0.0267101 0.999643i \(-0.491497\pi\)
0.989095 + 0.147282i \(0.0470525\pi\)
\(258\) 7.87373 + 7.87373i 0.490197 + 0.490197i
\(259\) −12.2797 + 4.48684i −0.763025 + 0.278799i
\(260\) 0.899531 + 1.68706i 0.0557866 + 0.104627i
\(261\) 2.42642 + 0.212284i 0.150191 + 0.0131400i
\(262\) 16.1466 1.41265i 0.997543 0.0872737i
\(263\) −11.9146 + 8.34267i −0.734684 + 0.514431i −0.880012 0.474952i \(-0.842465\pi\)
0.145327 + 0.989384i \(0.453576\pi\)
\(264\) 2.27852 + 1.06249i 0.140233 + 0.0653917i
\(265\) 7.40873 24.3334i 0.455115 1.49479i
\(266\) −11.1639 + 4.06333i −0.684503 + 0.249139i
\(267\) 6.19529 + 10.7305i 0.379145 + 0.656699i
\(268\) 2.01832 + 1.41325i 0.123289 + 0.0863277i
\(269\) 6.96118 + 4.01904i 0.424431 + 0.245045i 0.696971 0.717099i \(-0.254530\pi\)
−0.272540 + 0.962144i \(0.587864\pi\)
\(270\) 2.82575 + 12.1755i 0.171970 + 0.740975i
\(271\) 9.15418 7.68127i 0.556077 0.466604i −0.320916 0.947108i \(-0.603991\pi\)
0.876993 + 0.480504i \(0.159546\pi\)
\(272\) −0.444995 + 2.52369i −0.0269818 + 0.153021i
\(273\) −1.18213 + 2.04750i −0.0715455 + 0.123921i
\(274\) 3.64826 1.70121i 0.220399 0.102774i
\(275\) 5.76141 + 7.89147i 0.347426 + 0.475873i
\(276\) 8.95160 + 6.26798i 0.538823 + 0.377288i
\(277\) 2.28612 2.72449i 0.137360 0.163699i −0.692979 0.720957i \(-0.743702\pi\)
0.830339 + 0.557258i \(0.188147\pi\)
\(278\) −2.43904 + 2.90673i −0.146284 + 0.174334i
\(279\) 1.02746 + 0.719432i 0.0615122 + 0.0430713i
\(280\) −2.88789 + 3.84159i −0.172584 + 0.229579i
\(281\) −20.3704 + 9.49887i −1.21520 + 0.566655i −0.921177 0.389145i \(-0.872771\pi\)
−0.294019 + 0.955800i \(0.594993\pi\)
\(282\) 2.40591 4.16715i 0.143270 0.248150i
\(283\) 4.87195 27.6302i 0.289607 1.64244i −0.398740 0.917064i \(-0.630553\pi\)
0.688348 0.725381i \(-0.258336\pi\)
\(284\) −3.65536 + 3.06721i −0.216905 + 0.182005i
\(285\) −8.41078 + 13.4948i −0.498212 + 0.799360i
\(286\) −1.44701 0.835431i −0.0855634 0.0494000i
\(287\) −7.39874 5.18065i −0.436734 0.305804i
\(288\) −0.672438 1.16470i −0.0396238 0.0686305i
\(289\) 9.80378 3.56829i 0.576693 0.209899i
\(290\) 3.87412 + 1.17954i 0.227496 + 0.0692651i
\(291\) −10.8191 5.04502i −0.634226 0.295744i
\(292\) 6.54962 4.58609i 0.383287 0.268381i
\(293\) 3.92319 0.343235i 0.229195 0.0200520i 0.0280204 0.999607i \(-0.491080\pi\)
0.201175 + 0.979555i \(0.435524\pi\)
\(294\) 3.05084 + 0.266914i 0.177929 + 0.0155667i
\(295\) −2.53600 0.772129i −0.147652 0.0449551i
\(296\) 1.56699 5.87746i 0.0910795 0.341620i
\(297\) −7.72394 7.72394i −0.448188 0.448188i
\(298\) 4.44584 3.73050i 0.257540 0.216102i
\(299\) −5.56358 4.66839i −0.321750 0.269980i
\(300\) 0.127133 + 6.43132i 0.00734000 + 0.371313i
\(301\) 7.86191 16.8599i 0.453153 0.971790i
\(302\) −17.8973 −1.02987
\(303\) 3.26189 6.99516i 0.187391 0.401861i
\(304\) 1.43063 5.33918i 0.0820522 0.306223i
\(305\) 3.08948 25.4045i 0.176903 1.45466i
\(306\) 1.72321 2.98468i 0.0985091 0.170623i
\(307\) −30.4543 8.16021i −1.73812 0.465728i −0.756092 0.654465i \(-0.772894\pi\)
−0.982028 + 0.188737i \(0.939561\pi\)
\(308\) 0.366064 4.18413i 0.0208584 0.238413i
\(309\) 9.90333 6.93439i 0.563381 0.394483i
\(310\) 1.42404 + 1.52356i 0.0808800 + 0.0865325i
\(311\) 12.4057 + 26.6040i 0.703460 + 1.50858i 0.854168 + 0.519997i \(0.174067\pi\)
−0.150708 + 0.988578i \(0.548155\pi\)
\(312\) −0.464882 0.996942i −0.0263187 0.0564407i
\(313\) 17.8446 3.14648i 1.00864 0.177850i 0.355167 0.934803i \(-0.384424\pi\)
0.653469 + 0.756953i \(0.273313\pi\)
\(314\) −14.5503 + 1.27299i −0.821122 + 0.0718389i
\(315\) 5.41667 3.52653i 0.305195 0.198698i
\(316\) −6.95827 + 9.93744i −0.391433 + 0.559025i
\(317\) −5.55832 + 2.59189i −0.312187 + 0.145575i −0.572396 0.819977i \(-0.693986\pi\)
0.260210 + 0.965552i \(0.416208\pi\)
\(318\) −5.00536 + 13.7521i −0.280687 + 0.771181i
