# Properties

 Label 370.2.bd.a.187.4 Level $370$ Weight $2$ Character 370.187 Analytic conductor $2.954$ Analytic rank $0$ Dimension $108$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.bd (of order $$36$$, degree $$12$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$108$$ Relative dimension: $$9$$ over $$\Q(\zeta_{36})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

## Embedding invariants

 Embedding label 187.4 Character $$\chi$$ $$=$$ 370.187 Dual form 370.2.bd.a.93.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.642788 + 0.766044i) q^{2} +(-0.0651873 - 0.745094i) q^{3} +(-0.173648 + 0.984808i) q^{4} +(-2.09519 - 0.781138i) q^{5} +(0.528874 - 0.528874i) q^{6} +(2.75168 + 1.28313i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(2.40351 - 0.423803i) q^{9} +O(q^{10})$$ $$q+(0.642788 + 0.766044i) q^{2} +(-0.0651873 - 0.745094i) q^{3} +(-0.173648 + 0.984808i) q^{4} +(-2.09519 - 0.781138i) q^{5} +(0.528874 - 0.528874i) q^{6} +(2.75168 + 1.28313i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(2.40351 - 0.423803i) q^{9} +(-0.748377 - 2.10711i) q^{10} +(1.52322 - 0.879430i) q^{11} +(0.745094 + 0.0651873i) q^{12} +(3.66051 + 0.645446i) q^{13} +(0.785810 + 2.93268i) q^{14} +(-0.445441 + 1.61204i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(0.0811484 + 0.460215i) q^{17} +(1.86960 + 1.56878i) q^{18} +(0.211508 + 2.41755i) q^{19} +(1.13310 - 1.92772i) q^{20} +(0.776677 - 2.13390i) q^{21} +(1.65279 + 0.601565i) q^{22} +(1.53833 + 0.888156i) q^{23} +(0.429001 + 0.612677i) q^{24} +(3.77965 + 3.27326i) q^{25} +(1.85849 + 3.21900i) q^{26} +(-1.05320 - 3.93058i) q^{27} +(-1.74146 + 2.48706i) q^{28} +(-3.50408 - 0.938915i) q^{29} +(-1.52121 + 0.694968i) q^{30} +(-0.755831 - 0.755831i) q^{31} +(-0.342020 - 0.939693i) q^{32} +(-0.754553 - 1.07761i) q^{33} +(-0.300384 + 0.357984i) q^{34} +(-4.76299 - 4.83783i) q^{35} +2.44058i q^{36} +(2.60408 - 5.49716i) q^{37} +(-1.71600 + 1.71600i) q^{38} +(0.242300 - 2.76950i) q^{39} +(2.20506 - 0.371110i) q^{40} +(-6.02913 - 1.06310i) q^{41} +(2.13390 - 0.776677i) q^{42} +0.539434i q^{43} +(0.601565 + 1.65279i) q^{44} +(-5.36685 - 0.989521i) q^{45} +(0.308453 + 1.74933i) q^{46} +(-4.57313 + 1.22537i) q^{47} +(-0.193581 + 0.722455i) q^{48} +(1.42579 + 1.69919i) q^{49} +(-0.0779548 + 4.99939i) q^{50} +(0.337614 - 0.0904634i) q^{51} +(-1.27128 + 3.49282i) q^{52} +(-3.31600 + 1.54628i) q^{53} +(2.33402 - 3.33332i) q^{54} +(-3.87839 + 0.652731i) q^{55} +(-3.02458 + 0.264617i) q^{56} +(1.78752 - 0.315187i) q^{57} +(-1.53313 - 3.28780i) q^{58} +(-2.77453 - 5.95000i) q^{59} +(-1.51019 - 0.718601i) q^{60} +(-11.1701 + 7.82136i) q^{61} +(0.0931613 - 1.06484i) q^{62} +(7.15746 + 1.91784i) q^{63} +(0.500000 - 0.866025i) q^{64} +(-7.16528 - 4.21169i) q^{65} +(0.340482 - 1.27070i) q^{66} +(2.55532 - 5.47990i) q^{67} -0.467315 q^{68} +(0.561480 - 1.20410i) q^{69} +(0.644407 - 6.75836i) q^{70} +(7.04380 + 5.91045i) q^{71} +(-1.86960 + 1.56878i) q^{72} +(2.93388 + 2.93388i) q^{73} +(5.88494 - 1.53867i) q^{74} +(2.19251 - 3.02957i) q^{75} +(-2.41755 - 0.211508i) q^{76} +(5.31982 - 0.465424i) q^{77} +(2.27731 - 1.59459i) q^{78} +(-7.25157 - 3.38146i) q^{79} +(1.70167 + 1.45063i) q^{80} +(4.02020 - 1.46323i) q^{81} +(-3.06107 - 5.30193i) q^{82} +(2.64327 + 1.85084i) q^{83} +(1.96661 + 1.13543i) q^{84} +(0.189470 - 1.02763i) q^{85} +(-0.413230 + 0.346741i) q^{86} +(-0.471159 + 2.67207i) q^{87} +(-0.879430 + 1.52322i) q^{88} +(-9.94463 + 4.63726i) q^{89} +(-2.69173 - 4.74730i) q^{90} +(9.24434 + 6.47296i) q^{91} +(-1.14179 + 1.36073i) q^{92} +(-0.513895 + 0.612436i) q^{93} +(-3.87824 - 2.71557i) q^{94} +(1.44529 - 5.23044i) q^{95} +(-0.677864 + 0.316093i) q^{96} +(-0.114924 + 0.199055i) q^{97} +(-0.385175 + 2.18444i) q^{98} +(3.28836 - 2.75926i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$108 q + 6 q^{3} + O(q^{10})$$ $$108 q + 6 q^{3} + 6 q^{10} + 36 q^{11} - 6 q^{12} - 12 q^{14} - 12 q^{17} - 12 q^{19} - 42 q^{21} - 36 q^{23} + 6 q^{24} - 6 q^{25} - 6 q^{26} - 6 q^{27} - 24 q^{30} + 6 q^{33} - 66 q^{35} + 48 q^{38} - 12 q^{40} + 48 q^{41} + 66 q^{42} - 6 q^{44} - 162 q^{45} + 6 q^{46} + 24 q^{47} + 12 q^{49} + 36 q^{50} - 12 q^{51} + 12 q^{53} + 18 q^{54} + 48 q^{57} + 6 q^{58} - 24 q^{59} - 36 q^{61} - 30 q^{62} + 102 q^{63} + 54 q^{64} + 54 q^{65} - 54 q^{67} + 96 q^{69} - 36 q^{70} - 48 q^{71} - 84 q^{73} - 42 q^{74} + 252 q^{75} - 6 q^{76} + 36 q^{77} - 36 q^{78} - 66 q^{79} - 6 q^{80} - 108 q^{81} + 6 q^{82} - 60 q^{83} - 18 q^{85} - 168 q^{87} + 12 q^{88} + 66 q^{89} + 12 q^{90} - 18 q^{91} - 18 q^{92} - 18 q^{94} - 18 q^{95} + 12 q^{96} - 36 q^{97} - 60 q^{98} + 42 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$e\left(\frac{1}{36}\right)$$ $$e\left(\frac{1}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.642788 + 0.766044i 0.454519 + 0.541675i
$$3$$ −0.0651873 0.745094i −0.0376359 0.430180i −0.991515 0.129990i $$-0.958505\pi$$
0.953879 0.300190i $$-0.0970502\pi$$
$$4$$ −0.173648 + 0.984808i −0.0868241 + 0.492404i
$$5$$ −2.09519 0.781138i −0.936998 0.349335i
$$6$$ 0.528874 0.528874i 0.215912 0.215912i
$$7$$ 2.75168 + 1.28313i 1.04004 + 0.484977i 0.866147 0.499789i $$-0.166589\pi$$
0.173888 + 0.984765i $$0.444367\pi$$
$$8$$ −0.866025 + 0.500000i −0.306186 + 0.176777i
$$9$$ 2.40351 0.423803i 0.801169 0.141268i
$$10$$ −0.748377 2.10711i −0.236657 0.666328i
$$11$$ 1.52322 0.879430i 0.459267 0.265158i −0.252469 0.967605i $$-0.581243\pi$$
0.711736 + 0.702447i $$0.247909\pi$$
$$12$$ 0.745094 + 0.0651873i 0.215090 + 0.0188180i
$$13$$ 3.66051 + 0.645446i 1.01524 + 0.179015i 0.656424 0.754393i $$-0.272068\pi$$
0.358819 + 0.933407i $$0.383180\pi$$
$$14$$ 0.785810 + 2.93268i 0.210017 + 0.783793i
$$15$$ −0.445441 + 1.61204i −0.115012 + 0.416226i
$$16$$ −0.939693 0.342020i −0.234923 0.0855050i
$$17$$ 0.0811484 + 0.460215i 0.0196814 + 0.111619i 0.993066 0.117560i $$-0.0375072\pi$$
−0.973384 + 0.229178i $$0.926396\pi$$
$$18$$ 1.86960 + 1.56878i 0.440668 + 0.369764i
$$19$$ 0.211508 + 2.41755i 0.0485233 + 0.554624i 0.981080 + 0.193601i $$0.0620168\pi$$
−0.932557 + 0.361023i $$0.882428\pi$$
$$20$$ 1.13310 1.92772i 0.253368 0.431051i
$$21$$ 0.776677 2.13390i 0.169485 0.465656i
$$22$$ 1.65279 + 0.601565i 0.352375 + 0.128254i
$$23$$ 1.53833 + 0.888156i 0.320764 + 0.185193i 0.651733 0.758448i $$-0.274042\pi$$
−0.330969 + 0.943642i $$0.607376\pi$$
$$24$$ 0.429001 + 0.612677i 0.0875695 + 0.125062i
