Properties

Label 368.2.w
Level $368$
Weight $2$
Character orbit 368.w
Rep. character $\chi_{368}(13,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $920$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.w (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 368 \)
Character field: \(\Q(\zeta_{44})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(368, [\chi])\).

Total New Old
Modular forms 1000 1000 0
Cusp forms 920 920 0
Eisenstein series 80 80 0

Trace form

\( 920 q - 18 q^{2} - 18 q^{3} - 22 q^{4} - 18 q^{5} - 24 q^{6} - 18 q^{8} - 10 q^{10} - 26 q^{11} - 24 q^{12} - 18 q^{13} - 30 q^{14} - 52 q^{15} - 6 q^{16} - 36 q^{17} - 6 q^{18} - 34 q^{19} - 18 q^{20}+ \cdots - 82 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(368, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
368.2.w.a 368.w 368.w $920$ $2.938$ None 368.2.w.a \(-18\) \(-18\) \(-18\) \(0\) $\mathrm{SU}(2)[C_{44}]$