Defining parameters
Level: | \( N \) | \(=\) | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 368.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 294 | 73 | 221 |
Cusp forms | 282 | 71 | 211 |
Eisenstein series | 12 | 2 | 10 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(368, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
368.7.f.a | $1$ | $84.660$ | \(\Q\) | \(\Q(\sqrt{-23}) \) | \(0\) | \(38\) | \(0\) | \(0\) | \(q+38q^{3}+715q^{9}+1082q^{13}+23^{3}q^{23}+\cdots\) |
368.7.f.b | $2$ | $84.660$ | \(\Q(\sqrt{69}) \) | \(\Q(\sqrt{-23}) \) | \(0\) | \(-38\) | \(0\) | \(0\) | \(q+(-19-\beta )q^{3}+(736+38\beta )q^{9}+(-541+\cdots)q^{13}+\cdots\) |
368.7.f.c | $8$ | $84.660$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(-30\) | \(0\) | \(0\) | \(q+(-4-\beta _{3})q^{3}-\beta _{4}q^{5}+(\beta _{2}-\beta _{4}+\cdots)q^{7}+\cdots\) |
368.7.f.d | $12$ | $84.660$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(-32\) | \(0\) | \(0\) | \(q+(-3-\beta _{2})q^{3}+\beta _{1}q^{5}+\beta _{7}q^{7}+(320+\cdots)q^{9}+\cdots\) |
368.7.f.e | $12$ | $84.660$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(64\) | \(0\) | \(0\) | \(q+(5-\beta _{2})q^{3}+\beta _{6}q^{5}+\beta _{8}q^{7}+(396+\cdots)q^{9}+\cdots\) |
368.7.f.f | $36$ | $84.660$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{7}^{\mathrm{old}}(368, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)