Properties

Label 370.2.a.c
Level $370$
Weight $2$
Character orbit 370.a
Self dual yes
Analytic conductor $2.954$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(1,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + 2 q^{3} + q^{4} + q^{5} - 2 q^{6} + q^{7} - q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + 2 q^{3} + q^{4} + q^{5} - 2 q^{6} + q^{7} - q^{8} + q^{9} - q^{10} + 3 q^{11} + 2 q^{12} - q^{14} + 2 q^{15} + q^{16} + 3 q^{17} - q^{18} - 6 q^{19} + q^{20} + 2 q^{21} - 3 q^{22} + 2 q^{23} - 2 q^{24} + q^{25} - 4 q^{27} + q^{28} - 3 q^{29} - 2 q^{30} + 3 q^{31} - q^{32} + 6 q^{33} - 3 q^{34} + q^{35} + q^{36} - q^{37} + 6 q^{38} - q^{40} + 3 q^{41} - 2 q^{42} - q^{43} + 3 q^{44} + q^{45} - 2 q^{46} + 4 q^{47} + 2 q^{48} - 6 q^{49} - q^{50} + 6 q^{51} + 13 q^{53} + 4 q^{54} + 3 q^{55} - q^{56} - 12 q^{57} + 3 q^{58} + 2 q^{60} - 15 q^{61} - 3 q^{62} + q^{63} + q^{64} - 6 q^{66} + 3 q^{68} + 4 q^{69} - q^{70} - 2 q^{71} - q^{72} + q^{74} + 2 q^{75} - 6 q^{76} + 3 q^{77} - 8 q^{79} + q^{80} - 11 q^{81} - 3 q^{82} - 4 q^{83} + 2 q^{84} + 3 q^{85} + q^{86} - 6 q^{87} - 3 q^{88} - 18 q^{89} - q^{90} + 2 q^{92} + 6 q^{93} - 4 q^{94} - 6 q^{95} - 2 q^{96} - 7 q^{97} + 6 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 2.00000 1.00000 1.00000 −2.00000 1.00000 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.2.a.c 1
3.b odd 2 1 3330.2.a.p 1
4.b odd 2 1 2960.2.a.c 1
5.b even 2 1 1850.2.a.i 1
5.c odd 4 2 1850.2.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.a.c 1 1.a even 1 1 trivial
1850.2.a.i 1 5.b even 2 1
1850.2.b.c 2 5.c odd 4 2
2960.2.a.c 1 4.b odd 2 1
3330.2.a.p 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(370))\):

\( T_{3} - 2 \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T - 3 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T + 6 \) Copy content Toggle raw display
$23$ \( T - 2 \) Copy content Toggle raw display
$29$ \( T + 3 \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T + 1 \) Copy content Toggle raw display
$41$ \( T - 3 \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T - 13 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 15 \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T + 2 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 18 \) Copy content Toggle raw display
$97$ \( T + 7 \) Copy content Toggle raw display
show more
show less