Defining parameters
Level: | \( N \) | \(=\) | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 368.m (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 540 | 130 | 410 |
Cusp forms | 420 | 110 | 310 |
Eisenstein series | 120 | 20 | 100 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(368, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
368.2.m.a | $10$ | $2.938$ | \(\Q(\zeta_{22})\) | None | \(0\) | \(0\) | \(-4\) | \(7\) | \(q+(-\zeta_{22}^{3}-\zeta_{22}^{4}+\zeta_{22}^{5}+\zeta_{22}^{6}+\cdots)q^{3}+\cdots\) |
368.2.m.b | $10$ | $2.938$ | \(\Q(\zeta_{22})\) | None | \(0\) | \(4\) | \(-6\) | \(-3\) | \(q+(\zeta_{22}^{3}-\zeta_{22}^{4}+\zeta_{22}^{5}-\zeta_{22}^{6})q^{3}+\cdots\) |
368.2.m.c | $10$ | $2.938$ | \(\Q(\zeta_{22})\) | None | \(0\) | \(7\) | \(-3\) | \(5\) | \(q+(1+\zeta_{22}^{4}-\zeta_{22}^{5}-\zeta_{22}^{9})q^{3}+(-1+\cdots)q^{5}+\cdots\) |
368.2.m.d | $20$ | $2.938$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(-2\) | \(2\) | \(-2\) | \(q+(-1+\beta _{6}-\beta _{8}+\beta _{9}+\beta _{10}+\beta _{11}+\cdots)q^{3}+\cdots\) |
368.2.m.e | $30$ | $2.938$ | None | \(0\) | \(-2\) | \(0\) | \(13\) | ||
368.2.m.f | $30$ | $2.938$ | None | \(0\) | \(2\) | \(2\) | \(-13\) |
Decomposition of \(S_{2}^{\mathrm{old}}(368, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)