\(319\) −3.41856 + 0.916001i −0.191403 + 0.0512862i
\(320\) −0.693441 2.12583i −0.0387645 0.118837i
\(321\) −3.06704 3.65515i −0.171185 0.204011i
\(322\) 4.72516 17.6345i 0.263323 0.982735i
\(323\) 13.6823 3.66616i 0.761304 0.203991i
\(324\) −0.548151 3.10872i −0.0304528 0.172707i
\(325\) 0.288358 4.26539i 0.0159952 0.236601i
\(326\) 3.43777 + 9.44521i 0.190401 + 0.523122i
\(327\) 7.40928i 0.409734i
\(328\) 3.94893 1.43729i 0.218043 0.0793612i
\(329\) −7.91671 1.39593i −0.436462 0.0769601i
\(330\) −3.06720 4.71114i −0.168844 0.259340i
\(331\) −1.70799 + 19.5224i −0.0938794 + 1.07305i 0.792433 + 0.609959i \(0.208814\pi\)
−0.886313 + 0.463087i \(0.846742\pi\)
\(332\) 8.07129 8.07129i 0.442969 0.442969i
\(333\) −4.68380 + 6.70699i −0.256671 + 0.367541i
\(334\) 12.3795i 0.677376i
\(335\) −2.15859 5.06902i −0.117936 0.276950i
\(336\) 1.77739 2.11821i 0.0969645 0.115558i
\(337\) −10.5182 15.0215i −0.572963 0.818276i 0.423178 0.906047i \(-0.360915\pi\)
−0.996141 + 0.0877709i \(0.972026\pi\)
\(338\) −4.19622 11.5290i −0.228244 0.627096i
\(339\) −17.4631 17.4631i −0.948468 0.948468i
\(340\) 3.82933 4.26280i 0.207674 0.231183i
\(341\) −1.76044 0.471708i −0.0953332 0.0255444i
\(342\) −4.26388 + 6.08945i −0.230564 + 0.329280i
\(343\) −5.21819 19.4745i −0.281756 1.05153i
\(344\) 4.32763 + 7.49568i 0.233330 + 0.404140i
\(345\) −9.57370 22.4819i −0.515431 1.21039i
\(346\) 4.68893 + 6.69649i 0.252078 + 0.360005i
\(347\) 20.5145 + 11.8441i 1.10128 + 0.635823i 0.936556 0.350518i \(-0.113994\pi\)
0.164721 + 0.986340i \(0.447328\pi\)
\(348\) −2.18947 0.796903i −0.117368 0.0427185i
\(349\) −5.38741 + 14.8018i −0.288382 + 0.792322i 0.707912 + 0.706301i \(0.249637\pi\)
−0.996293 + 0.0860210i \(0.972585\pi\)
\(350\) 10.0239 3.87441i 0.535797 0.207096i
\(351\) 0.416551 + 4.76120i 0.0222338 + 0.254134i
\(352\) 1.49698 + 1.25611i 0.0797892 + 0.0669511i
\(353\) −2.24264 12.7187i −0.119364 0.676946i −0.984497 0.175403i \(-0.943877\pi\)
0.865133 0.501543i \(-0.167234\pi\)
\(354\) 1.43323 + 0.521653i 0.0761753 + 0.0277256i
\(355\) 10.5643 1.49718i 0.560697 0.0794619i
\(356\) 2.49271 + 9.30293i 0.132114 + 0.493055i
\(357\) 6.97832 + 1.23047i 0.369332 + 0.0651232i
\(358\) 10.6092 + 0.928182i 0.560712 + 0.0490559i
\(359\) −2.00555 + 1.15790i −0.105849 + 0.0611118i −0.551990 0.833851i \(-0.686131\pi\)
0.446141 + 0.894963i \(0.352798\pi\)
\(360\) −0.101477 + 3.00552i −0.00534830 + 0.158405i
\(361\) −11.3781 + 2.00626i −0.598845 + 0.105593i
\(362\) −5.57094 + 3.21638i −0.292802 + 0.169049i
\(363\) −8.37318 3.90448i −0.439478 0.204932i
\(364\) −1.29946 + 1.29946i −0.0681103 + 0.0681103i
\(365\) −17.8531 + 0.956337i −0.934475 + 0.0500570i
\(366\) −2.55681 + 14.5004i −0.133647 + 0.757948i
\(367\) −0.355903 4.06798i −0.0185780 0.212347i −0.999810 0.0195142i \(-0.993788\pi\)
0.981232 0.192833i \(-0.0617675\pi\)
\(368\) 5.45995 + 6.50691i 0.284619 + 0.339196i
\(369\) −5.65166 −0.294214
\(370\) −9.92514 + 9.30008i −0.515984 + 0.483488i
\(371\) 24.4494 1.26935
\(372\) −0.771256 0.919148i −0.0399878 0.0476556i
\(373\) −3.04386 34.7915i −0.157605 1.80143i −0.504375 0.863484i \(-0.668277\pi\)
0.346770 0.937950i \(-0.387278\pi\)
\(374\) −0.869593 + 4.93171i −0.0449656 + 0.255012i
\(375\) 7.36535 12.3548i 0.380345 0.638001i
\(376\) 2.64471 2.64471i 0.136391 0.136391i
\(377\) 1.40344 + 0.654434i 0.0722807 + 0.0337051i
\(378\) −10.4045 + 6.00706i −0.535152 + 0.308970i
\(379\) 8.48016 1.49528i 0.435596 0.0768074i 0.0484499 0.998826i \(-0.484572\pi\)
0.387146 + 0.922018i \(0.373461\pi\)
\(380\) −9.02973 + 8.43990i −0.463215 + 0.432958i
\(381\) −13.9654 + 8.06293i −0.715469 + 0.413076i
\(382\) −5.71147 0.499688i −0.292224 0.0255663i
\(383\) −19.4535 3.43018i −0.994029 0.175274i −0.347103 0.937827i \(-0.612835\pi\)
−0.646926 + 0.762553i \(0.723946\pi\)
\(384\) 0.332975 + 1.24268i 0.0169920 + 0.0634152i
