Defining parameters
Level: | \( N \) | = | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | = | \( 7 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(59136\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(368))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 25652 | 14297 | 11355 |
Cusp forms | 25036 | 14107 | 10929 |
Eisenstein series | 616 | 190 | 426 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(368))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
368.7.d | \(\chi_{368}(47, \cdot)\) | 368.7.d.a | 22 | 1 |
368.7.d.b | 44 | |||
368.7.e | \(\chi_{368}(137, \cdot)\) | None | 0 | 1 |
368.7.f | \(\chi_{368}(321, \cdot)\) | 368.7.f.a | 1 | 1 |
368.7.f.b | 2 | |||
368.7.f.c | 8 | |||
368.7.f.d | 12 | |||
368.7.f.e | 12 | |||
368.7.f.f | 36 | |||
368.7.g | \(\chi_{368}(231, \cdot)\) | None | 0 | 1 |
368.7.k | \(\chi_{368}(45, \cdot)\) | n/a | 572 | 2 |
368.7.l | \(\chi_{368}(139, \cdot)\) | n/a | 528 | 2 |
368.7.o | \(\chi_{368}(39, \cdot)\) | None | 0 | 10 |
368.7.p | \(\chi_{368}(17, \cdot)\) | n/a | 710 | 10 |
368.7.q | \(\chi_{368}(57, \cdot)\) | None | 0 | 10 |
368.7.r | \(\chi_{368}(31, \cdot)\) | n/a | 720 | 10 |
368.7.u | \(\chi_{368}(3, \cdot)\) | n/a | 5720 | 20 |
368.7.v | \(\chi_{368}(5, \cdot)\) | n/a | 5720 | 20 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(368))\) into lower level spaces
\( S_{7}^{\mathrm{old}}(\Gamma_1(368)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(368))\)\(^{\oplus 1}\)