$$25$$ 3.77965 + 3.27326i 0.755930 + 0.654653i
$$26$$ 1.85849 + 3.21900i 0.364480 + 0.631297i
$$27$$ −1.05320 3.93058i −0.202688 0.756440i
$$28$$ −1.74146 + 2.48706i −0.329104 + 0.470010i
$$29$$ −3.50408 0.938915i −0.650691 0.174352i −0.0816497 0.996661i $$-0.526019\pi$$
−0.569041 + 0.822309i $$0.692686\pi$$
$$30$$ −1.52121 + 0.694968i −0.277735 + 0.126883i
$$31$$ −0.755831 0.755831i −0.135751 0.135751i 0.635966 0.771717i $$-0.280602\pi$$
−0.771717 + 0.635966i $$0.780602\pi$$
$$32$$ −0.342020 0.939693i −0.0604612 0.166116i
$$33$$ −0.754553 1.07761i −0.131351 0.187588i
$$34$$ −0.300384 + 0.357984i −0.0515155 + 0.0613937i
$$35$$ −4.76299 4.83783i −0.805092 0.817743i
$$36$$ 2.44058i 0.406764i
$$37$$ 2.60408 5.49716i 0.428108 0.903728i
$$38$$ −1.71600 + 1.71600i −0.278371 + 0.278371i
$$39$$ 0.242300 2.76950i 0.0387990 0.443475i
$$40$$ 2.20506 0.371110i 0.348650 0.0586777i
$$41$$ −6.02913 1.06310i −0.941592 0.166028i −0.318276 0.947998i $$-0.603104\pi$$
−0.623316 + 0.781970i $$0.714215\pi$$
$$42$$ 2.13390 0.776677i 0.329268 0.119844i
$$43$$ 0.539434i 0.0822629i 0.999154 + 0.0411314i $$0.0130962\pi$$
−0.999154 + 0.0411314i $$0.986904\pi$$
$$44$$ 0.601565 + 1.65279i 0.0906894 + 0.249167i
$$45$$ −5.36685 0.989521i −0.800043 0.147509i
$$46$$ 0.308453 + 1.74933i 0.0454790 + 0.257924i
$$47$$ −4.57313 + 1.22537i −0.667060 + 0.178738i −0.576430 0.817146i $$-0.695555\pi$$
−0.0906299 + 0.995885i $$0.528888\pi$$
$$48$$ −0.193581 + 0.722455i −0.0279411 + 0.104277i
$$49$$ 1.42579 + 1.69919i 0.203684 + 0.242741i
$$50$$ −0.0779548 + 4.99939i −0.0110245 + 0.707021i
$$51$$ 0.337614 0.0904634i 0.0472754 0.0126674i
$$52$$ −1.27128 + 3.49282i −0.176295 + 0.484367i
$$53$$ −3.31600 + 1.54628i −0.455487 + 0.212397i −0.636801 0.771028i $$-0.719743\pi$$
0.181314 + 0.983425i $$0.441965\pi$$
$$54$$ 2.33402 3.33332i 0.317619 0.453608i
$$55$$ −3.87839 + 0.652731i −0.522961 + 0.0880142i
$$56$$ −3.02458 + 0.264617i −0.404177 + 0.0353609i
$$57$$ 1.78752 0.315187i 0.236762 0.0417476i
$$58$$ −1.53313 3.28780i −0.201310 0.431710i
$$59$$ −2.77453 5.95000i −0.361213 0.774623i −0.999986 0.00522855i $$-0.998336\pi$$
0.638774 0.769395i $$-0.279442\pi$$
$$60$$ −1.51019 0.718601i −0.194965 0.0927710i
$$61$$ −11.1701 + 7.82136i −1.43018 + 1.00142i −0.435308 + 0.900281i $$0.643361\pi$$
−0.994872 + 0.101142i $$0.967750\pi$$
$$62$$ 0.0931613 1.06484i 0.0118315 0.135235i
$$63$$ 7.15746 + 1.91784i 0.901756 + 0.241625i
$$64$$ 0.500000 0.866025i 0.0625000 0.108253i
$$65$$ −7.16528 4.21169i −0.888744 0.522396i
$$66$$ 0.340482 1.27070i 0.0419105 0.156412i
$$67$$ 2.55532 5.47990i 0.312182 0.669476i −0.686135 0.727474i $$-0.740694\pi$$
0.998317 + 0.0579981i $$0.0184717\pi$$
$$68$$ −0.467315 −0.0566703
$$69$$ 0.561480 1.20410i 0.0675943 0.144956i
$$70$$ 0.644407 6.75836i 0.0770214 0.807778i
$$71$$ 7.04380 + 5.91045i 0.835945 + 0.701441i 0.956648 0.291247i $$-0.0940703\pi$$
−0.120702 + 0.992689i $$0.538515\pi$$
$$72$$ −1.86960 + 1.56878i −0.220334 + 0.184882i
$$73$$ 2.93388 + 2.93388i 0.343385 + 0.343385i 0.857638 0.514254i $$-0.171931\pi$$
−0.514254 + 0.857638i $$0.671931\pi$$
$$74$$ 5.88494 1.53867i 0.684110 0.178866i
$$75$$ 2.19251 3.02957i 0.253169 0.349825i
$$76$$ −2.41755 0.211508i −0.277312 0.0242617i
$$77$$ 5.31982 0.465424i 0.606250 0.0530400i
$$78$$ 2.27731 1.59459i 0.257854 0.180552i
$$79$$ −7.25157 3.38146i −0.815866 0.380444i −0.0305449 0.999533i $$-0.509724\pi$$
−0.785321 + 0.619089i $$0.787502\pi$$
$$80$$ 1.70167 + 1.45063i 0.190253 + 0.162185i
$$81$$ 4.02020 1.46323i 0.446689 0.162582i
$$82$$ −3.06107 5.30193i −0.338038 0.585500i
$$83$$ 2.64327 + 1.85084i 0.290137 + 0.203156i 0.709579 0.704626i $$-0.248885\pi$$
−0.419442 + 0.907782i $$0.637774\pi$$
$$84$$ 1.96661 + 1.13543i 0.214575 + 0.123885i
$$85$$ 0.189470 1.02763i 0.0205509 0.111462i
$$86$$ −0.413230 + 0.346741i −0.0445598 + 0.0373901i
$$87$$ −0.471159 + 2.67207i −0.0505135 + 0.286476i
$$88$$ −0.879430 + 1.52322i −0.0937475 + 0.162375i
$$89$$ −9.94463 + 4.63726i −1.05413 + 0.491548i −0.870868 0.491516i $$-0.836443\pi$$
−0.183260 + 0.983064i $$0.558665\pi$$
$$90$$ −2.69173 4.74730i −0.283733 0.500409i
$$91$$ 9.24434 + 6.47296i 0.969070 + 0.678550i
$$92$$ −1.14179 + 1.36073i −0.119040 + 0.141866i
$$93$$ −0.513895 + 0.612436i −0.0532884 + 0.0635066i
$$94$$ −3.87824 2.71557i −0.400010 0.280090i
$$95$$ 1.44529 5.23044i 0.148283 0.536632i
$$96$$ −0.677864 + 0.316093i −0.0691842 + 0.0322611i
$$97$$ −0.114924 + 0.199055i −0.0116688 + 0.0202110i −0.871801 0.489860i $$-0.837048\pi$$
0.860132 + 0.510071i $$0.170381\pi$$
$$98$$ −0.385175 + 2.18444i −0.0389085 + 0.220661i
$$99$$ 3.28836 2.75926i 0.330492 0.277316i
$$100$$ −3.87987 + 3.15383i −0.387987 + 0.315383i
$$101$$ −13.1108 7.56952i −1.30457 0.753195i −0.323388 0.946267i $$-0.604822\pi$$
−0.981185 + 0.193071i $$0.938155\pi$$
$$102$$ 0.286313 + 0.200479i 0.0283492 + 0.0198503i
$$103$$ 6.08041 + 10.5316i 0.599120 + 1.03771i 0.992951 + 0.118524i $$0.0378162\pi$$
−0.393831 + 0.919183i $$0.628850\pi$$
$$104$$ −3.49282 + 1.27128i −0.342499 + 0.124659i
$$105$$ −3.29416 + 3.86424i −0.321477 + 0.377111i
$$106$$ −3.31600 1.54628i −0.322078 0.150188i
$$107$$ 14.4811 10.1397i 1.39994 0.980246i 0.402026 0.915628i $$-0.368306\pi$$
0.997910 0.0646180i $$-0.0205829\pi$$
$$108$$ 4.05375 0.354657i 0.390072 0.0341269i
$$109$$ −15.8304 1.38498i −1.51628 0.132657i −0.701602 0.712569i $$-0.747531\pi$$
−0.814679 + 0.579912i $$0.803087\pi$$
$$110$$ −2.99300 2.55145i −0.285371 0.243271i
$$111$$ −4.26566 1.58194i −0.404878 0.150151i
$$112$$ −2.14687 2.14687i −0.202861 0.202861i
$$113$$ −3.42460 + 2.87358i −0.322160 + 0.270324i −0.789496 0.613756i $$-0.789658\pi$$
0.467337 + 0.884079i $$0.345214\pi$$
$$114$$ 1.39044 + 1.16672i 0.130227 + 0.109273i
$$115$$ −2.52932 3.06250i −0.235861 0.285580i
$$116$$ 1.53313 3.28780i 0.142347 0.305265i
$$117$$ 9.07160 0.838670
$$118$$ 2.77453 5.95000i 0.255416 0.547741i
$$119$$ −0.367221 + 1.37049i −0.0336631 + 0.125632i
$$120$$ −0.420254 1.61878i −0.0383638 0.147774i
$$121$$ −3.95321 + 6.84715i −0.359382 + 0.622469i
$$122$$ −13.1715 3.52929i −1.19249 0.319527i
$$123$$ −0.399086 + 4.56157i −0.0359843 + 0.411303i
$$124$$ 0.875597 0.613099i 0.0786309 0.0550579i
$$125$$ −5.36221 9.81054i −0.479611 0.877481i
$$126$$ 3.13158 + 6.71570i 0.278983 + 0.598282i
$$127$$ 4.64969 + 9.97130i 0.412593 + 0.884810i 0.997291 + 0.0735581i $$0.0234354\pi$$
−0.584697 + 0.811251i $$0.698787\pi$$