\(385\) −5.64341 + 7.50710i −0.287615 + 0.382597i
\(386\) −0.233742 0.0850751i −0.0118971 0.00433021i
\(387\) −2.02131 11.4634i −0.102749 0.582719i
\(388\) −7.10810 5.96440i −0.360859 0.302797i
\(389\) −2.24257 25.6327i −0.113703 1.29963i −0.811930 0.583755i \(-0.801583\pi\)
0.698227 0.715876i \(-0.253973\pi\)
\(390\) −0.296938 + 2.44169i −0.0150360 + 0.123640i
\(391\) −7.44487 + 20.4546i −0.376503 + 1.03443i
\(392\) 2.23690 + 0.814163i 0.112980 + 0.0411215i
\(393\) 18.0586 + 10.4261i 0.910936 + 0.525929i
\(394\) 1.29882 + 1.85490i 0.0654334 + 0.0934486i
\(395\) 24.9579 10.6281i 1.25577 0.534756i
\(396\) −1.31406 2.27601i −0.0660338 0.114374i
\(397\) 2.74078 + 10.2287i 0.137556 + 0.513366i 0.999974 + 0.00716960i \(0.00228217\pi\)
−0.862418 + 0.506196i \(0.831051\pi\)
\(398\) −10.8715 + 15.5261i −0.544940 + 0.778255i
\(399\) −14.7635 3.95587i −0.739100 0.198041i
\(400\) −1.19839 + 4.85426i −0.0599195 + 0.242713i
\(401\) 24.2945 + 24.2945i 1.21321 + 1.21321i 0.969964 + 0.243247i \(0.0782127\pi\)
0.243247 + 0.969964i \(0.421787\pi\)
\(402\) 1.08416 + 2.97870i 0.0540729 + 0.148564i
\(403\) 0.457390 + 0.653220i 0.0227842 + 0.0325392i
\(404\) 3.85633 4.59579i 0.191860 0.228649i
\(405\) −2.63661 + 6.54762i −0.131014 + 0.325354i
\(406\) 3.89258i 0.193186i
\(407\) 3.06216 11.4855i 0.151786 0.569316i
\(408\) −2.33123 + 2.33123i −0.115413 + 0.115413i
\(409\) −1.06431 + 12.1651i −0.0526266 + 0.601525i 0.923395 + 0.383851i \(0.125402\pi\)
−0.976022 + 0.217674i \(0.930153\pi\)
\(410\) −9.19368 1.94307i −0.454044 0.0959615i
\(411\) 5.10007 + 0.899281i 0.251568 + 0.0443582i
\(412\) 8.83054 3.21405i 0.435050 0.158345i
\(413\) 2.54809i 0.125383i
\(414\) −3.90711 10.7347i −0.192024 0.527581i
\(415\) −24.8628 + 5.77031i −1.22047 + 0.283254i
\(416\) −0.148474 0.842036i −0.00727952 0.0412842i
\(417\) −4.71531 + 1.26346i −0.230910 + 0.0618721i
\(418\) 2.79569 10.4336i 0.136742 0.510326i
\(419\) −18.7463 22.3410i −0.915817 1.09143i −0.995514 0.0946091i \(-0.969840\pi\)
0.0796975 0.996819i \(-0.474605\pi\)
\(420\) −5.87818 + 1.91745i −0.286826 + 0.0935620i
\(421\) −2.27644 + 0.609971i −0.110947 + 0.0297282i −0.313865 0.949467i \(-0.601624\pi\)
0.202918 + 0.979196i \(0.434957\pi\)
\(422\) −5.83913 + 16.0429i −0.284244 + 0.780955i
\(423\) −4.55881 + 2.12581i −0.221657 + 0.103360i
\(424\) −6.52469 + 9.31823i −0.316867 + 0.452533i
\(425\) −12.3086 + 3.56024i −0.597053 + 0.172697i
\(426\) −6.11554 + 0.535041i −0.296299 + 0.0259228i
\(427\) 24.2250 4.27153i 1.17233 0.206714i
\(428\) −1.56742 3.36134i −0.0757640 0.162476i
\(429\) −0.908456 1.94819i −0.0438607 0.0940595i
\(430\) 0.653078 19.3427i 0.0314942 0.932790i
\(431\) −6.13506 + 4.29582i −0.295516 + 0.206922i −0.711926 0.702255i \(-0.752177\pi\)
0.416410 + 0.909177i \(0.363288\pi\)
\(432\) 0.487179 5.56848i 0.0234394 0.267914i
\(433\) 32.9386 + 8.82587i 1.58293 + 0.424144i 0.939831 0.341640i \(-0.110982\pi\)
0.643097 + 0.765784i \(0.277649\pi\)
\(434\) −1.00227 + 1.73599i −0.0481106 + 0.0833300i
\(435\) 3.21235 + 4.10183i 0.154020 + 0.196668i
\(436\) 1.49059 5.56294i 0.0713861 0.266417i
\(437\) 19.8427 42.5528i 0.949204 2.03557i
\(438\) 10.2865 0.491507
\(439\) −2.49808 + 5.35715i −0.119227 + 0.255683i −0.956859 0.290551i \(-0.906161\pi\)
0.837633 + 0.546234i \(0.183939\pi\)
\(440\) −1.35510 4.15422i −0.0646018 0.198045i
\(441\) −2.45243 2.05783i −0.116782 0.0979920i
\(442\) 1.67849 1.40842i 0.0798374 0.0669915i
\(443\) 8.21606 + 8.21606i 0.390357 + 0.390357i 0.874815 0.484458i \(-0.160983\pi\)
−0.484458 + 0.874815i \(0.660983\pi\)
\(444\) 5.98844 5.03767i 0.284199 0.239077i
\(445\) 6.27265 20.6021i 0.297352 0.976631i
\(446\) −12.6006 1.10241i −0.596655 0.0522005i
\(447\) 7.43805 0.650745i 0.351808 0.0307792i
\(448\) 1.76061 1.23280i 0.0831812 0.0582441i
