# Properties

 Label 37.2.h Level $37$ Weight $2$ Character orbit 37.h Rep. character $\chi_{37}(3,\cdot)$ Character field $\Q(\zeta_{18})$ Dimension $18$ Newform subspaces $1$ Sturm bound $6$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 37.h (of order $$18$$ and degree $$6$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$37$$ Character field: $$\Q(\zeta_{18})$$ Newform subspaces: $$1$$ Sturm bound: $$6$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(37, [\chi])$$.

Total New Old
Modular forms 30 30 0
Cusp forms 18 18 0
Eisenstein series 12 12 0

## Trace form

 $$18 q - 9 q^{2} - 9 q^{3} - 3 q^{4} - 3 q^{5} - 3 q^{7} - 3 q^{9} + O(q^{10})$$ $$18 q - 9 q^{2} - 9 q^{3} - 3 q^{4} - 3 q^{5} - 3 q^{7} - 3 q^{9} - 9 q^{10} + 9 q^{11} + 3 q^{12} + 9 q^{13} + 9 q^{14} - 15 q^{15} - 3 q^{16} - 15 q^{17} + 6 q^{18} + 6 q^{19} + 48 q^{20} - 12 q^{21} - 15 q^{22} - 9 q^{23} + 45 q^{24} + 21 q^{25} - 15 q^{26} + 21 q^{27} - 27 q^{28} - 18 q^{29} + 6 q^{30} + 6 q^{33} - 33 q^{34} - 12 q^{35} - 72 q^{36} + 6 q^{37} + 54 q^{38} - 6 q^{39} - 75 q^{40} - 24 q^{41} + 21 q^{42} + 18 q^{46} - 36 q^{47} + 3 q^{48} + 21 q^{49} + 3 q^{50} + 81 q^{51} + 51 q^{52} - 39 q^{53} + 45 q^{54} + 12 q^{55} + 81 q^{56} + 15 q^{57} + 33 q^{58} - 6 q^{59} - 18 q^{60} + 42 q^{61} - 24 q^{62} - 27 q^{63} + 6 q^{64} + 18 q^{65} - 81 q^{66} - 36 q^{69} - 12 q^{70} - 9 q^{71} - 63 q^{72} - 54 q^{73} + 15 q^{74} + 18 q^{75} - 69 q^{76} + 33 q^{77} - 45 q^{78} - 6 q^{79} - 45 q^{81} + 27 q^{82} - 24 q^{83} - 24 q^{84} + 6 q^{85} - 42 q^{86} + 21 q^{87} + 54 q^{88} + 18 q^{89} + 60 q^{90} - 3 q^{91} + 66 q^{92} + 66 q^{93} + 18 q^{94} - 15 q^{95} + 15 q^{96} - 9 q^{97} - 45 q^{98} + 60 q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(37, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
37.2.h.a $18$ $0.295$ $$\mathbb{Q}[x]/(x^{18} + \cdots)$$ None $$-9$$ $$-9$$ $$-3$$ $$-3$$ $$q+(\beta _{4}-\beta _{11})q^{2}+(-1-\beta _{12}+\beta _{16}+\cdots)q^{3}+\cdots$$