Properties

Label 368.4.m
Level $368$
Weight $4$
Character orbit 368.m
Rep. character $\chi_{368}(49,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $350$
Sturm bound $192$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 368.m (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Sturm bound: \(192\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(368, [\chi])\).

Total New Old
Modular forms 1500 370 1130
Cusp forms 1380 350 1030
Eisenstein series 120 20 100

Trace form

\( 350 q + 9 q^{3} - 9 q^{5} + 23 q^{7} - 306 q^{9} - 77 q^{11} - 9 q^{13} + 27 q^{15} - 9 q^{17} - 81 q^{19} + 181 q^{21} - 114 q^{23} - 784 q^{25} + 465 q^{27} - 265 q^{29} - 255 q^{31} + 45 q^{33} + 107 q^{35}+ \cdots + 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(368, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(368, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)