\(449\) −4.93757 2.30243i −0.233018 0.108658i 0.302602 0.953117i \(-0.402145\pi\)
−0.535621 + 0.844459i \(0.679922\pi\)
\(450\) 3.74733 5.58345i 0.176651 0.263206i
\(451\) 7.71686 2.80871i 0.363373 0.132257i
\(452\) −9.59826 16.6247i −0.451464 0.781959i
\(453\) −18.8611 13.2067i −0.886173 0.620505i
\(454\) 12.6332 + 7.29377i 0.592905 + 0.342314i
\(455\) 4.00287 0.929010i 0.187657 0.0435527i
\(456\) 5.44754 4.57103i 0.255104 0.214058i
\(457\) 1.27520 7.23205i 0.0596516 0.338301i −0.940347 0.340218i \(-0.889499\pi\)
0.999998 + 0.00191714i \(0.000610245\pi\)
\(458\) −10.9591 + 18.9818i −0.512087 + 0.886961i
\(459\) 12.9823 6.05376i 0.605964 0.282565i
\(460\) −2.66513 18.8056i −0.124262 0.876817i
\(461\) 13.0980 + 9.17132i 0.610035 + 0.427151i 0.837348 0.546671i \(-0.184105\pi\)
−0.227313 + 0.973822i \(0.572994\pi\)
\(462\) 3.47331 4.13933i 0.161593 0.192579i
\(463\) −5.87308 + 6.99926i −0.272945 + 0.325283i −0.885052 0.465491i \(-0.845878\pi\)
0.612107 + 0.790775i \(0.290322\pi\)
\(464\) −1.48355 1.03879i −0.0688722 0.0482248i
\(465\) 0.376469 + 2.65643i 0.0174583 + 0.123189i
\(466\) −21.3245 + 9.94378i −0.987839 + 0.460637i
\(467\) −1.49400 + 2.58769i −0.0691341 + 0.119744i −0.898520 0.438932i \(-0.855357\pi\)
0.829386 + 0.558676i \(0.188690\pi\)
\(468\) −0.199679 + 1.13243i −0.00923015 + 0.0523468i
\(469\) 4.05676 3.40403i 0.187324 0.157183i
\(470\) −8.14679 + 1.89076i −0.375783 + 0.0872141i
\(471\) −16.2733 9.39537i −0.749832 0.432916i
\(472\) 0.971135 + 0.679996i 0.0447001 + 0.0312994i
\(473\) 8.45691 + 14.6478i 0.388849 + 0.673506i
\(474\) −14.6660 + 5.33798i −0.673631 + 0.245182i
\(475\) 27.1176 5.33622i 1.24424 0.244842i
\(476\) 4.99183 + 2.32773i 0.228800 + 0.106691i
\(477\) 12.5319 8.77491i 0.573795 0.401776i
\(478\) 2.94081 0.257287i 0.134509 0.0117681i
\(479\) −22.9901 2.01137i −1.05044 0.0919018i −0.451163 0.892442i \(-0.648991\pi\)
−0.599280 + 0.800540i \(0.704546\pi\)
\(480\) 0.837896 2.75201i 0.0382445 0.125611i
\(481\) −4.25661 + 2.98845i −0.194085 + 0.136261i
\(482\) 8.94321 + 8.94321i 0.407352 + 0.407352i
\(483\) 17.9924 15.0974i 0.818684 0.686957i
\(484\) −5.50115 4.61601i −0.250052 0.209819i
\(485\) 6.43441 + 19.7255i 0.292172 + 0.895688i
\(486\) −5.37069 + 11.5175i −0.243620 + 0.522444i
\(487\) 1.71111 0.0775378 0.0387689 0.999248i \(-0.487656\pi\)
0.0387689 + 0.999248i \(0.487656\pi\)
\(488\) −4.83684 + 10.3726i −0.218953 + 0.469547i
\(489\) −3.34686 + 12.4906i −0.151350 + 0.564846i
\(490\) −3.28193 4.19068i −0.148262 0.189316i
\(491\) −15.4347 + 26.7337i −0.696559 + 1.20647i 0.273094 + 0.961987i \(0.411953\pi\)
−0.969652 + 0.244487i \(0.921380\pi\)
\(492\) 5.22219 + 1.39928i 0.235434 + 0.0630845i
\(493\) 0.404500 4.62346i 0.0182178 0.208230i
\(494\) −3.87146 + 2.71082i −0.174185 + 0.121966i
\(495\) −0.198303 + 5.87329i −0.00891304 + 0.263985i
\(496\) −0.394153 0.845263i −0.0176980 0.0379534i
\(497\) 4.33435 + 9.29503i 0.194422 + 0.416939i
\(498\) 14.4619 2.55002i 0.648052 0.114269i
\(499\) −40.7324 + 3.56362i −1.82343 + 0.159530i −0.946840 0.321705i \(-0.895744\pi\)
−0.876592 + 0.481235i \(0.840189\pi\)
\(500\) 8.01548 7.79436i 0.358463 0.348574i
\(501\) 9.13502 13.0462i 0.408123 0.582859i
\(502\) 13.9928 6.52495i 0.624529 0.291223i
\(503\) −9.16835 + 25.1898i −0.408797 + 1.12316i 0.549027 + 0.835804i \(0.314998\pi\)
−0.957824 + 0.287355i \(0.907224\pi\)
\(504\) −2.79207 + 0.748132i −0.124369 + 0.0333245i
\(505\) −12.7536 + 4.16022i −0.567530 + 0.185127i
\(506\) 10.6696 + 12.7156i 0.474323 + 0.565276i
\(507\) 4.08525 15.2463i 0.181432 0.677114i
\(508\) −12.1074 + 3.24417i −0.537180 + 0.143937i
\(509\) 5.87550 + 33.3216i 0.260427 + 1.47696i 0.781748 + 0.623595i \(0.214328\pi\)
−0.521321 + 0.853361i \(0.674560\pi\)
\(510\) 7.18112 1.66664i 0.317985 0.0738000i
\(511\) −5.87763 16.1487i −0.260011 0.714375i
