Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [370,2,Mod(13,370)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(370, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([27, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("370.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.bd (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.95446487479\) |
Analytic rank: | \(0\) |
Dimension: | \(108\) |
Relative dimension: | \(9\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | −0.984808 | − | 0.173648i | −2.67879 | − | 1.87571i | 0.939693 | + | 0.342020i | −0.431297 | + | 2.19408i | 2.31238 | + | 2.31238i | 0.164874 | − | 1.88452i | −0.866025 | − | 0.500000i | 2.63158 | + | 7.23020i | 0.805742 | − | 2.08585i |
13.2 | −0.984808 | − | 0.173648i | −2.05692 | − | 1.44027i | 0.939693 | + | 0.342020i | −0.583057 | − | 2.15871i | 1.77557 | + | 1.77557i | 0.140016 | − | 1.60039i | −0.866025 | − | 0.500000i | 1.13048 | + | 3.10597i | 0.199343 | + | 2.22716i |
13.3 | −0.984808 | − | 0.173648i | −0.987459 | − | 0.691427i | 0.939693 | + | 0.342020i | 0.590293 | + | 2.15675i | 0.852393 | + | 0.852393i | −0.353973 | + | 4.04593i | −0.866025 | − | 0.500000i | −0.529055 | − | 1.45357i | −0.206810 | − | 2.22648i |
13.4 | −0.984808 | − | 0.173648i | −0.732652 | − | 0.513008i | 0.939693 | + | 0.342020i | −2.22335 | − | 0.238120i | 0.632438 | + | 0.632438i | 0.102040 | − | 1.16632i | −0.866025 | − | 0.500000i | −0.752459 | − | 2.06736i | 2.14823 | + | 0.620583i |
13.5 | −0.984808 | − | 0.173648i | −0.0536157 | − | 0.0375421i | 0.939693 | + | 0.342020i | 0.426264 | − | 2.19506i | 0.0462820 | + | 0.0462820i | −0.357616 | + | 4.08757i | −0.866025 | − | 0.500000i | −1.02460 | − | 2.81505i | −0.800956 | + | 2.08769i |
13.6 | −0.984808 | − | 0.173648i | 0.133392 | + | 0.0934022i | 0.939693 | + | 0.342020i | 1.54803 | + | 1.61357i | −0.115147 | − | 0.115147i | 0.284408 | − | 3.25079i | −0.866025 | − | 0.500000i | −1.01699 | − | 2.79416i | −1.24432 | − | 1.85787i |
13.7 | −0.984808 | − | 0.173648i | 0.187969 | + | 0.131617i | 0.939693 | + | 0.342020i | 0.928613 | − | 2.03413i | −0.162258 | − | 0.162258i | 0.180693 | − | 2.06533i | −0.866025 | − | 0.500000i | −1.00805 | − | 2.76960i | −1.26773 | + | 1.84197i |
13.8 | −0.984808 | − | 0.173648i | 1.98147 | + | 1.38744i | 0.939693 | + | 0.342020i | −1.05394 | + | 1.97211i | −1.71044 | − | 1.71044i | −0.0535790 | + | 0.612411i | −0.866025 | − | 0.500000i | 0.975177 | + | 2.67928i | 1.38038 | − | 1.75913i |
13.9 | −0.984808 | − | 0.173648i | 2.43175 | + | 1.70273i | 0.939693 | + | 0.342020i | 2.13889 | − | 0.652021i | −2.09913 | − | 2.09913i | −0.0617478 | + | 0.705781i | −0.866025 | − | 0.500000i | 1.98806 | + | 5.46214i | −2.21962 | + | 0.270700i |
57.1 | −0.984808 | + | 0.173648i | −2.67879 | + | 1.87571i | 0.939693 | − | 0.342020i | −0.431297 | − | 2.19408i | 2.31238 | − | 2.31238i | 0.164874 | + | 1.88452i | −0.866025 | + | 0.500000i | 2.63158 | − | 7.23020i | 0.805742 | + | 2.08585i |
57.2 | −0.984808 | + | 0.173648i | −2.05692 | + | 1.44027i | 0.939693 | − | 0.342020i | −0.583057 | + | 2.15871i | 1.77557 | − | 1.77557i | 0.140016 | + | 1.60039i | −0.866025 | + | 0.500000i | 1.13048 | − | 3.10597i | 0.199343 | − | 2.22716i |
