Properties

Label 368.7.f
Level $368$
Weight $7$
Character orbit 368.f
Rep. character $\chi_{368}(321,\cdot)$
Character field $\Q$
Dimension $71$
Newform subspaces $6$
Sturm bound $336$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 368.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(336\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(368, [\chi])\).

Total New Old
Modular forms 294 73 221
Cusp forms 282 71 211
Eisenstein series 12 2 10

Trace form

\( 71 q + 2 q^{3} + 16765 q^{9} + O(q^{10}) \) \( 71 q + 2 q^{3} + 16765 q^{9} - 2 q^{13} - 12183 q^{23} - 209377 q^{25} + 79004 q^{27} - 16066 q^{29} + 61250 q^{31} + 82896 q^{35} - 62140 q^{39} + 70446 q^{41} - 144094 q^{47} - 1161721 q^{49} + 795744 q^{55} - 256198 q^{59} + 17758 q^{69} + 1029202 q^{71} - 2 q^{73} + 1047522 q^{75} + 536336 q^{77} + 4447795 q^{81} - 247344 q^{85} + 504548 q^{87} + 540356 q^{93} - 3167504 q^{95} + O(q^{100}) \)

Decomposition of \(S_{7}^{\mathrm{new}}(368, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
368.7.f.a 368.f 23.b $1$ $84.660$ \(\Q\) \(\Q(\sqrt{-23}) \) 23.7.b.a \(0\) \(38\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+38q^{3}+715q^{9}+1082q^{13}+23^{3}q^{23}+\cdots\)
368.7.f.b 368.f 23.b $2$ $84.660$ \(\Q(\sqrt{69}) \) \(\Q(\sqrt{-23}) \) 23.7.b.b \(0\) \(-38\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-19-\beta )q^{3}+(736+38\beta )q^{9}+(-541+\cdots)q^{13}+\cdots\)
368.7.f.c 368.f 23.b $8$ $84.660$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 23.7.b.c \(0\) \(-30\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-4-\beta _{3})q^{3}-\beta _{4}q^{5}+(\beta _{2}-\beta _{4}+\cdots)q^{7}+\cdots\)
368.7.f.d 368.f 23.b $12$ $84.660$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 92.7.d.a \(0\) \(-32\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-3-\beta _{2})q^{3}+\beta _{1}q^{5}+\beta _{7}q^{7}+(320+\cdots)q^{9}+\cdots\)
368.7.f.e 368.f 23.b $12$ $84.660$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 46.7.b.a \(0\) \(64\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(5-\beta _{2})q^{3}+\beta _{6}q^{5}+\beta _{8}q^{7}+(396+\cdots)q^{9}+\cdots\)
368.7.f.f 368.f 23.b $36$ $84.660$ None 184.7.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{7}^{\mathrm{old}}(368, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)