$$128$$ 0.984808 0.173648i 0.0870455 0.0153485i
$$129$$ 0.401929 0.0351642i 0.0353879 0.00309604i
$$130$$ −1.37941 8.19615i −0.120982 0.718850i
$$131$$ 10.6369 15.1911i 0.929354 1.32725i −0.0155405 0.999879i $$-0.504947\pi$$
0.944894 0.327376i $$-0.106164\pi$$
$$132$$ 1.19227 0.555964i 0.103774 0.0483904i
$$133$$ −2.52002 + 6.92370i −0.218514 + 0.600361i
$$134$$ 5.84037 1.56492i 0.504532 0.135189i
$$135$$ −0.863677 + 9.05800i −0.0743335 + 0.779589i
$$136$$ −0.300384 0.357984i −0.0257577 0.0306969i
$$137$$ 2.45255 9.15303i 0.209535 0.781996i −0.778484 0.627665i $$-0.784011\pi$$
0.988019 0.154332i $$-0.0493224\pi$$
$$138$$ 1.28331 0.343861i 0.109242 0.0292714i
$$139$$ −2.56515 14.5477i −0.217573 1.23392i −0.876385 0.481612i $$-0.840051\pi$$
0.658811 0.752308i $$-0.271060\pi$$
$$140$$ 5.59142 3.85054i 0.472561 0.325430i
$$141$$ 1.21112 + 3.32754i 0.101995 + 0.280229i
$$142$$ 9.19503i 0.771630i
$$143$$ 6.14337 2.23601i 0.513735 0.186984i
$$144$$ −2.40351 0.423803i −0.200292 0.0353169i
$$145$$ 6.60829 + 4.70437i 0.548789 + 0.390677i
$$146$$ −0.361621 + 4.13334i −0.0299279 + 0.342078i
$$147$$ 1.17311 1.17311i 0.0967567 0.0967567i
$$148$$ 4.96145 + 3.51909i 0.407829 + 0.289267i
$$149$$ 13.9753i 1.14490i 0.819938 + 0.572452i $$0.194008\pi$$
−0.819938 + 0.572452i $$0.805992\pi$$
$$150$$ 3.73010 0.267813i 0.304561 0.0218669i
$$151$$ 7.39855 8.81725i 0.602086 0.717538i −0.375795 0.926703i $$-0.622630\pi$$
0.977880 + 0.209165i $$0.0670746\pi$$
$$152$$ −1.39195 1.98791i −0.112902 0.161240i
$$153$$ 0.390081 + 1.07174i 0.0315362 + 0.0866450i
$$154$$ 3.77605 + 3.77605i 0.304283 + 0.304283i
$$155$$ 0.993202 + 2.17402i 0.0797759 + 0.174621i
$$156$$ 2.68535 + 0.719537i 0.215000 + 0.0576091i
$$157$$ 2.49071 3.55710i 0.198780 0.283887i −0.707370 0.706843i $$-0.750119\pi$$
0.906150 + 0.422956i $$0.139007\pi$$
$$158$$ −2.07087 7.72859i −0.164750 0.614854i
$$159$$ 1.36828 + 2.36993i 0.108512 + 0.187948i
$$160$$ −0.0174317 + 2.23600i −0.00137810 + 0.176771i
$$161$$ 3.09337 + 4.41779i 0.243792 + 0.348171i
$$162$$ 3.70504 + 2.13910i 0.291095 + 0.168064i
$$163$$ 1.47624 + 0.537308i 0.115628 + 0.0420852i 0.399186 0.916870i $$-0.369293\pi$$
−0.283558 + 0.958955i $$0.591515\pi$$
$$164$$ 2.09389 5.75293i 0.163506 0.449228i
$$165$$ 0.739168 + 2.84721i 0.0575441 + 0.221655i
$$166$$ 0.281238 + 3.21456i 0.0218283 + 0.249498i
$$167$$ 7.98349 + 6.69895i 0.617781 + 0.518380i 0.897105 0.441817i $$-0.145666\pi$$
−0.279324 + 0.960197i $$0.590110\pi$$
$$168$$ 0.394329 + 2.23635i 0.0304232 + 0.172538i
$$169$$ 0.766719 + 0.279063i 0.0589784 + 0.0214664i
$$170$$ 0.908997 0.515403i 0.0697169 0.0395296i
$$171$$ 1.53293 + 5.72096i 0.117226 + 0.437493i
$$172$$ −0.531239 0.0936717i −0.0405066 0.00714240i
$$173$$ −21.1933 1.85417i −1.61130 0.140970i −0.754385 0.656432i $$-0.772065\pi$$
−0.856912 + 0.515462i $$0.827620\pi$$
$$174$$ −2.34978 + 1.35665i −0.178137 + 0.102847i
$$175$$ 6.20035 + 13.8567i 0.468702 + 1.04747i
$$176$$ −1.73214 + 0.305423i −0.130565 + 0.0230221i
$$177$$ −4.25244 + 2.45515i −0.319633 + 0.184540i
$$178$$ −9.94463 4.63726i −0.745381 0.347577i
$$179$$ −9.27493 + 9.27493i −0.693241 + 0.693241i −0.962944 0.269703i $$-0.913075\pi$$
0.269703 + 0.962944i $$0.413075\pi$$
$$180$$ 1.90643 5.11349i 0.142097 0.381137i
$$181$$ −1.96177 + 11.1258i −0.145818 + 0.826972i 0.820890 + 0.571087i $$0.193478\pi$$
−0.966707 + 0.255885i $$0.917633\pi$$
$$182$$ 0.983575 + 11.2423i 0.0729074 + 0.833336i
$$183$$ 6.55580 + 7.81290i 0.484619 + 0.577546i
$$184$$ −1.77631 −0.130951
$$185$$ −9.75008 + 9.48346i −0.716840 + 0.697238i
$$186$$ −0.799478 −0.0586206
$$187$$ 0.528334 + 0.629644i 0.0386356 + 0.0460441i
$$188$$ −0.412635 4.71644i −0.0300945 0.343982i
$$189$$ 2.14538 12.1671i 0.156054 0.885023i
$$190$$ 4.93577 2.25491i 0.358078 0.163588i
$$191$$ 1.61258 1.61258i 0.116682 0.116682i −0.646355 0.763037i $$-0.723707\pi$$
0.763037 + 0.646355i $$0.223707\pi$$
$$192$$ −0.677864 0.316093i −0.0489206 0.0228121i
$$193$$ −4.29330 + 2.47874i −0.309039 + 0.178424i −0.646496 0.762917i $$-0.723766\pi$$
0.337457 + 0.941341i $$0.390433\pi$$
$$194$$ −0.226357 + 0.0399128i −0.0162515 + 0.00286557i
$$195$$ −2.67102 + 5.61336i −0.191276 + 0.401981i
$$196$$ −1.92096 + 1.10907i −0.137211 + 0.0792191i
$$197$$ 26.4650 + 2.31539i 1.88555 + 0.164964i 0.970933 0.239351i $$-0.0769348\pi$$
0.914619 + 0.404316i $$0.132490\pi$$
$$198$$ 4.22743 + 0.745410i 0.300430 + 0.0529740i
$$199$$ 3.34781 + 12.4942i 0.237320 + 0.885689i 0.977089 + 0.212829i $$0.0682677\pi$$
−0.739770 + 0.672860i $$0.765066\pi$$
$$200$$ −4.90990 0.944906i −0.347183 0.0668149i
$$201$$ −4.24962 1.54673i −0.299745 0.109098i
$$202$$ −2.62887 14.9090i −0.184966 1.04900i
$$203$$ −8.43734 7.07977i −0.592185 0.496902i
$$204$$ 0.0304630 + 0.348194i 0.00213284 + 0.0243784i
$$205$$ 11.8017 + 6.93697i 0.824270 + 0.484499i
$$206$$ −4.15924 + 11.4274i −0.289788 + 0.796186i
$$207$$ 4.07379 + 1.48274i 0.283148 + 0.103057i
$$208$$ −3.21900 1.85849i −0.223197 0.128863i
$$209$$ 2.44824 + 3.49645i 0.169348 + 0.241854i
$$210$$ −5.07762 0.0395849i −0.350389 0.00273162i
$$211$$ 4.71596 + 8.16829i 0.324660 + 0.562328i 0.981444 0.191751i $$-0.0614167\pi$$
−0.656783 + 0.754079i $$0.728083\pi$$
$$212$$ −0.946967 3.53413i −0.0650379 0.242725i
$$213$$ 3.94468 5.63358i 0.270285 0.386007i
$$214$$ 17.0757 + 4.57543i 1.16727 + 0.312770i
$$215$$ 0.421372 1.13022i 0.0287373 0.0770801i
$$216$$ 2.87738 + 2.87738i 0.195781 + 0.195781i
$$217$$ −1.10997 3.04963i −0.0753499 0.207022i
$$218$$ −9.11465 13.0171i −0.617322 0.881627i
$$219$$ 1.99477 2.37727i 0.134794 0.160641i
$$220$$ 0.0306600 3.93281i 0.00206710 0.265150i
$$221$$ 1.73700i 0.116843i
$$222$$ −1.53008 4.28453i −0.102692 0.287559i
$$223$$ −17.6658 + 17.6658i −1.18299 + 1.18299i −0.204022 + 0.978966i $$0.565401\pi$$
−0.978966 + 0.204022i $$0.934599\pi$$
$$224$$ 0.264617 3.02458i 0.0176805 0.202089i
$$225$$ 10.4716 + 6.26549i 0.698109 + 0.417699i
$$226$$ −4.40258 0.776294i −0.292856 0.0516383i
$$227$$ −12.1877 + 4.43597i −0.808928 + 0.294426i −0.713181 0.700980i $$-0.752746\pi$$
−0.0957471 + 0.995406i $$0.530524\pi$$
$$228$$ 1.81509i 0.120207i
$$229$$ −6.43623 17.6834i −0.425318 1.16855i −0.948624 0.316406i $$-0.897524\pi$$
0.523306 0.852145i $$-0.324699\pi$$
$$230$$ 0.720195 3.90611i 0.0474883 0.257562i
$$231$$ −0.693570 3.93343i −0.0456335 0.258801i
$$232$$ 3.50408 0.938915i 0.230054 0.0616428i