57.3 | −0.984808 | + | 0.173648i | −0.987459 | + | 0.691427i | 0.939693 | − | 0.342020i | 0.590293 | − | 2.15675i | 0.852393 | − | 0.852393i | −0.353973 | − | 4.04593i | −0.866025 | + | 0.500000i | −0.529055 | + | 1.45357i | −0.206810 | + | 2.22648i |
57.4 | −0.984808 | + | 0.173648i | −0.732652 | + | 0.513008i | 0.939693 | − | 0.342020i | −2.22335 | + | 0.238120i | 0.632438 | − | 0.632438i | 0.102040 | + | 1.16632i | −0.866025 | + | 0.500000i | −0.752459 | + | 2.06736i | 2.14823 | − | 0.620583i |
57.5 | −0.984808 | + | 0.173648i | −0.0536157 | + | 0.0375421i | 0.939693 | − | 0.342020i | 0.426264 | + | 2.19506i | 0.0462820 | − | 0.0462820i | −0.357616 | − | 4.08757i | −0.866025 | + | 0.500000i | −1.02460 | + | 2.81505i | −0.800956 | − | 2.08769i |
57.6 | −0.984808 | + | 0.173648i | 0.133392 | − | 0.0934022i | 0.939693 | − | 0.342020i | 1.54803 | − | 1.61357i | −0.115147 | + | 0.115147i | 0.284408 | + | 3.25079i | −0.866025 | + | 0.500000i | −1.01699 | + | 2.79416i | −1.24432 | + | 1.85787i |
57.7 | −0.984808 | + | 0.173648i | 0.187969 | − | 0.131617i | 0.939693 | − | 0.342020i | 0.928613 | + | 2.03413i | −0.162258 | + | 0.162258i | 0.180693 | + | 2.06533i | −0.866025 | + | 0.500000i | −1.00805 | + | 2.76960i | −1.26773 | − | 1.84197i |
57.8 | −0.984808 | + | 0.173648i | 1.98147 | − | 1.38744i | 0.939693 | − | 0.342020i | −1.05394 | − | 1.97211i | −1.71044 | + | 1.71044i | −0.0535790 | − | 0.612411i | −0.866025 | + | 0.500000i | 0.975177 | − | 2.67928i | 1.38038 | + | 1.75913i |
57.9 | −0.984808 | + | 0.173648i | 2.43175 | − | 1.70273i | 0.939693 | − | 0.342020i | 2.13889 | + | 0.652021i | −2.09913 | + | 2.09913i | −0.0617478 | − | 0.705781i | −0.866025 | + | 0.500000i | 1.98806 | − | 5.46214i | −2.21962 | − | 0.270700i |
93.1 | 0.642788 | − | 0.766044i | −0.238237 | + | 2.72306i | −0.173648 | − | 0.984808i | 1.97861 | − | 1.04168i | 1.93285 | + | 1.93285i | 2.60421 | − | 1.21436i | −0.866025 | − | 0.500000i | −4.40390 | − | 0.776526i | 0.473855 | − | 2.18528i |
93.2 | 0.642788 | − | 0.766044i | −0.190747 | + | 2.18025i | −0.173648 | − | 0.984808i | −0.178132 | + | 2.22896i | 1.54756 | + | 1.54756i | −2.39110 | + | 1.11499i | −0.866025 | − | 0.500000i | −1.76267 | − | 0.310806i | 1.59298 | + | 1.56921i |
See next 80 embeddings (of 108 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.bc | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 370.2.bd.a | yes | 108 |
5.c | odd | 4 | 1 | 370.2.ba.a | ✓ | 108 | |
37.i | odd | 36 | 1 | 370.2.ba.a | ✓ | 108 | |
185.bc | even | 36 | 1 | inner | 370.2.bd.a | yes | 108 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
370.2.ba.a | ✓ | 108 | 5.c | odd | 4 | 1 | |
370.2.ba.a | ✓ | 108 | 37.i | odd | 36 | 1 | |
370.2.bd.a | yes | 108 | 1.a | even | 1 | 1 | trivial |
370.2.bd.a | yes | 108 | 185.bc | even | 36 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{108} - 6 T_{3}^{107} + 18 T_{3}^{106} - 34 T_{3}^{105} + 69 T_{3}^{104} - 384 T_{3}^{103} + \cdots + 1494904896 \) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\).