Properties

Label 368.4.c.b
Level $368$
Weight $4$
Character orbit 368.c
Analytic conductor $21.713$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,4,Mod(367,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.367");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 368.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7127028821\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 152 q^{9} + 112 q^{13} - 984 q^{25} - 128 q^{29} - 272 q^{41} - 408 q^{49} - 1440 q^{69} - 1568 q^{73} - 400 q^{77} - 1464 q^{81} + 272 q^{85} + 2688 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
367.1 0 8.48583i 0 13.4914i 0 −14.7816 0 −45.0093 0
367.2 0 8.48583i 0 13.4914i 0 14.7816 0 −45.0093 0
367.3 0 7.93252i 0 3.10391i 0 16.8553 0 −35.9249 0
367.4 0 7.93252i 0 3.10391i 0 −16.8553 0 −35.9249 0
367.5 0 6.77623i 0 17.8668i 0 −2.04784 0 −18.9173 0
367.6 0 6.77623i 0 17.8668i 0 2.04784 0 −18.9173 0
367.7 0 3.69981i 0 2.68968i 0 −3.67078 0 13.3114 0
367.8 0 3.69981i 0 2.68968i 0 3.67078 0 13.3114 0
367.9 0 2.05436i 0 5.60258i 0 27.1953 0 22.7796 0
367.10 0 2.05436i 0 5.60258i 0 −27.1953 0 22.7796 0
367.11 0 1.11337i 0 21.1306i 0 26.3847 0 25.7604 0
367.12 0 1.11337i 0 21.1306i 0 −26.3847 0 25.7604 0
367.13 0 1.11337i 0 21.1306i 0 −26.3847 0 25.7604 0
367.14 0 1.11337i 0 21.1306i 0 26.3847 0 25.7604 0
367.15 0 2.05436i 0 5.60258i 0 −27.1953 0 22.7796 0
367.16 0 2.05436i 0 5.60258i 0 27.1953 0 22.7796 0
367.17 0 3.69981i 0 2.68968i 0 3.67078 0 13.3114 0
367.18 0 3.69981i 0 2.68968i 0 −3.67078 0 13.3114 0
367.19 0 6.77623i 0 17.8668i 0 2.04784 0 −18.9173 0
367.20 0 6.77623i 0 17.8668i 0 −2.04784 0 −18.9173 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 367.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
23.b odd 2 1 inner
92.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 368.4.c.b 24
4.b odd 2 1 inner 368.4.c.b 24
23.b odd 2 1 inner 368.4.c.b 24
92.b even 2 1 inner 368.4.c.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
368.4.c.b 24 1.a even 1 1 trivial
368.4.c.b 24 4.b odd 2 1 inner
368.4.c.b 24 23.b odd 2 1 inner
368.4.c.b 24 92.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 200T_{3}^{10} + 14270T_{3}^{8} + 428000T_{3}^{6} + 4854833T_{3}^{4} + 17406872T_{3}^{2} + 14899600 \) acting on \(S_{4}^{\mathrm{new}}(368, [\chi])\). Copy content Toggle raw display