\(512\) 1.00000i 0.0441942i
\(513\) −29.0342 + 10.5676i −1.28189 + 0.466570i
\(514\) 20.9351 + 3.69142i 0.923406 + 0.162821i
\(515\) −20.5588 4.34507i −0.905928 0.191467i
\(516\) −0.970491 + 11.0928i −0.0427235 + 0.488332i
\(517\) 5.16821 5.16821i 0.227298 0.227298i
\(518\) −11.3304 6.52273i −0.497828 0.286592i
\(519\) 10.5171i 0.461651i
\(520\) −0.714159 + 1.77351i −0.0313179 + 0.0777734i
\(521\) 24.8018 29.5577i 1.08659 1.29494i 0.133900 0.990995i \(-0.457250\pi\)
0.952688 0.303950i \(-0.0983056\pi\)
\(522\) 1.39705 + 1.99520i 0.0611473 + 0.0873273i
\(523\) 1.85613 + 5.09966i 0.0811627 + 0.222993i 0.973636 0.228108i \(-0.0732538\pi\)
−0.892473 + 0.451100i \(0.851032\pi\)
\(524\) 11.4610 + 11.4610i 0.500677 + 0.500677i
\(525\) 13.4226 + 3.31370i 0.585812 + 0.144622i
\(526\) −14.0494 3.76453i −0.612583 0.164141i
\(527\) 1.37086 1.95779i 0.0597154 0.0852825i
\(528\) 0.650688 + 2.42840i 0.0283176 + 0.105683i
\(529\) 24.5755 + 42.5659i 1.06850 + 1.85069i
\(530\) 23.4027 9.96581i 1.01655 0.432887i
\(531\) −0.914511 1.30606i −0.0396864 0.0566780i
\(532\) −10.2887 5.94019i −0.446073 0.257540i
\(533\) −3.37644 1.22892i −0.146250 0.0532305i
\(534\) −4.23782 + 11.6433i −0.183389 + 0.503856i
\(535\) −1.00117 + 8.23254i −0.0432844 + 0.355924i
\(536\) 0.214745 + 2.45454i 0.00927555 + 0.106020i
\(537\) 10.4956 + 8.80683i 0.452918 + 0.380043i
\(538\) 1.39580 + 7.91597i 0.0601771 + 0.341282i
\(539\) 4.37126 + 1.59101i 0.188284 + 0.0685296i
\(540\) −7.51058 + 9.99089i −0.323204 + 0.429939i
\(541\) 8.96623 + 33.4624i 0.385488 + 1.43866i 0.837396 + 0.546597i \(0.184077\pi\)
−0.451907 + 0.892065i \(0.649256\pi\)
\(542\) 11.7684 + 2.07508i 0.505495 + 0.0891325i
\(543\) −8.24436 0.721288i −0.353799 0.0309534i
\(544\) −2.21930 + 1.28131i −0.0951515 + 0.0549358i
\(545\) −9.40816 + 8.79361i −0.403001 + 0.376677i
\(546\) −2.32833 + 0.410548i −0.0996435 + 0.0175698i
\(547\) 1.67230 0.965505i 0.0715025 0.0412820i −0.463822 0.885928i \(-0.653522\pi\)
0.535325 + 0.844646i \(0.320189\pi\)
\(548\) 3.64826 + 1.70121i 0.155846 + 0.0726721i
\(549\) 10.8838 10.8838i 0.464510 0.464510i
\(550\) −2.34185 + 9.48603i −0.0998569 + 0.404486i
\(551\) −1.73836 + 9.85873i −0.0740566 + 0.419996i
\(552\) 0.952428 + 10.8863i 0.0405380 + 0.463352i
\(553\) 16.7601 + 19.9739i 0.712713 + 0.849378i
\(554\) 3.55657 0.151104
\(555\) −17.3223 + 2.47700i −0.735291 + 0.105143i
\(556\) −3.79447 −0.160921
\(557\) 28.5801 + 34.0604i 1.21098 + 1.44319i 0.862641 + 0.505816i \(0.168809\pi\)
0.348335 + 0.937370i \(0.386747\pi\)
\(558\) 0.109319 + 1.24952i 0.00462783 + 0.0528964i
\(559\) 1.28508 7.28804i 0.0543530 0.308251i
\(560\) −4.79913 + 0.257075i −0.202800 + 0.0108634i
\(561\) −4.55560 + 4.55560i −0.192338 + 0.192338i
\(562\) −20.3704 9.49887i −0.859273 0.400686i
\(563\) −15.9329 + 9.19888i −0.671493 + 0.387686i −0.796642 0.604451i \(-0.793392\pi\)
0.125149 + 0.992138i \(0.460059\pi\)
\(564\) 4.73871 0.835563i 0.199536 0.0351835i
\(565\) −1.44846 + 42.9003i −0.0609373 + 1.80483i
\(566\) 24.2976 14.0282i 1.02130 0.589650i
\(567\) −6.75887 0.591324i −0.283846 0.0248333i
\(568\) −4.69923 0.828602i −0.197176 0.0347674i
\(569\) −4.50710 16.8207i −0.188947 0.705161i −0.993751 0.111620i \(-0.964396\pi\)
0.804804 0.593541i \(-0.202271\pi\)
\(570\) −15.7439 + 2.23123i −0.659441 + 0.0934558i
\(571\) 21.7225 + 7.90633i 0.909057 + 0.330870i 0.753876 0.657016i \(-0.228182\pi\)
0.155181 + 0.987886i \(0.450404\pi\)
\(572\) −0.290142 1.64548i −0.0121314 0.0688009i
\(573\) −5.65031 4.74117i −0.236045 0.198065i
\(574\) −0.787208 8.99782i −0.0328574 0.375562i
\(575\) −17.1847 + 38.8389i −0.716652 + 1.61969i
\(576\) 0.459975 1.26377i 0.0191656 0.0526571i
\(577\) 42.1400 + 15.3377i 1.75431 + 0.638518i 0.999841 0.0178153i \(-0.00567109\pi\)
0.754471 + 0.656333i \(0.227893\pi\)