$$233$$ 4.55632 17.0044i 0.298494 1.11400i −0.639908 0.768452i $$-0.721028\pi$$
0.938402 0.345545i $$-0.112306\pi$$
$$234$$ 5.83111 + 6.94925i 0.381192 + 0.454287i
$$235$$ 10.5388 + 1.00487i 0.687473 + 0.0655503i
$$236$$ 6.34139 1.69917i 0.412790 0.110607i
$$237$$ −2.04680 + 5.62354i −0.132954 + 0.365288i
$$238$$ −1.28590 + 0.599625i −0.0833525 + 0.0388679i
$$239$$ −16.3440 + 23.3417i −1.05721 + 1.50985i −0.210640 + 0.977564i $$0.567555\pi$$
−0.846566 + 0.532283i $$0.821334\pi$$
$$240$$ 0.969927 1.36247i 0.0626085 0.0879469i
$$241$$ 17.5907 1.53899i 1.13312 0.0991348i 0.494870 0.868967i $$-0.335216\pi$$
0.638246 + 0.769833i $$0.279660\pi$$
$$242$$ −7.78630 + 1.37293i −0.500522 + 0.0882555i
$$243$$ −6.51151 13.9640i −0.417714 0.895790i
$$244$$ −5.76288 12.3585i −0.368930 0.791174i
$$245$$ −1.66000 4.67386i −0.106053 0.298602i
$$246$$ −3.75089 + 2.62640i −0.239148 + 0.167453i
$$247$$ −0.786171 + 8.98598i −0.0500229 + 0.571764i
$$248$$ 1.03248 + 0.276653i 0.0655628 + 0.0175675i
$$249$$ 1.20674 2.09014i 0.0764742 0.132457i
$$250$$ 4.06854 10.4138i 0.257317 0.658626i
$$251$$ 0.462964 1.72780i 0.0292220 0.109058i −0.949774 0.312935i $$-0.898688\pi$$
0.978996 + 0.203877i $$0.0653544\pi$$
$$252$$ −3.13158 + 6.71570i −0.197271 + 0.423049i
$$253$$ 3.12428 0.196422
$$254$$ −4.64969 + 9.97130i −0.291748 + 0.625655i
$$255$$ −0.778030 0.0741849i −0.0487221 0.00464564i
$$256$$ 0.766044 + 0.642788i 0.0478778 + 0.0401742i
$$257$$ −1.21949 + 1.02327i −0.0760695 + 0.0638299i −0.680030 0.733185i $$-0.738033\pi$$
0.603960 + 0.797015i $$0.293589\pi$$
$$258$$ 0.285292 + 0.285292i 0.0177615 + 0.0177615i
$$259$$ 14.2191 11.7850i 0.883534 0.732287i
$$260$$ 5.39195 6.32507i 0.334394 0.392264i
$$261$$ −8.81999 0.771649i −0.545944 0.0477639i
$$262$$ 18.4744 1.61630i 1.14135 0.0998552i
$$263$$ 20.0920 14.0685i 1.23892 0.867503i 0.244162 0.969734i $$-0.421487\pi$$
0.994761 + 0.102231i $$0.0325982\pi$$
$$264$$ 1.19227 + 0.555964i 0.0733790 + 0.0342172i
$$265$$ 8.15550 0.649491i 0.500988 0.0398979i
$$266$$ −6.92370 + 2.52002i −0.424519 + 0.154512i
$$267$$ 4.10346 + 7.10740i 0.251128 + 0.434966i
$$268$$ 4.95292 + 3.46807i 0.302548 + 0.211846i
$$269$$ −11.2601 6.50101i −0.686539 0.396374i 0.115775 0.993275i $$-0.463065\pi$$
−0.802314 + 0.596902i $$0.796398\pi$$
$$270$$ −7.49399 + 5.16076i −0.456070 + 0.314074i
$$271$$ 15.1832 12.7402i 0.922315 0.773914i −0.0521065 0.998642i $$-0.516594\pi$$
0.974422 + 0.224727i $$0.0721491\pi$$
$$272$$ 0.0811484 0.460215i 0.00492034 0.0279047i
$$273$$ 4.22035 7.30986i 0.255427 0.442413i
$$274$$ 8.58810 4.00469i 0.518826 0.241932i
$$275$$ 8.63583 + 1.66196i 0.520760 + 0.100220i
$$276$$ 1.08831 + 0.762040i 0.0655083 + 0.0458694i
$$277$$ 10.9193 13.0131i 0.656076 0.781880i −0.330741 0.943721i $$-0.607299\pi$$
0.986817 + 0.161841i $$0.0517432\pi$$
$$278$$ 9.49534 11.3161i 0.569493 0.678695i
$$279$$ −2.13697 1.49632i −0.127937 0.0895824i
$$280$$ 6.54378 + 1.80819i 0.391066 + 0.108060i
$$281$$ −23.1231 + 10.7825i −1.37941 + 0.643228i −0.963876 0.266351i $$-0.914182\pi$$
−0.415531 + 0.909579i $$0.636404\pi$$
$$282$$ −1.77055 + 3.06668i −0.105434 + 0.182618i
$$283$$ 2.62280 14.8747i 0.155909 0.884207i −0.802040 0.597270i $$-0.796252\pi$$
0.957950 0.286936i $$-0.0926369\pi$$
$$284$$ −7.04380 + 5.91045i −0.417973 + 0.350721i
$$285$$ −3.99139 0.735918i −0.236430 0.0435920i
$$286$$ 5.66176 + 3.26882i 0.334787 + 0.193289i
$$287$$ −15.2261 10.6614i −0.898769 0.629325i
$$288$$ −1.22029 2.11361i −0.0719064 0.124546i
$$289$$ 15.7696 5.73965i 0.927621 0.337627i
$$290$$ 0.643969 + 8.08616i 0.0378151 + 0.474835i
$$291$$ 0.155806 + 0.0726537i 0.00913353 + 0.00425904i
$$292$$ −3.39877 + 2.37984i −0.198898 + 0.139270i
$$293$$ 11.0594 0.967570i 0.646096 0.0565260i 0.240602 0.970624i $$-0.422655\pi$$
0.405494 + 0.914098i $$0.367100\pi$$
$$294$$ 1.65272 + 0.144594i 0.0963885 + 0.00843291i
$$295$$ 1.16540 + 14.6337i 0.0678523 + 0.852005i
$$296$$ 0.493383 + 6.06272i 0.0286773 + 0.352388i
$$297$$ −5.06091 5.06091i −0.293664 0.293664i
$$298$$ −10.7057 + 8.98317i −0.620166 + 0.520381i
$$299$$ 5.05782 + 4.24401i 0.292501 + 0.245438i
$$300$$ 2.60282 + 2.68528i 0.150274 + 0.155034i
$$301$$ −0.692162 + 1.48435i −0.0398956 + 0.0855563i
$$302$$ 11.5101 0.662332
$$303$$ −4.78535 + 10.2622i −0.274911 + 0.589549i
$$304$$ 0.628098 2.34409i 0.0360239 0.134443i
$$305$$ 29.5130 7.66189i 1.68991 0.438719i
$$306$$ −0.570261 + 0.987721i −0.0325996 + 0.0564642i
$$307$$ −28.2527 7.57029i −1.61247 0.432059i −0.663690 0.748007i $$-0.731011\pi$$
−0.948776 + 0.315948i $$0.897677\pi$$
$$308$$ −0.465424 + 5.31982i −0.0265200 + 0.303125i
$$309$$ 7.45065 5.21700i 0.423853 0.296785i
$$310$$ −1.02698 + 2.15827i −0.0583283 + 0.122581i
$$311$$ −8.95742 19.2092i −0.507929 1.08926i −0.978377 0.206829i $$-0.933686\pi$$
0.470448 0.882427i $$-0.344092\pi$$
$$312$$ 1.17491 + 2.51961i 0.0665163 + 0.142645i
$$313$$ −12.3523 + 2.17804i −0.698192 + 0.123110i −0.511468 0.859302i $$-0.670898\pi$$
−0.186724 + 0.982412i $$0.559787\pi$$
$$314$$ 4.32589 0.378466i 0.244124 0.0213581i
$$315$$ −13.4982 9.60920i −0.760535 0.541417i
$$316$$ 4.58931 6.55422i 0.258169 0.368704i
$$317$$ −25.8140 + 12.0373i −1.44986 + 0.676079i −0.978573 0.205902i $$-0.933987\pi$$
−0.471284 + 0.881981i $$0.656209\pi$$
$$318$$ −0.935960 + 2.57153i −0.0524860 + 0.144204i
$$319$$ −6.16318 + 1.65142i −0.345072 + 0.0924617i
$$320$$ −1.72408 + 1.42392i −0.0963790 + 0.0795995i
$$321$$ −8.49905 10.1288i −0.474371 0.565333i
$$322$$ −1.39584 + 5.20936i −0.0777873 + 0.290306i
$$323$$ −1.09543 + 0.293520i −0.0609513 + 0.0163319i
$$324$$ 0.742903 + 4.21321i 0.0412724 + 0.234067i
$$325$$ 11.7227 + 14.4214i 0.650259 + 0.799954i
$$326$$ 0.537308 + 1.47624i 0.0297587 + 0.0817614i
$$327$$ 11.8855i 0.657267i
$$328$$ 5.75293 2.09389i 0.317652 0.115616i
$$329$$ −14.1561 2.49610i −0.780450 0.137614i
$$330$$ −1.70596 + 2.39639i −0.0939103 + 0.131917i
$$331$$ 0.450411 5.14822i 0.0247568 0.282972i −0.973718 0.227758i $$-0.926860\pi$$
0.998475 0.0552136i $$-0.0175840\pi$$
$$332$$ −2.28172 + 2.28172i −0.125226 + 0.125226i
$$333$$ 3.92920 14.3161i 0.215319 0.784516i
$$334$$ 10.4217i 0.570251i
$$335$$ −9.63444 + 9.48538i −0.526386 + 0.518242i
$$336$$ −1.45967 + 1.73957i −0.0796318 + 0.0949015i
$$337$$ −14.9633 21.3698i −0.815103 1.16409i −0.983950 0.178446i $$-0.942893\pi$$
0.168846 0.985642i $$-0.445996\pi$$
$$338$$ 0.279063 + 0.766719i 0.0151790 + 0.0417040i
$$339$$ 2.36433 + 2.36433i 0.128413 + 0.128413i
