Properties

Label 368.2.m
Level $368$
Weight $2$
Character orbit 368.m
Rep. character $\chi_{368}(49,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $110$
Newform subspaces $6$
Sturm bound $96$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.m (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 6 \)
Sturm bound: \(96\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(368, [\chi])\).

Total New Old
Modular forms 540 130 410
Cusp forms 420 110 310
Eisenstein series 120 20 100

Trace form

\( 110 q + 9 q^{3} - 9 q^{5} + 7 q^{7} - 18 q^{9} + 11 q^{11} - 9 q^{13} + 11 q^{15} - 9 q^{17} + 7 q^{19} - 11 q^{21} + 14 q^{23} - 16 q^{25} + 9 q^{27} - 9 q^{29} + q^{31} - 3 q^{33} + 11 q^{35} - q^{37}+ \cdots - 179 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(368, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
368.2.m.a 368.m 23.c $10$ $2.938$ \(\Q(\zeta_{22})\) None 46.2.c.b \(0\) \(0\) \(-4\) \(7\) $\mathrm{SU}(2)[C_{11}]$ \(q+(-\zeta_{22}^{3}-\zeta_{22}^{4}+\zeta_{22}^{5}+\zeta_{22}^{6}+\cdots)q^{3}+\cdots\)
368.2.m.b 368.m 23.c $10$ $2.938$ \(\Q(\zeta_{22})\) None 46.2.c.a \(0\) \(4\) \(-6\) \(-3\) $\mathrm{SU}(2)[C_{11}]$ \(q+(\zeta_{22}^{3}-\zeta_{22}^{4}+\zeta_{22}^{5}-\zeta_{22}^{6})q^{3}+\cdots\)
368.2.m.c 368.m 23.c $10$ $2.938$ \(\Q(\zeta_{22})\) None 23.2.c.a \(0\) \(7\) \(-3\) \(5\) $\mathrm{SU}(2)[C_{11}]$ \(q+(1+\zeta_{22}^{4}-\zeta_{22}^{5}-\zeta_{22}^{9})q^{3}+(-1+\cdots)q^{5}+\cdots\)
368.2.m.d 368.m 23.c $20$ $2.938$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 92.2.e.a \(0\) \(-2\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{11}]$ \(q+(-1+\beta _{6}-\beta _{8}+\beta _{9}+\beta _{10}+\beta _{11}+\cdots)q^{3}+\cdots\)
368.2.m.e 368.m 23.c $30$ $2.938$ None 184.2.i.b \(0\) \(-2\) \(0\) \(13\) $\mathrm{SU}(2)[C_{11}]$
368.2.m.f 368.m 23.c $30$ $2.938$ None 184.2.i.a \(0\) \(2\) \(2\) \(-13\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{2}^{\mathrm{old}}(368, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)