Defining parameters
Level: | \( N \) | \(=\) | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 368.s (of order \(22\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 92 \) |
Character field: | \(\Q(\zeta_{22})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 540 | 120 | 420 |
Cusp forms | 420 | 120 | 300 |
Eisenstein series | 120 | 0 | 120 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(368, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
368.2.s.a | $40$ | $2.938$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
368.2.s.b | $80$ | $2.938$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(368, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)