$$340$$ 0.979114 + 0.365037i 0.0530999 + 0.0197969i
$$341$$ −1.81599 0.486594i −0.0983416 0.0263506i
$$342$$ −3.39716 + 4.85165i −0.183698 + 0.262347i
$$343$$ −3.75764 14.0237i −0.202893 0.757209i
$$344$$ −0.269717 0.467163i −0.0145422 0.0251878i
$$345$$ −2.11697 + 2.08422i −0.113974 + 0.112211i
$$346$$ −12.2024 17.4269i −0.656006 0.936873i
$$347$$ −28.6827 16.5600i −1.53977 0.888985i −0.998852 0.0479084i $$-0.984744\pi$$
−0.540916 0.841077i $$-0.681922\pi$$
$$348$$ −2.54966 0.928002i −0.136676 0.0497461i
$$349$$ −3.30065 + 9.06845i −0.176680 + 0.485423i −0.996147 0.0877031i $$-0.972047\pi$$
0.819467 + 0.573126i $$0.194270\pi$$
$$350$$ −6.62936 + 13.6567i −0.354354 + 0.729980i
$$351$$ −1.31825 15.0677i −0.0703631 0.804254i
$$352$$ −1.34736 1.13057i −0.0718148 0.0602598i
$$353$$ 1.93452 + 10.9712i 0.102964 + 0.583937i 0.992014 + 0.126128i $$0.0402549\pi$$
−0.889050 + 0.457810i $$0.848634\pi$$
$$354$$ −4.61417 1.67942i −0.245241 0.0892602i
$$355$$ −10.1412 17.8857i −0.538241 0.949274i
$$356$$ −2.83994 10.5988i −0.150516 0.561735i
$$357$$ 1.04508 + 0.184276i 0.0553115 + 0.00975291i
$$358$$ −13.0668 1.14320i −0.690603 0.0604199i
$$359$$ −4.01803 + 2.31981i −0.212064 + 0.122435i −0.602270 0.798292i $$-0.705737\pi$$
0.390206 + 0.920727i $$0.372404\pi$$
$$360$$ 5.14259 1.82648i 0.271038 0.0962638i
$$361$$ 12.9115 2.27665i 0.679555 0.119824i
$$362$$ −9.78384 + 5.64870i −0.514227 + 0.296889i
$$363$$ 5.35948 + 2.49916i 0.281300 + 0.131172i
$$364$$ −7.97988 + 7.97988i −0.418259 + 0.418259i
$$365$$ −3.85527 8.43880i −0.201794 0.441707i
$$366$$ −1.77104 + 10.0441i −0.0925738 + 0.525012i
$$367$$ 0.0576343 + 0.658763i 0.00300849 + 0.0343872i 0.997551 0.0699492i $$-0.0222837\pi$$
−0.994542 + 0.104336i $$0.966728\pi$$
$$368$$ −1.14179 1.36073i −0.0595200 0.0709331i
$$369$$ −14.9416 −0.777828
$$370$$ −13.5320 1.37314i −0.703494 0.0713864i
$$371$$ −11.1086 −0.576731
$$372$$ −0.513895 0.612436i −0.0266442 0.0317533i
$$373$$ 2.91787 + 33.3514i 0.151082 + 1.72687i 0.572415 + 0.819964i $$0.306007\pi$$
−0.421333 + 0.906906i $$0.638438\pi$$
$$374$$ −0.142729 + 0.809454i −0.00738032 + 0.0418559i
$$375$$ −6.96023 + 4.63488i −0.359425 + 0.239344i
$$376$$ 3.34777 3.34777i 0.172648 0.172648i
$$377$$ −12.2207 5.69860i −0.629398 0.293493i
$$378$$ 10.6995 6.17738i 0.550325 0.317730i
$$379$$ 31.4688 5.54879i 1.61644 0.285022i 0.709002 0.705206i $$-0.249145\pi$$
0.907439 + 0.420184i $$0.138034\pi$$
$$380$$ 4.90001 + 2.33159i 0.251365 + 0.119608i
$$381$$ 7.12646 4.11446i 0.365099 0.210790i
$$382$$ 2.27185 + 0.198762i 0.116238 + 0.0101695i
$$383$$ −12.2073 2.15248i −0.623765 0.109987i −0.147172 0.989111i $$-0.547017\pi$$
−0.476593 + 0.879124i $$0.658128\pi$$
$$384$$ −0.193581 0.722455i −0.00987865 0.0368676i
$$385$$ −11.5096 3.18036i −0.586583 0.162086i
$$386$$ −4.65851 1.69556i −0.237112 0.0863016i
$$387$$ 0.228614 + 1.29653i 0.0116211 + 0.0659065i
$$388$$ −0.176074 0.147744i −0.00893883 0.00750057i
$$389$$ 0.598139 + 6.83676i 0.0303269 + 0.346638i 0.996165 + 0.0874922i $$0.0278853\pi$$
−0.965838 + 0.259145i $$0.916559\pi$$
$$390$$ −6.01699 + 1.56208i −0.304682 + 0.0790988i
$$391$$ −0.283910 + 0.780036i −0.0143579 + 0.0394481i
$$392$$ −2.08436 0.758646i −0.105276 0.0383174i
$$393$$ −12.0122 6.93526i −0.605936 0.349837i
$$394$$ 15.2377 + 21.7617i 0.767663 + 1.09634i
$$395$$ 12.5520 + 12.7493i 0.631562 + 0.641486i
$$396$$ 2.14632 + 3.71754i 0.107857 + 0.186813i
$$397$$ 9.67583 + 36.1107i 0.485616 + 1.81234i 0.577271 + 0.816553i $$0.304118\pi$$
−0.0916550 + 0.995791i $$0.529216\pi$$
$$398$$ −7.41917 + 10.5957i −0.371889 + 0.531113i
$$399$$ 5.32309 + 1.42632i 0.266488 + 0.0714051i
$$400$$ −2.43219 4.36858i −0.121609 0.218429i
$$401$$ −0.547394 0.547394i −0.0273356 0.0273356i 0.693307 0.720642i $$-0.256153\pi$$
−0.720642 + 0.693307i $$0.756153\pi$$
$$402$$ −1.54673 4.24962i −0.0771441 0.211952i
$$403$$ −2.27888 3.25457i −0.113519 0.162122i
$$404$$ 9.73119 11.5972i 0.484145 0.576981i
$$405$$ −9.56608 0.0745767i −0.475342 0.00370574i
$$406$$ 11.0142i 0.546624i
$$407$$ −0.867791 10.6635i −0.0430148 0.528569i
$$408$$ −0.247151 + 0.247151i −0.0122358 + 0.0122358i
$$409$$ 2.55732 29.2303i 0.126451 1.44534i −0.622449 0.782661i $$-0.713862\pi$$
0.748900 0.662683i $$-0.230582\pi$$
$$410$$ 2.27199 + 13.4997i 0.112206 + 0.666701i
$$411$$ −6.97975 1.23072i −0.344286 0.0607068i
$$412$$ −11.4274 + 4.15924i −0.562989 + 0.204911i
$$413$$ 19.9325i 0.980816i
$$414$$ 1.48274 + 4.07379i 0.0728726 + 0.200216i
$$415$$ −4.09240 5.94262i −0.200888 0.291712i
$$416$$ −0.645446 3.66051i −0.0316456 0.179471i
$$417$$ −10.6722 + 2.85961i −0.522620 + 0.140036i
$$418$$ −1.10474 + 4.12293i −0.0540344 + 0.201659i
$$419$$ 25.2606 + 30.1044i 1.23406 + 1.47070i 0.831708 + 0.555213i $$0.187363\pi$$
0.402354 + 0.915484i $$0.368192\pi$$
$$420$$ −3.23351 3.91513i −0.157779 0.191039i
$$421$$ −11.6967 + 3.13413i −0.570063 + 0.152748i −0.532326 0.846540i $$-0.678682\pi$$
−0.0377377 + 0.999288i $$0.512015\pi$$
$$422$$ −3.22591 + 8.86311i −0.157035 + 0.431449i
$$423$$ −10.4722 + 4.88329i −0.509178 + 0.237434i
$$424$$ 2.09860 2.99711i 0.101917 0.145553i
$$425$$ −1.19969 + 2.00507i −0.0581937 + 0.0972603i
$$426$$ 6.85116 0.599399i 0.331940 0.0290410i
$$427$$ −40.7722 + 7.18924i −1.97311 + 0.347912i
$$428$$ 7.47109 + 16.0218i 0.361129 + 0.774443i
$$429$$ −2.06651 4.43164i −0.0997718 0.213961i
$$430$$ 1.13665 0.403700i 0.0548141 0.0194681i
$$431$$ 29.9046 20.9394i 1.44045 1.00862i 0.446981 0.894544i $$-0.352499\pi$$
0.993472 0.114072i $$-0.0363896\pi$$
$$432$$ −0.354657 + 4.05375i −0.0170634 + 0.195036i
$$433$$ 7.77586 + 2.08354i 0.373684 + 0.100128i 0.440773 0.897619i $$-0.354704\pi$$
−0.0670888 + 0.997747i $$0.521371\pi$$
$$434$$ 1.62267 2.81055i 0.0778908 0.134911i
$$435$$ 3.07443 5.23047i 0.147407 0.250782i
$$436$$ 4.11287 15.3494i 0.196971 0.735105i
$$437$$ −1.82179 + 3.90684i −0.0871481 + 0.186890i
$$438$$ 3.10330 0.148282
$$439$$ 13.8848 29.7760i 0.662683 1.42113i −0.231234 0.972898i $$-0.574276\pi$$
0.893918 0.448231i $$-0.147946\pi$$
$$440$$ 3.03242 2.50447i 0.144565 0.119396i
$$441$$ 4.14702 + 3.47976i 0.197477 + 0.165703i
$$442$$ −1.33062 + 1.11652i −0.0632911 + 0.0531075i
$$443$$ 26.6048 + 26.6048i 1.26403 + 1.26403i 0.949121 + 0.314913i $$0.101975\pi$$
0.314913 + 0.949121i $$0.398025\pi$$
$$444$$ 2.29863 3.92615i 0.109088 0.186327i
$$445$$ 24.4582 1.94781i 1.15943 0.0923352i
$$446$$ −24.8881 2.17743i −1.17849 0.103104i
