Properties

Label 368.2.s
Level $368$
Weight $2$
Character orbit 368.s
Rep. character $\chi_{368}(15,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $120$
Newform subspaces $2$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.s (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 92 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(368, [\chi])\).

Total New Old
Modular forms 540 120 420
Cusp forms 420 120 300
Eisenstein series 120 0 120

Trace form

\( 120 q + 12 q^{9} + 12 q^{25} + 24 q^{29} - 24 q^{41} - 36 q^{49} + 24 q^{69} - 72 q^{77} - 204 q^{81} - 156 q^{85} - 132 q^{89} - 24 q^{93} - 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(368, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
368.2.s.a 368.s 92.h $40$ $2.938$ None 368.2.s.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$
368.2.s.b 368.s 92.h $80$ $2.938$ None 368.2.s.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$

Decomposition of \(S_{2}^{\mathrm{old}}(368, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)