Defining parameters
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 62 | 18 | 44 |
Cusp forms | 54 | 18 | 36 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
370.2.b.a | $2$ | $2.954$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+i q^{2}-q^{4}+(-i-2)q^{5}-2 i q^{7}+\cdots\) |
370.2.b.b | $2$ | $2.954$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+i q^{2}-q^{4}+(2 i+1)q^{5}+i q^{7}+\cdots\) |
370.2.b.c | $4$ | $2.954$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{3}-q^{4}+(-2+\beta _{1}+\cdots)q^{5}+\cdots\) |
370.2.b.d | $10$ | $2.954$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(6\) | \(0\) | \(q-\beta _{2}q^{2}+(\beta _{4}-\beta _{5})q^{3}-q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)