$$447$$ 10.4129 0.911014i 0.492515 0.0430895i
$$448$$ 2.48706 1.74146i 0.117502 0.0822761i
$$449$$ 14.3688 + 6.70030i 0.678107 + 0.316207i 0.730984 0.682394i $$-0.239061\pi$$
−0.0528769 + 0.998601i $$0.516839\pi$$
$$450$$ 1.93139 + 12.0491i 0.0910467 + 0.568001i
$$451$$ −10.1186 + 3.68287i −0.476466 + 0.173419i
$$452$$ −2.23525 3.87157i −0.105137 0.182103i
$$453$$ −7.05198 4.93785i −0.331331 0.232000i
$$454$$ −11.2323 6.48496i −0.527157 0.304354i
$$455$$ −14.3124 20.7832i −0.670975 0.974331i
$$456$$ −1.39044 + 1.16672i −0.0651133 + 0.0546366i
$$457$$ 1.25772 7.13291i 0.0588339 0.333663i −0.941157 0.337970i $$-0.890260\pi$$
0.999991 + 0.00430666i $$0.00137086\pi$$
$$458$$ 9.40914 16.2971i 0.439660 0.761514i
$$459$$ 1.72345 0.803657i 0.0804436 0.0375115i
$$460$$ 3.45519 1.95910i 0.161099 0.0913435i
$$461$$ 19.5263 + 13.6725i 0.909430 + 0.636790i 0.931805 0.362960i $$-0.118234\pi$$
−0.0223745 + 0.999750i $$0.507123\pi$$
$$462$$ 2.56736 3.05966i 0.119445 0.142348i
$$463$$ −14.0840 + 16.7847i −0.654539 + 0.780049i −0.986591 0.163212i $$-0.947815\pi$$
0.332052 + 0.943261i $$0.392259\pi$$
$$464$$ 2.97163 + 2.08076i 0.137954 + 0.0965967i
$$465$$ 1.55510 0.881747i 0.0721162 0.0408901i
$$466$$ 15.9549 7.43988i 0.739096 0.344646i
$$467$$ 3.40375 5.89546i 0.157507 0.272810i −0.776462 0.630164i $$-0.782988\pi$$
0.933969 + 0.357354i $$0.116321\pi$$
$$468$$ −1.57527 + 8.93378i −0.0728167 + 0.412964i
$$469$$ 14.0628 11.8001i 0.649361 0.544878i
$$470$$ 6.00441 + 8.71908i 0.276963 + 0.402181i
$$471$$ −2.81274 1.62393i −0.129604 0.0748270i
$$472$$ 5.37781 + 3.76558i 0.247534 + 0.173325i
$$473$$ 0.474394 + 0.821675i 0.0218127 + 0.0377806i
$$474$$ −5.62354 + 2.04680i −0.258298 + 0.0940126i
$$475$$ −7.11385 + 9.82981i −0.326406 + 0.451023i
$$476$$ −1.28590 0.599625i −0.0589391 0.0274837i
$$477$$ −7.31471 + 5.12181i −0.334917 + 0.234512i
$$478$$ −28.3865 + 2.48350i −1.29837 + 0.113592i
$$479$$ −9.41592 0.823786i −0.430224 0.0376397i −0.130013 0.991512i $$-0.541502\pi$$
−0.300212 + 0.953873i $$0.597057\pi$$
$$480$$ 1.66717 0.132771i 0.0760954 0.00606012i
$$481$$ 13.0804 18.4416i 0.596414 0.840865i
$$482$$ 12.4860 + 12.4860i 0.568722 + 0.568722i
$$483$$ 3.09002 2.59284i 0.140601 0.117978i
$$484$$ −6.05666 5.08214i −0.275303 0.231007i
$$485$$ 0.396278 0.327286i 0.0179941 0.0148613i
$$486$$ 6.51151 13.9640i 0.295368 0.633419i
$$487$$ 13.6520 0.618632 0.309316 0.950959i $$-0.399900\pi$$
0.309316 + 0.950959i $$0.399900\pi$$
$$488$$ 5.76288 12.3585i 0.260873 0.559444i
$$489$$ 0.304113 1.13496i 0.0137525 0.0513249i
$$490$$ 2.51336 4.27593i 0.113542 0.193167i
$$491$$ 2.41488 4.18270i 0.108982 0.188762i −0.806376 0.591403i $$-0.798574\pi$$
0.915358 + 0.402641i $$0.131908\pi$$
$$492$$ −4.42297 1.18513i −0.199403 0.0534298i
$$493$$ 0.147753 1.68882i 0.00665445 0.0760607i
$$494$$ −7.38900 + 5.17383i −0.332447 + 0.232782i
$$495$$ −9.04510 + 3.21252i −0.406547 + 0.144392i
$$496$$ 0.451739 + 0.968758i 0.0202837 + 0.0434985i
$$497$$ 11.7984 + 25.3017i 0.529230 + 1.13494i
$$498$$ 2.37682 0.419097i 0.106508 0.0187802i
$$499$$ −11.4252 + 0.999572i −0.511460 + 0.0447470i −0.339965 0.940438i $$-0.610415\pi$$
−0.171495 + 0.985185i $$0.554860\pi$$
$$500$$ 10.5926 3.57717i 0.473717 0.159976i
$$501$$ 4.47093 6.38514i 0.199746 0.285267i
$$502$$ 1.62116 0.755960i 0.0723560 0.0337402i
$$503$$ 2.09914 5.76733i 0.0935959 0.257153i −0.884057 0.467380i $$-0.845198\pi$$
0.977653 + 0.210227i $$0.0674203\pi$$
$$504$$ −7.15746 + 1.91784i −0.318819 + 0.0854272i
$$505$$ 21.5568 + 26.1009i 0.959264 + 1.16148i
$$506$$ 2.00825 + 2.39334i 0.0892776 + 0.106397i
$$507$$ 0.157948 0.589470i 0.00701471 0.0261793i
$$508$$ −10.6272 + 2.84756i −0.471507 + 0.126340i
$$509$$ −1.59081 9.02193i −0.0705114 0.399890i −0.999552 0.0299134i $$-0.990477\pi$$
0.929041 0.369977i $$-0.120634\pi$$
$$510$$ −0.443279 0.643691i −0.0196287 0.0285031i
$$511$$ 4.30854 + 11.8376i 0.190599 + 0.523666i
$$512$$ 1.00000i 0.0441942i
$$513$$ 9.27961 3.37750i 0.409705 0.149120i
$$514$$ −1.56774 0.276435i −0.0691502 0.0121930i
$$515$$ −4.51300 26.8153i −0.198867 1.18162i
$$516$$ −0.0351642 + 0.401929i −0.00154802 + 0.0176939i
$$517$$ −5.88825 + 5.88825i −0.258965 + 0.258965i
$$518$$ 18.1677 + 3.31721i 0.798245 + 0.145750i
$$519$$ 15.9119i 0.698454i
$$520$$ 8.31116 + 0.0647934i 0.364469 + 0.00284138i
$$521$$ −5.53652 + 6.59817i −0.242559 + 0.289071i −0.873565 0.486707i $$-0.838198\pi$$
0.631006 + 0.775778i $$0.282642\pi$$
$$522$$ −5.07826 7.25251i −0.222270 0.317434i
$$523$$ 3.76801 + 10.3525i 0.164764 + 0.452685i 0.994408 0.105608i $$-0.0336789\pi$$
−0.829644 + 0.558293i $$0.811457\pi$$
$$524$$ 13.1133 + 13.1133i 0.572855 + 0.572855i
$$525$$ 9.92039 5.52313i 0.432961 0.241049i
$$526$$ 23.6920 + 6.34825i 1.03302 + 0.276797i
$$527$$ 0.286510 0.409179i 0.0124806 0.0178241i
$$528$$ 0.340482 + 1.27070i 0.0148176 + 0.0553000i
$$529$$ −9.92236 17.1860i −0.431407 0.747219i
$$530$$ 5.73979 + 5.82999i 0.249321 + 0.253239i
$$531$$ −9.19022 13.1250i −0.398822 0.569576i
$$532$$ −6.38092 3.68403i −0.276648 0.159723i
$$533$$ −21.3835 7.78296i −0.926222 0.337117i
$$534$$ −2.80693 + 7.71198i −0.121468 + 0.333730i
$$535$$ −38.2611 + 9.93300i −1.65417 + 0.429441i
$$536$$ 0.526979 + 6.02339i 0.0227620 + 0.260171i
$$537$$ 7.51531 + 6.30609i 0.324310 + 0.272128i
$$538$$ −2.25778 12.8045i −0.0973397 0.552041i
$$539$$ 3.66610 + 1.33435i 0.157910 + 0.0574746i
$$540$$ −8.77041 2.42346i −0.377419 0.104289i
$$541$$ −0.998425 3.72617i −0.0429256 0.160201i 0.941136 0.338028i $$-0.109760\pi$$
−0.984062 + 0.177827i $$0.943093\pi$$
$$542$$ 19.5192 + 3.44176i 0.838420 + 0.147836i
$$543$$ 8.41764 + 0.736448i 0.361235 + 0.0316040i
$$544$$ 0.404707 0.233657i 0.0173517 0.0100180i
$$545$$ 32.0859 + 15.2676i 1.37441 + 0.653990i
$$546$$ 8.31247 1.46571i 0.355741 0.0627267i
$$547$$ 26.9501 15.5597i 1.15231 0.665284i 0.202857 0.979208i $$-0.434977\pi$$
0.949448 + 0.313925i $$0.101644\pi$$
$$548$$ 8.58810 + 4.00469i 0.366865 + 0.171072i
$$549$$ −23.5326 + 23.5326i −1.00435 + 1.00435i
$$550$$ 4.27787 + 7.68372i 0.182409 + 0.327635i
$$551$$ 1.52873 8.66987i 0.0651262 0.369349i
$$552$$ 0.115793 + 1.32352i 0.00492848 + 0.0563327i
$$553$$ −15.6151 18.6094i −0.664023 0.791352i
$$554$$ 16.9874 0.721724
$$555$$ 7.70165 + 6.64653i 0.326917 + 0.282129i
$$556$$ 14.7721 0.626478
$$557$$ 16.9526 + 20.2033i 0.718304 + 0.856041i 0.994465 0.105070i $$-0.0335067\pi$$