\(578\) 9.03522 + 5.21648i 0.375815 + 0.216977i
\(579\) −0.183551 0.262138i −0.00762813 0.0108941i
\(580\) 1.58665 + 3.72594i 0.0658822 + 0.154711i
\(581\) −12.2667 21.2465i −0.508908 0.881455i
\(582\) −3.08966 11.5308i −0.128071 0.477966i
\(583\) −12.7503 + 18.2094i −0.528065 + 0.754155i
\(584\) 7.72316 + 2.06941i 0.319587 + 0.0856330i
\(585\) 1.71830 1.91281i 0.0710430 0.0790849i
\(586\) 2.78471 + 2.78471i 0.115035 + 0.115035i
\(587\) −0.735671 2.02124i −0.0303644 0.0834254i 0.923584 0.383396i \(-0.125245\pi\)
−0.953949 + 0.299970i \(0.903023\pi\)
\(588\) 1.75657 + 2.50865i 0.0724399 + 0.103455i
\(589\) −3.31371 + 3.94913i −0.136539 + 0.162721i
\(590\) −1.03863 2.43901i −0.0427595 0.100412i
\(591\) 2.91321i 0.119833i
\(592\) 5.50964 2.57757i 0.226445 0.105938i
\(593\) 10.3755 10.3755i 0.426070 0.426070i −0.461217 0.887287i \(-0.652587\pi\)
0.887287 + 0.461217i \(0.152587\pi\)
\(594\) 0.952028 10.8817i 0.0390622 0.446483i
\(595\) −6.71970 10.3213i −0.275481 0.423132i
\(596\) 5.71546 + 1.00779i 0.234114 + 0.0412807i
\(597\) −22.9139 + 8.33999i −0.937805 + 0.341333i
\(598\) 7.26273i 0.296995i
\(599\) −3.89023 10.6883i −0.158951 0.436713i 0.834495 0.551015i \(-0.185759\pi\)
−0.993446 + 0.114301i \(0.963537\pi\)
\(600\) −4.84496 + 4.23136i −0.197795 + 0.172745i
\(601\) −1.15048 6.52467i −0.0469289 0.266147i 0.952311 0.305129i \(-0.0986996\pi\)
−0.999240 + 0.0389820i \(0.987588\pi\)
\(602\) 17.9690 4.81478i 0.732362 0.196236i
\(603\) 0.857640 3.20076i 0.0349258 0.130345i
\(604\) −11.5042 13.7101i −0.468098 0.557858i
\(605\) 4.97976 + 15.2661i 0.202456 + 0.620654i
\(606\) 7.45531 1.99764i 0.302851 0.0811487i
\(607\) 15.2955 42.0241i 0.620826 1.70571i −0.0841300 0.996455i \(-0.526811\pi\)
0.704956 0.709251i \(-0.250967\pi\)
\(608\) 5.00964 2.33603i 0.203168 0.0947387i
\(609\) −2.87240 + 4.10221i −0.116395 + 0.166230i
\(610\) 21.4468 13.9630i 0.868357 0.565346i
\(611\) −3.18579 + 0.278720i −0.128883 + 0.0112758i
\(612\) 3.39405 0.598463i 0.137196 0.0241914i
\(613\) 11.7777 + 25.2573i 0.475695 + 1.02013i 0.986998 + 0.160731i \(0.0513853\pi\)
−0.511303 + 0.859401i \(0.670837\pi\)
\(614\) −13.3246 28.5746i −0.537736 1.15318i
\(615\) −8.25496 8.83187i −0.332872 0.356135i
\(616\) 3.44053 2.40909i 0.138623 0.0970648i
\(617\) −2.30306 + 26.3241i −0.0927178 + 1.05977i 0.797221 + 0.603688i \(0.206303\pi\)
−0.889938 + 0.456081i \(0.849253\pi\)
\(618\) 11.6778 + 3.12905i 0.469749 + 0.125869i
\(619\) 2.98637 5.17255i 0.120032 0.207902i −0.799748 0.600336i \(-0.795033\pi\)
0.919780 + 0.392434i \(0.128367\pi\)
\(620\) −0.251760 + 2.07020i −0.0101109 + 0.0831414i
\(621\) 12.2888 45.8625i 0.493133 1.84040i
\(622\) −12.4057 + 26.6040i −0.497422 + 1.06672i
\(623\) 20.7003 0.829338
\(624\) 0.464882 0.996942i 0.0186102 0.0399096i
\(625\) −24.4294 + 5.31080i −0.977176 + 0.212432i
\(626\) 13.8806 + 11.6472i 0.554782 + 0.465517i
\(627\) 10.6454 8.93254i 0.425136 0.356731i
\(628\) −10.3279 10.3279i −0.412129 0.412129i
\(629\) 12.7800 + 8.92484i 0.509570 + 0.355857i
\(630\) 6.18325 + 1.88260i 0.246346 + 0.0750044i
\(631\) −28.3578 2.48099i −1.12891 0.0987665i −0.492638 0.870234i \(-0.663967\pi\)
−0.636268 + 0.771468i \(0.719523\pi\)
\(632\) −12.0852 + 1.05732i −0.480724 + 0.0420579i
\(633\) −17.9919 + 12.5980i −0.715112 + 0.500727i
\(634\) −5.55832 2.59189i −0.220749 0.102937i
\(635\) 26.8128 + 8.16361i 1.06403 + 0.323963i
\(636\) −13.7521 + 5.00536i −0.545307 + 0.198476i
\(637\) −1.01767 1.76266i −0.0403217 0.0698393i
\(638\) −2.89911 2.02998i −0.114777 0.0803675i
\(639\) 5.55762 + 3.20869i 0.219856 + 0.126934i
\(640\) 1.18274 1.89766i 0.0467520 0.0750117i
\(641\) 19.9394 16.7312i 0.787560 0.660842i −0.157580 0.987506i \(-0.550369\pi\)
0.945140 + 0.326665i \(0.105925\pi\)
\(642\) 0.828556 4.69898i 0.0327005 0.185454i
