Defining parameters
Level: | \( N \) | \(=\) | \( 37 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 37.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(25\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(37, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 22 | 0 |
Cusp forms | 20 | 20 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(37, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
37.8.b.a | $20$ | $11.558$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(78\) | \(0\) | \(-1746\) | \(q+\beta _{1}q^{2}+(4+\beta _{4})q^{3}+(-42+\beta _{2}+\cdots)q^{4}+\cdots\) |