−0.276161 + 0.961111i $$0.589062\pi$$
$$558$$ −0.227368 2.59883i −0.00962526 0.110017i
$$559$$ −0.348176 + 1.97460i −0.0147263 + 0.0835168i
$$560$$ 2.82111 + 6.17511i 0.119213 + 0.260946i
$$561$$ 0.434703 0.434703i 0.0183532 0.0183532i
$$562$$ −23.1231 10.7825i −0.975388 0.454831i
$$563$$ 34.0096 19.6354i 1.43333 0.827535i 0.435959 0.899967i $$-0.356409\pi$$
0.997373 + 0.0724318i $$0.0230760\pi$$
$$564$$ −3.48729 + 0.614904i −0.146842 + 0.0258921i
$$565$$ 9.41986 3.34562i 0.396296 0.140751i
$$566$$ 13.0806 7.55206i 0.549817 0.317437i
$$567$$ 12.9398 + 1.13209i 0.543421 + 0.0475432i
$$568$$ −9.05534 1.59670i −0.379953 0.0669960i
$$569$$ 5.05635 + 18.8705i 0.211973 + 0.791094i 0.987210 + 0.159424i $$0.0509637\pi$$
−0.775237 + 0.631670i $$0.782370\pi$$
$$570$$ −2.00187 3.53062i −0.0838491 0.147881i
$$571$$ −6.05300 2.20311i −0.253310 0.0921974i 0.212244 0.977217i $$-0.431923\pi$$
−0.465554 + 0.885019i $$0.654145\pi$$
$$572$$ 1.13525 + 6.43832i 0.0474672 + 0.269200i
$$573$$ −1.30664 1.09640i −0.0545858 0.0458030i
$$574$$ −1.62002 18.5169i −0.0676184 0.772881i
$$575$$ 2.90718 + 8.39228i 0.121238 + 0.349982i
$$576$$ 0.834729 2.29340i 0.0347804 0.0955583i
$$577$$ 5.24855 + 1.91031i 0.218500 + 0.0795274i 0.448951 0.893557i $$-0.351798\pi$$
−0.230451 + 0.973084i $$0.574020\pi$$
$$578$$ 14.5333 + 8.39081i 0.604506 + 0.349012i
$$579$$ 2.12676 + 3.03733i 0.0883853 + 0.126227i
$$580$$ −5.78042 + 5.69099i −0.240019 + 0.236305i
$$581$$ 4.89857 + 8.48457i 0.203227 + 0.351999i
$$582$$ 0.0444944 + 0.166056i 0.00184435 + 0.00688322i
$$583$$ −3.69114 + 5.27150i −0.152872 + 0.218323i
$$584$$ −4.00775 1.07387i −0.165842 0.0444372i
$$585$$ −19.0067 7.08617i −0.785832 0.292977i
$$586$$ 7.85003 + 7.85003i 0.324282 + 0.324282i
$$587$$ 4.71510 + 12.9546i 0.194613 + 0.534694i 0.998166 0.0605389i $$-0.0192819\pi$$
−0.803553 + 0.595233i $$0.797060\pi$$
$$588$$ 0.951582 + 1.35900i 0.0392426 + 0.0560442i
$$589$$ 1.66739 1.98712i 0.0687038 0.0818779i
$$590$$ −10.4609 + 10.2991i −0.430670 + 0.424007i
$$591$$ 19.8699i 0.817336i
$$592$$ −4.32717 + 4.27499i −0.177846 + 0.175701i
$$593$$ 14.3975 14.3975i 0.591234 0.591234i −0.346731 0.937965i $$-0.612708\pi$$
0.937965 + 0.346731i $$0.112708\pi$$
$$594$$ 0.623792 7.12998i 0.0255945 0.292546i
$$595$$ 1.83994 2.58458i 0.0754301 0.105958i
$$596$$ −13.7630 2.42679i −0.563755 0.0994052i
$$597$$ 9.09111 3.30889i 0.372074 0.135424i
$$598$$ 6.60251i 0.269997i
$$599$$ 12.2453 + 33.6436i 0.500328 + 1.37464i 0.890956 + 0.454090i $$0.150036\pi$$
−0.390628 + 0.920549i $$0.627742\pi$$
$$600$$ −0.383981 + 3.71994i −0.0156759 + 0.151866i
$$601$$ 2.87031 + 16.2783i 0.117082 + 0.664007i 0.985698 + 0.168521i $$0.0538990\pi$$
−0.868616 + 0.495486i $$0.834990\pi$$
$$602$$ −1.58199 + 0.423893i −0.0644770 + 0.0172766i
$$603$$ 3.81933 14.2539i 0.155535 0.580465i
$$604$$ 7.39855 + 8.81725i 0.301043 + 0.358769i
$$605$$ 13.6313 11.2581i 0.554191 0.457707i
$$606$$ −10.9373 + 2.93063i −0.444296 + 0.119049i
$$607$$ −14.6775 + 40.3261i −0.595741 + 1.63679i 0.163925 + 0.986473i $$0.447584\pi$$
−0.759667 + 0.650313i $$0.774638\pi$$
$$608$$ 2.19941 1.02560i 0.0891980 0.0415937i
$$609$$ −4.72509 + 6.74813i −0.191470 + 0.273448i
$$610$$ 24.8399 + 17.6833i 1.00574 + 0.715975i
$$611$$ −17.5309 + 1.53376i −0.709224 + 0.0620491i
$$612$$ −1.12319 + 0.198050i −0.0454025 + 0.00800568i
$$613$$ −1.50906 3.23618i −0.0609502 0.130708i 0.873473 0.486872i $$-0.161862\pi$$
−0.934423 + 0.356164i $$0.884084\pi$$
$$614$$ −12.3613 26.5089i −0.498862 1.06981i
$$615$$ 4.39937 9.24562i 0.177400 0.372819i
$$616$$ −4.37439 + 3.06298i −0.176249 + 0.123411i
$$617$$ −1.71562 + 19.6096i −0.0690681 + 0.789452i 0.880122 + 0.474748i $$0.157461\pi$$
−0.949190 + 0.314704i $$0.898095\pi$$
$$618$$ 8.78564 + 2.35411i 0.353410 + 0.0946960i
$$619$$ −1.14636 + 1.98555i −0.0460761 + 0.0798062i −0.888144 0.459566i $$-0.848005\pi$$
0.842068 + 0.539372i $$0.181338\pi$$
$$620$$ −2.31346 + 0.600599i −0.0929107 + 0.0241206i
$$621$$ 1.87080 6.98193i 0.0750727 0.280175i
$$622$$ 8.95742 19.2092i 0.359160 0.770221i
$$623$$ −33.3146 −1.33472
$$624$$ −1.17491 + 2.51961i −0.0470341 + 0.100865i
$$625$$ 3.57148 + 24.7436i 0.142859 + 0.989743i
$$626$$ −9.60837 8.06238i −0.384028 0.322237i
$$627$$ 2.44559 2.05209i 0.0976674 0.0819527i
$$628$$ 3.07055 + 3.07055i 0.122528 + 0.122528i
$$629$$ 2.74119 + 0.752351i 0.109299 + 0.0299982i
$$630$$ −1.31538 16.5169i −0.0524059 0.658048i
$$631$$ −4.59243 0.401785i −0.182822 0.0159948i −0.00462280 0.999989i $$-0.501471\pi$$
−0.178199 + 0.983994i $$0.557027\pi$$
$$632$$ 7.97078 0.697353i 0.317061 0.0277392i
$$633$$ 5.77872 4.04631i 0.229684 0.160826i
$$634$$ −25.8140 12.0373i −1.02520 0.478060i
$$635$$ −1.95304 24.5238i −0.0775039 0.973198i
$$636$$ −2.57153 + 0.935960i −0.101968 + 0.0371132i
$$637$$ 4.12238 + 7.14017i 0.163335 + 0.282904i
$$638$$ −5.22668 3.65976i −0.206926 0.144891i
$$639$$ 19.4347 + 11.2206i 0.768824 + 0.443881i
$$640$$ −2.19900 0.405444i −0.0869232 0.0160266i
$$641$$ 12.1681 10.2103i 0.480612 0.403282i −0.370035 0.929018i $$-0.620654\pi$$
0.850648 + 0.525736i $$0.176210\pi$$
$$642$$ 2.29601 13.0213i 0.0906161 0.513910i
$$643$$ −19.7808 + 34.2613i −0.780077 + 1.35113i 0.151820 + 0.988408i $$0.451487\pi$$
−0.931896 + 0.362725i $$0.881847\pi$$
$$644$$ −4.88783 + 2.27923i −0.192608 + 0.0898144i
$$645$$ −0.869586 0.240286i −0.0342399 0.00946126i
$$646$$ −0.928978 0.650477i −0.0365501 0.0255927i
$$647$$ 10.8250 12.9007i 0.425574 0.507179i −0.510066 0.860135i $$-0.670379\pi$$
0.935640 + 0.352956i $$0.114824\pi$$
$$648$$ −2.74998 + 3.27730i −0.108029 + 0.128744i
$$649$$ −9.45881 6.62313i −0.371291 0.259981i
$$650$$ −3.51219 + 18.2500i −0.137760 + 0.715824i
$$651$$ −2.19990 + 1.02583i −0.0862211 + 0.0402055i
$$652$$ −0.785491 + 1.36051i −0.0307622 + 0.0532817i
$$653$$ 1.20479 6.83272i 0.0471472 0.267385i −0.952117 0.305733i $$-0.901098\pi$$
0.999264 + 0.0383480i $$0.0122096\pi$$
$$654$$ −9.10478 + 7.63982i −0.356025 + 0.298741i
$$655$$ −34.1528 + 23.5194i −1.33446 + 0.918979i
$$656$$ 5.30193 + 3.06107i 0.207005 + 0.119515i
$$657$$ 8.29499 + 5.80821i 0.323618 + 0.226600i
$$658$$ −7.18723 12.4486i −0.280187 0.485299i
$$659$$ 35.9901 13.0993i 1.40198 0.510278i 0.473212 0.880948i $$-0.343094\pi$$
0.928764 + 0.370671i $$0.120872\pi$$
$$660$$ −2.93231 + 0.233525i −0.114140 + 0.00908994i
$$661$$ 0.642026 + 0.299382i 0.0249719 + 0.0116446i 0.435064 0.900399i $$-0.356726\pi$$