\(643\) 18.8500 32.6491i 0.743371 1.28756i −0.207581 0.978218i \(-0.566559\pi\)
0.950952 0.309338i \(-0.100108\pi\)
\(644\) 16.5461 7.71558i 0.652009 0.304037i
\(645\) 14.9615 19.9025i 0.589110 0.783659i
\(646\) 11.6033 + 8.12469i 0.456524 + 0.319662i
\(647\) −8.50078 + 10.1308i −0.334200 + 0.398284i −0.906807 0.421546i \(-0.861488\pi\)
0.572607 + 0.819830i \(0.305932\pi\)
\(648\) 2.02907 2.41815i 0.0797095 0.0949940i
\(649\) 1.89776 + 1.32882i 0.0744935 + 0.0521609i
\(650\) 3.45283 2.52085i 0.135431 0.0988757i
\(651\) −2.33726 + 1.08988i −0.0916044 + 0.0427158i
\(652\) −5.02569 + 8.70475i −0.196821 + 0.340904i
\(653\) −3.61585 + 20.5065i −0.141499 + 0.802481i 0.828613 + 0.559822i \(0.189131\pi\)
−0.970112 + 0.242659i \(0.921980\pi\)
\(654\) 5.67584 4.76259i 0.221943 0.186232i
\(655\) −8.19370 35.3046i −0.320154 1.37946i
\(656\) 3.63935 + 2.10118i 0.142093 + 0.0820374i
\(657\) −8.80843 6.16773i −0.343649 0.240626i
\(658\) −4.01942 6.96184i −0.156693 0.271401i
\(659\) −2.40949 + 0.876983i −0.0938604 + 0.0341624i −0.388524 0.921439i \(-0.627015\pi\)
0.294663 + 0.955601i \(0.404793\pi\)
\(660\) 1.63739 5.37788i 0.0637352 0.209334i
\(661\) −4.87601 2.27372i −0.189655 0.0884376i 0.325471 0.945552i \(-0.394477\pi\)
−0.515126 + 0.857114i \(0.672255\pi\)
\(662\) −16.0529 + 11.2403i −0.623912 + 0.436868i
\(663\) 2.80817 0.245683i 0.109060 0.00954153i
\(664\) 11.3711 + 0.994841i 0.441284 + 0.0386073i
\(665\) 12.4988 + 23.4414i 0.484682 + 0.909018i
\(666\) −8.14854 + 0.723167i −0.315750 + 0.0280221i
\(667\) −10.8779 10.8779i −0.421193 0.421193i
\(668\) 9.48324 7.95739i 0.366918 0.307881i
\(669\) −12.4657 10.4599i −0.481950 0.404404i
\(670\) 2.49558 4.91188i 0.0964126 0.189762i
\(671\) −9.45198 + 20.2698i −0.364890 + 0.782509i
\(672\) 2.76513 0.106667
\(673\) −8.96754 + 19.2310i −0.345673 + 0.741299i −0.999887 0.0150106i \(-0.995222\pi\)
0.654214 + 0.756310i \(0.273000\pi\)
\(674\) 4.74620 17.7131i 0.182817 0.682282i
\(675\) 26.0692 10.0762i 1.00340 0.387835i
\(676\) 6.13447 10.6252i 0.235941 0.408662i
\(677\) −42.5704 11.4067i −1.63612 0.438396i −0.680436 0.732807i \(-0.738210\pi\)
−0.955679 + 0.294412i \(0.904876\pi\)
\(678\) 2.15245 24.6026i 0.0826644 0.944859i
\(679\) −16.3367 + 11.4391i −0.626944 + 0.438991i
\(680\) 5.72693 + 0.193361i 0.219618 + 0.00741506i
\(681\) 7.93132 + 17.0088i 0.303929 + 0.651778i
\(682\) −0.770239 1.65178i −0.0294940 0.0632501i
\(683\) 36.7294 6.47639i 1.40541 0.247812i 0.581047 0.813870i \(-0.302643\pi\)
0.824365 + 0.566058i \(0.191532\pi\)
\(684\) −7.40556 + 0.647902i −0.283159 + 0.0247732i
\(685\) −4.91106 7.54327i −0.187642 0.288214i
\(686\) 11.5642 16.5154i 0.441522 0.630559i
\(687\) −25.5563 + 11.9171i −0.975032 + 0.454665i
\(688\) −2.96028 + 8.13329i −0.112859 + 0.310079i
\(689\) 9.39489 2.51735i 0.357917 0.0959035i
\(690\) 11.0683 21.7850i 0.421363 0.829340i
\(691\) −20.9214 24.9332i −0.795889 0.948503i 0.203645 0.979045i \(-0.434721\pi\)
−0.999533 + 0.0305415i \(0.990277\pi\)
\(692\) −2.11582 + 7.89635i −0.0804314 + 0.300174i
\(693\) −5.45616 + 1.46197i −0.207262 + 0.0555358i
\(694\) 4.11340 + 23.3282i 0.156143 + 0.885528i
\(695\) 7.20062 + 4.48788i 0.273135 + 0.170235i
\(696\) −0.796903 2.18947i −0.0302065 0.0829917i
\(697\) 10.7691i 0.407908i
\(698\) −14.8018 + 5.38741i −0.560256 + 0.203917i
\(699\) −29.8106 5.25641i −1.12754 0.198815i
\(700\) 9.41118 + 5.18829i 0.355709 + 0.196099i
\(701\) −1.03623 + 11.8442i −0.0391379 + 0.447348i 0.951190 + 0.308604i \(0.0998619\pi\)
−0.990328 + 0.138743i \(0.955694\pi\)
\(702\) −3.37953 + 3.37953i −0.127552 + 0.127552i
\(703\) −25.7834 21.5800i −0.972440 0.813906i
\(704\) 1.95417i 0.0736504i
\(705\) −9.98073 4.01906i −0.375896 0.151367i
\(706\) 8.30152 9.89336i 0.312432 0.372342i
\(707\) −7.39601 10.5626i −0.278156 0.397247i
\(708\) 0.521653 + 1.43323i 0.0196049 + 0.0538641i
