Properties

Label 368.4.a.i
Level $368$
Weight $4$
Character orbit 368.a
Self dual yes
Analytic conductor $21.713$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,4,Mod(1,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.7127028821\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.761.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + (\beta_{2} + 2 \beta_1 + 5) q^{5} + ( - 3 \beta_1 - 5) q^{7} + ( - 3 \beta_{2} + 3 \beta_1 + 4) q^{9} + ( - 4 \beta_{2} + 7 \beta_1 - 17) q^{11} + (4 \beta_{2} - 4 \beta_1 - 29) q^{13}+ \cdots + (74 \beta_{2} + 88 \beta_1 + 910) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} + 16 q^{5} - 18 q^{7} + 18 q^{9} - 40 q^{11} - 95 q^{13} - 240 q^{15} - 42 q^{17} - 26 q^{19} + 302 q^{21} + 69 q^{23} + 433 q^{25} - 163 q^{27} - 181 q^{29} - 705 q^{31} - 528 q^{33} - 800 q^{35}+ \cdots + 2744 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu^{2} - 4\nu - 7 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 9 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.89195
3.06443
−0.172480
0 −7.72680 0 18.6126 0 −28.1804 0 32.7035 0
1.2 0 0.476220 0 13.8291 0 −3.57134 0 −26.7732 0
1.3 0 6.25058 0 −16.4417 0 13.7517 0 12.0698 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 368.4.a.i 3
4.b odd 2 1 184.4.a.d 3
8.b even 2 1 1472.4.a.t 3
8.d odd 2 1 1472.4.a.s 3
12.b even 2 1 1656.4.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.4.a.d 3 4.b odd 2 1
368.4.a.i 3 1.a even 1 1 trivial
1472.4.a.s 3 8.d odd 2 1
1472.4.a.t 3 8.b even 2 1
1656.4.a.i 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + T_{3}^{2} - 49T_{3} + 23 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(368))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} + \cdots + 23 \) Copy content Toggle raw display
$5$ \( T^{3} - 16 T^{2} + \cdots + 4232 \) Copy content Toggle raw display
$7$ \( T^{3} + 18 T^{2} + \cdots - 1384 \) Copy content Toggle raw display
$11$ \( T^{3} + 40 T^{2} + \cdots - 66056 \) Copy content Toggle raw display
$13$ \( T^{3} + 95 T^{2} + \cdots - 32179 \) Copy content Toggle raw display
$17$ \( T^{3} + 42 T^{2} + \cdots - 56456 \) Copy content Toggle raw display
$19$ \( T^{3} + 26 T^{2} + \cdots - 1143816 \) Copy content Toggle raw display
$23$ \( (T - 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 181 T^{2} + \cdots - 7111481 \) Copy content Toggle raw display
$31$ \( T^{3} + 705 T^{2} + \cdots + 10237599 \) Copy content Toggle raw display
$37$ \( T^{3} + 80 T^{2} + \cdots - 19357544 \) Copy content Toggle raw display
$41$ \( T^{3} - 281 T^{2} + \cdots - 2573499 \) Copy content Toggle raw display
$43$ \( T^{3} + 248 T^{2} + \cdots - 2773504 \) Copy content Toggle raw display
$47$ \( T^{3} + 517 T^{2} + \cdots - 647501 \) Copy content Toggle raw display
$53$ \( T^{3} + 190 T^{2} + \cdots - 18150072 \) Copy content Toggle raw display
$59$ \( T^{3} + 996 T^{2} + \cdots - 16600384 \) Copy content Toggle raw display
$61$ \( T^{3} + 1214 T^{2} + \cdots + 12905704 \) Copy content Toggle raw display
$67$ \( T^{3} - 776 T^{2} + \cdots + 14223944 \) Copy content Toggle raw display
$71$ \( T^{3} + 229 T^{2} + \cdots + 1059547 \) Copy content Toggle raw display
$73$ \( T^{3} + 333 T^{2} + \cdots + 8715807 \) Copy content Toggle raw display
$79$ \( T^{3} - 26 T^{2} + \cdots + 5488392 \) Copy content Toggle raw display
$83$ \( T^{3} - 474 T^{2} + \cdots - 8830248 \) Copy content Toggle raw display
$89$ \( T^{3} + 1320 T^{2} + \cdots - 655097408 \) Copy content Toggle raw display
$97$ \( T^{3} - 2386 T^{2} + \cdots + 449588984 \) Copy content Toggle raw display
show more
show less