−0.410092 + 0.912044i $$0.634503\pi$$
$$662$$ 4.23328 2.96418i 0.164531 0.115206i
$$663$$ 1.29423 0.113230i 0.0502637 0.00439750i
$$664$$ −3.21456 0.281238i −0.124749 0.0109141i
$$665$$ 10.6883 12.5380i 0.414474 0.486203i
$$666$$ 13.4924 6.19225i 0.522820 0.239945i
$$667$$ −4.55653 4.55653i −0.176430 0.176430i
$$668$$ −7.98349 + 6.69895i −0.308891 + 0.259190i
$$669$$ 14.3143 + 12.0111i 0.553421 + 0.464376i
$$670$$ −13.4591 1.28332i −0.519971 0.0495791i
$$671$$ −10.1361 + 21.7369i −0.391300 + 0.839145i
$$672$$ −2.27085 −0.0876000
$$673$$ 11.0901 23.7829i 0.427493 0.916762i −0.568098 0.822961i $$-0.692320\pi$$
0.995591 0.0938011i $$-0.0299018\pi$$
$$674$$ 6.75200 25.1988i 0.260077 0.970622i
$$675$$ 8.88511 18.3036i 0.341988 0.704506i
$$676$$ −0.407963 + 0.706612i −0.0156909 + 0.0271774i
$$677$$ −35.2344 9.44104i −1.35417 0.362849i −0.492497 0.870314i $$-0.663916\pi$$
−0.861672 + 0.507465i $$0.830583\pi$$
$$678$$ −0.291420 + 3.33095i −0.0111919 + 0.127924i
$$679$$ −0.571648 + 0.400272i −0.0219378 + 0.0153610i
$$680$$ 0.349728 + 0.984686i 0.0134114 + 0.0377610i
$$681$$ 4.09970 + 8.79184i 0.157101 + 0.336904i
$$682$$ −0.794546 1.70391i −0.0304247 0.0652460i
$$683$$ −3.87625 + 0.683488i −0.148321 + 0.0261529i −0.247315 0.968935i $$-0.579548\pi$$
0.0989948 + 0.995088i $$0.468437\pi$$
$$684$$ −5.90023 + 0.516204i −0.225601 + 0.0197375i
$$685$$ −12.2883 + 17.2616i −0.469513 + 0.659531i
$$686$$ 8.32742 11.8928i 0.317942 0.454069i
$$687$$ −12.7562 + 5.94833i −0.486681 + 0.226943i
$$688$$ 0.184497 0.506902i 0.00703389 0.0193255i
$$689$$ −13.1363 + 3.51985i −0.500452 + 0.134096i
$$690$$ −2.95737 0.281984i −0.112585 0.0107350i
$$691$$ 15.8809 + 18.9261i 0.604136 + 0.719981i 0.978256 0.207399i $$-0.0664997\pi$$
−0.374120 + 0.927380i $$0.622055\pi$$
$$692$$ 5.50618 20.5494i 0.209314 0.781169i
$$693$$ 12.5890 3.37321i 0.478216 0.128137i
$$694$$ −5.75121 32.6168i −0.218313 1.23811i
$$695$$ −5.98928 + 32.4840i −0.227186 + 1.23219i
$$696$$ −0.928002 2.54966i −0.0351758 0.0966448i
$$697$$ 2.86097i 0.108367i
$$698$$ −9.06845 + 3.30065i −0.343246 + 0.124931i
$$699$$ −12.9669 2.28642i −0.490454 0.0864802i
$$700$$ −14.7229 + 3.69996i −0.556473 + 0.139845i
$$701$$ −2.38140 + 27.2195i −0.0899442 + 1.02807i 0.808359 + 0.588690i $$0.200356\pi$$
−0.898303 + 0.439377i $$0.855199\pi$$
$$702$$ 10.6952 10.6952i 0.403663 0.403663i
$$703$$ 13.8404 + 5.13279i 0.522002 + 0.193587i
$$704$$ 1.75886i 0.0662895i
$$705$$ 0.0617274 7.91788i 0.00232479 0.298205i
$$706$$ −7.16094 + 8.53407i −0.269505 + 0.321184i
$$707$$ −26.3640 37.6517i −0.991520 1.41604i
$$708$$ −1.67942 4.61417i −0.0631165 0.173411i
$$709$$ 11.1105 + 11.1105i 0.417264 + 0.417264i 0.884260 0.466996i $$-0.154664\pi$$
−0.466996 + 0.884260i $$0.654664\pi$$
$$710$$ 7.18258 19.2653i 0.269557 0.723015i
$$711$$ −18.8623 5.05413i −0.707391 0.189545i
$$712$$ 6.29367 8.98830i 0.235865 0.336851i
$$713$$ −0.491422 1.83401i −0.0184039 0.0686843i
$$714$$ 0.530601 + 0.919028i 0.0198573 + 0.0343938i
$$715$$ −14.6182 0.113963i −0.546689 0.00426196i
$$716$$ −7.52345 10.7446i −0.281165 0.401545i
$$717$$ 18.4572 + 10.6563i 0.689296 + 0.397965i
$$718$$ −4.35982 1.58685i −0.162707 0.0592205i
$$719$$ −3.20927 + 8.81740i −0.119686 + 0.328833i −0.985040 0.172327i $$-0.944871\pi$$
0.865354 + 0.501161i $$0.167094\pi$$
$$720$$ 4.70476 + 2.76542i 0.175336 + 0.103061i
$$721$$ 3.21796 + 36.7814i 0.119843 + 1.36981i
$$722$$ 10.0434 + 8.42741i 0.373776 + 0.313636i
$$723$$ −2.29338 13.0064i −0.0852917 0.483713i
$$724$$ −10.6161 3.86394i −0.394544 0.143602i
$$725$$ −10.1709 15.0185i −0.377736 0.557775i
$$726$$ 1.53053 + 5.71203i 0.0568034 + 0.211993i
$$727$$ 30.1471 + 5.31574i 1.11809 + 0.197150i 0.702003 0.712174i $$-0.252289\pi$$
0.416089 + 0.909324i $$0.363400\pi$$
$$728$$ −11.2423 0.983575i −0.416668 0.0364537i
$$729$$ 1.13509 0.655347i 0.0420405 0.0242721i
$$730$$ 3.98637 8.37767i 0.147542 0.310071i
$$731$$ −0.248256 + 0.0437742i −0.00918207 + 0.00161905i
$$732$$ −8.83261 + 5.09951i −0.326463 + 0.188483i
$$733$$ 29.1915 + 13.6122i 1.07821 + 0.502778i 0.878826 0.477143i $$-0.158328\pi$$
0.199385 + 0.979921i $$0.436105\pi$$
$$734$$ −0.467595 + 0.467595i −0.0172593 + 0.0172593i
$$735$$ −3.37426 + 1.54153i −0.124461 + 0.0568603i
$$736$$ 0.308453 1.74933i 0.0113697 0.0644810i
$$737$$ −0.926881 10.5943i −0.0341421 0.390246i
$$738$$ −9.60427 11.4459i −0.353538 0.421330i
$$739$$ −31.4675 −1.15755 −0.578775 0.815487i $$-0.696469\pi$$
−0.578775 + 0.815487i $$0.696469\pi$$
$$740$$ −7.64630 11.2487i −0.281084 0.413512i
$$741$$ 6.74665 0.247844
$$742$$ −7.14048 8.50970i −0.262135 0.312401i
$$743$$ 3.44095 + 39.3302i 0.126236 + 1.44289i 0.750085 + 0.661341i $$0.230012\pi$$
−0.623849 + 0.781545i $$0.714432\pi$$
$$744$$ 0.138828 0.787332i 0.00508968 0.0288650i
$$745$$ 10.9167 29.2810i 0.399955 1.07277i
$$746$$ −23.6731 + 23.6731i −0.866733 + 0.866733i
$$747$$ 7.13752 + 3.32828i 0.261148 + 0.121775i
$$748$$ −0.711822 + 0.410971i −0.0260268 + 0.0150266i
$$749$$ 52.8578 9.32025i 1.93138 0.340554i
$$750$$ −8.02447 2.35260i −0.293012 0.0859049i
$$751$$ −15.4966 + 8.94694i −0.565477 + 0.326478i −0.755341 0.655332i $$-0.772529\pi$$
0.189864 + 0.981810i $$0.439195\pi$$
$$752$$ 4.71644 + 0.412635i 0.171991 + 0.0150472i
$$753$$ −1.31756 0.232321i −0.0480144 0.00846624i
$$754$$ −3.48993 13.0246i −0.127096 0.474327i
$$755$$ −22.3889 + 12.6945i −0.814814 + 0.462002i
$$756$$ 11.6097 + 4.22558i 0.422240 + 0.153683i
$$757$$ −8.61560 48.8615i −0.313139 1.77590i −0.582470 0.812852i $$-0.697914\pi$$
0.269331 0.963048i $$-0.413198\pi$$
$$758$$ 24.4783 + 20.5398i 0.889094 + 0.746038i
$$759$$ −0.203664 2.32789i −0.00739252 0.0844969i
$$760$$ 1.36357 + 5.25234i 0.0494617 + 0.190522i
$$761$$ 5.25558 14.4396i 0.190515 0.523435i −0.807254 0.590205i $$-0.799047\pi$$
0.997768 + 0.0667697i $$0.0212693\pi$$
$$762$$ 7.73266 + 2.81446i 0.280125 + 0.101957i
$$763$$ −41.7831 24.1235i −1.51265 0.873329i
$$764$$ 1.30806 + 1.86810i 0.0473239 + 0.0675856i
$$765$$ 0.0198813 2.55021i 0.000718810 0.0922029i
$$766$$ −6.19782 10.7349i −0.223936 0.387869i
$$767$$ −6.31578 23.5708i −0.228050 0.851093i
$$768$$ 0.429001 0.612677i 0.0154802 0.0221081i
$$769$$ 23.1587 + 6.20537i 0.835126 + 0.223771i 0.650949 0.759122i $$-0.274371\pi$$
0.184177 + 0.982893i $$0.441038\pi$$
$$770$$ −4.96193 10.8612i −0.178816 0.391409i
$$771$$ 0.841929 + 0.841929i 0.0303213 + 0.0303213i
$$772$$ −1.69556 4.65851i −0.0610245 0.167663i