\(709\) 29.3824 + 29.3824i 1.10348 + 1.10348i 0.993988 + 0.109490i \(0.0349217\pi\)
0.109490 + 0.993988i \(0.465078\pi\)
\(710\) 7.93753 + 7.13039i 0.297890 + 0.267599i
\(711\) 15.7593 + 4.22269i 0.591019 + 0.158363i
\(712\) −5.52418 + 7.88934i −0.207027 + 0.295666i
\(713\) −2.05038 7.65210i −0.0767871 0.286574i
\(714\) 3.54298 + 6.13663i 0.132593 + 0.229658i
\(715\) −1.39558 + 3.46572i −0.0521919 + 0.129611i
\(716\) 6.10841 + 8.72372i 0.228282 + 0.326021i
\(717\) 3.28903 + 1.89892i 0.122831 + 0.0709166i
\(718\) −2.17615 0.792052i −0.0812130 0.0295591i
\(719\) 6.16508 16.9384i 0.229919 0.631697i −0.770062 0.637970i \(-0.779775\pi\)
0.999980 + 0.00627302i \(0.00199678\pi\)
\(720\) −2.36759 + 1.85418i −0.0882350 + 0.0691011i
\(721\) −1.76034 20.1208i −0.0655586 0.749338i
\(722\) −8.85055 7.42650i −0.329384 0.276386i
\(723\) 2.82549 + 16.0242i 0.105081 + 0.595945i
\(724\) −6.04482 2.20013i −0.224654 0.0817674i
\(725\) 1.39590 8.94718i 0.0518424 0.332290i
\(726\) −2.39117 8.92397i −0.0887447 0.331200i
\(727\) 7.28157 + 1.28394i 0.270059 + 0.0476186i 0.307037 0.951697i \(-0.400662\pi\)
−0.0369789 + 0.999316i \(0.511773\pi\)
\(728\) −1.83072 0.160168i −0.0678512 0.00593621i
\(729\) −22.3601 + 12.9096i −0.828153 + 0.478134i
\(730\) −12.2084 13.0616i −0.451852 0.483430i
\(731\) −21.8432 + 3.85155i −0.807900 + 0.142455i
\(732\) −12.7514 + 7.36205i −0.471307 + 0.272109i
\(733\) −14.8087 6.90539i −0.546970 0.255056i 0.129433 0.991588i \(-0.458684\pi\)
−0.676403 + 0.736532i \(0.736462\pi\)
\(734\) 2.88749 2.88749i 0.106579 0.106579i
\(735\) −0.366298 6.83814i −0.0135111 0.252229i
\(736\) −1.47500 + 8.36512i −0.0543691 + 0.308343i
\(737\) 0.419646 + 4.79658i 0.0154579 + 0.176684i
\(738\) −3.63282 4.32942i −0.133726 0.159368i
\(739\) −10.9098 −0.401325 −0.200663 0.979660i \(-0.564309\pi\)
−0.200663 + 0.979660i \(0.564309\pi\)
\(740\) −13.5040 1.62512i −0.496418 0.0597407i
\(741\) −6.08030 −0.223366
\(742\) 15.7158 + 18.7293i 0.576945 + 0.687576i
\(743\) −4.03751 46.1490i −0.148122 1.69304i −0.599233 0.800574i \(-0.704528\pi\)
0.451111 0.892468i \(-0.351028\pi\)
\(744\) 0.208354 1.18163i 0.00763862 0.0433208i
\(745\) −9.65405 8.67236i −0.353697 0.317731i
\(746\) 24.6953 24.6953i 0.904158 0.904158i
\(747\) −13.9128 6.48767i −0.509044 0.237371i
\(748\) −4.33687 + 2.50389i −0.158572 + 0.0915514i
\(749\) −7.85033 + 1.38422i −0.286845 + 0.0505785i
\(750\) 14.1987 2.29936i 0.518464 0.0839606i
\(751\) −40.6112 + 23.4469i −1.48192 + 0.855589i −0.999790 0.0205077i \(-0.993472\pi\)
−0.482135 + 0.876097i \(0.660138\pi\)
\(752\) 3.72596 + 0.325979i 0.135872 + 0.0118872i
\(753\) 19.5612 + 3.44917i 0.712850 + 0.125695i
\(754\) 0.400787 + 1.49576i 0.0145958 + 0.0544723i
\(755\) 5.61546 + 39.6237i 0.204367 + 1.44205i
\(756\) −11.2896 4.10907i −0.410598 0.149446i
\(757\) 0.651642 + 3.69565i 0.0236843 + 0.134321i 0.994357 0.106084i \(-0.0338311\pi\)
−0.970673 + 0.240404i \(0.922720\pi\)
\(758\) 6.59639 + 5.53503i 0.239592 + 0.201041i
\(759\) 1.86120 + 21.2736i 0.0675573 + 0.772184i
\(760\) −12.2695 1.49211i −0.445063 0.0541247i
\(761\) 17.1761 47.1910i 0.622634 1.71067i −0.0778130 0.996968i \(-0.524794\pi\)
0.700447 0.713705i \(-0.252984\pi\)
\(762\) −15.1533 5.51537i −0.548948 0.199801i
\(763\) −10.7199 6.18914i −0.388087 0.224062i
\(764\) −3.28848 4.69643i −0.118973 0.169911i
\(765\) −7.14859 2.87861i −0.258458 0.104076i
\(766\) −9.87682 17.1072i −0.356864 0.618107i
\(767\) −0.262356 0.979125i −0.00947311 0.0353541i
\(768\) −0.737915 + 1.05385i −0.0266272 + 0.0380276i
\(769\) −46.2041 12.3804i −1.66616 0.446447i −0.702091 0.712088i \(-0.747750\pi\)
−0.964072 + 0.265641i \(0.914417\pi\)
\(770\) −9.37829 + 0.502366i −0.337970 + 0.0181040i
\(771\) 19.3385 + 19.3385i 0.696459 + 0.696459i
\(772\) −0.0850751 0.233742i −0.00306192 0.00841255i