Properties

Label 368.2.j.c.93.6
Level $368$
Weight $2$
Character 368.93
Analytic conductor $2.938$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(93,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 93.6
Root \(-0.518742 - 1.31564i\) of defining polynomial
Character \(\chi\) \(=\) 368.93
Dual form 368.2.j.c.277.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38463 - 0.287766i) q^{2} +(0.339667 + 0.339667i) q^{3} +(1.83438 - 0.796898i) q^{4} +(1.46929 - 1.46929i) q^{5} +(0.568056 + 0.372567i) q^{6} +2.63128i q^{7} +(2.31061 - 1.63128i) q^{8} -2.76925i q^{9} +O(q^{10})\) \(q+(1.38463 - 0.287766i) q^{2} +(0.339667 + 0.339667i) q^{3} +(1.83438 - 0.796898i) q^{4} +(1.46929 - 1.46929i) q^{5} +(0.568056 + 0.372567i) q^{6} +2.63128i q^{7} +(2.31061 - 1.63128i) q^{8} -2.76925i q^{9} +(1.61161 - 2.45723i) q^{10} +(-2.99062 + 2.99062i) q^{11} +(0.893758 + 0.352399i) q^{12} +(-0.749580 - 0.749580i) q^{13} +(0.757193 + 3.64334i) q^{14} +0.998138 q^{15} +(2.72991 - 2.92363i) q^{16} -3.64954 q^{17} +(-0.796898 - 3.83438i) q^{18} +(1.76925 + 1.76925i) q^{19} +(1.52436 - 3.86611i) q^{20} +(-0.893758 + 0.893758i) q^{21} +(-3.28029 + 5.00149i) q^{22} -1.00000i q^{23} +(1.33893 + 0.230747i) q^{24} +0.682370i q^{25} +(-1.25359 - 0.822185i) q^{26} +(1.95962 - 1.95962i) q^{27} +(2.09686 + 4.82677i) q^{28} +(0.0790494 + 0.0790494i) q^{29} +(1.38205 - 0.287231i) q^{30} -2.07656 q^{31} +(2.93858 - 4.83371i) q^{32} -2.03163 q^{33} +(-5.05325 + 1.05022i) q^{34} +(3.86611 + 3.86611i) q^{35} +(-2.20681 - 5.07987i) q^{36} +(-3.64475 + 3.64475i) q^{37} +(2.95889 + 1.94062i) q^{38} -0.509215i q^{39} +(0.998138 - 5.79178i) q^{40} +1.90098i q^{41} +(-0.980327 + 1.49471i) q^{42} +(6.84422 - 6.84422i) q^{43} +(-3.10272 + 7.86915i) q^{44} +(-4.06884 - 4.06884i) q^{45} +(-0.287766 - 1.38463i) q^{46} -8.55356 q^{47} +(1.92032 - 0.0658004i) q^{48} +0.0763717 q^{49} +(0.196363 + 0.944828i) q^{50} +(-1.23963 - 1.23963i) q^{51} +(-1.97236 - 0.777677i) q^{52} +(-6.62218 + 6.62218i) q^{53} +(2.14943 - 3.27726i) q^{54} +8.78817i q^{55} +(4.29235 + 6.07987i) q^{56} +1.20191i q^{57} +(0.132202 + 0.0867061i) q^{58} +(-5.45162 + 5.45162i) q^{59} +(1.83097 - 0.795414i) q^{60} +(2.13515 + 2.13515i) q^{61} +(-2.87525 + 0.597563i) q^{62} +7.28668 q^{63} +(2.67786 - 7.53851i) q^{64} -2.20270 q^{65} +(-2.81304 + 0.584634i) q^{66} +(3.51996 + 3.51996i) q^{67} +(-6.69465 + 2.90831i) q^{68} +(0.339667 - 0.339667i) q^{69} +(6.46566 + 4.24059i) q^{70} -1.61740i q^{71} +(-4.51742 - 6.39867i) q^{72} -14.4563i q^{73} +(-3.99778 + 6.09545i) q^{74} +(-0.231779 + 0.231779i) q^{75} +(4.65540 + 1.83557i) q^{76} +(-7.86915 - 7.86915i) q^{77} +(-0.146535 - 0.705073i) q^{78} -12.5492 q^{79} +(-0.284631 - 8.30669i) q^{80} -6.97652 q^{81} +(0.547039 + 2.63215i) q^{82} +(1.26143 + 1.26143i) q^{83} +(-0.927259 + 2.35173i) q^{84} +(-5.36224 + 5.36224i) q^{85} +(7.50715 - 11.4462i) q^{86} +0.0537009i q^{87} +(-2.03163 + 11.7887i) q^{88} -12.3891i q^{89} +(-6.80469 - 4.46295i) q^{90} +(1.97236 - 1.97236i) q^{91} +(-0.796898 - 1.83438i) q^{92} +(-0.705337 - 0.705337i) q^{93} +(-11.8435 + 2.46143i) q^{94} +5.19909 q^{95} +(2.63999 - 0.643712i) q^{96} +7.54694 q^{97} +(0.105746 - 0.0219772i) q^{98} +(8.28178 + 8.28178i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8} - 6 q^{10} - 4 q^{11} - 8 q^{12} + 18 q^{13} - 2 q^{14} + 8 q^{16} - 8 q^{17} - 4 q^{18} - 8 q^{19} - 32 q^{20} + 8 q^{21} - 34 q^{22} + 12 q^{24} - 14 q^{26} + 14 q^{27} + 12 q^{28} + 2 q^{29} - 30 q^{30} + 20 q^{31} - 8 q^{32} - 36 q^{33} + 10 q^{34} + 4 q^{35} + 4 q^{36} - 4 q^{37} + 24 q^{38} - 14 q^{42} + 20 q^{43} + 4 q^{44} - 20 q^{45} - 2 q^{46} - 16 q^{47} - 12 q^{48} + 52 q^{49} + 6 q^{50} - 4 q^{51} - 16 q^{53} + 16 q^{54} + 28 q^{56} + 14 q^{58} + 8 q^{59} + 48 q^{60} + 12 q^{61} - 44 q^{62} - 4 q^{63} + 24 q^{64} - 52 q^{65} + 34 q^{66} - 4 q^{67} - 16 q^{68} + 2 q^{69} + 28 q^{70} + 8 q^{72} - 26 q^{74} - 46 q^{75} - 8 q^{76} - 12 q^{77} - 44 q^{78} - 4 q^{79} + 4 q^{80} + 48 q^{81} - 6 q^{82} + 28 q^{83} + 12 q^{84} - 8 q^{85} + 44 q^{86} - 36 q^{88} + 4 q^{90} - 4 q^{92} - 14 q^{93} + 48 q^{95} + 32 q^{96} + 36 q^{97} - 2 q^{98} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38463 0.287766i 0.979079 0.203482i
\(3\) 0.339667 + 0.339667i 0.196107 + 0.196107i 0.798329 0.602222i \(-0.205718\pi\)
−0.602222 + 0.798329i \(0.705718\pi\)
\(4\) 1.83438 0.796898i 0.917191 0.398449i
\(5\) 1.46929 1.46929i 0.657087 0.657087i −0.297603 0.954690i \(-0.596187\pi\)
0.954690 + 0.297603i \(0.0961872\pi\)
\(6\) 0.568056 + 0.372567i 0.231908 + 0.152100i
\(7\) 2.63128i 0.994530i 0.867599 + 0.497265i \(0.165662\pi\)
−0.867599 + 0.497265i \(0.834338\pi\)
\(8\) 2.31061 1.63128i 0.816925 0.576744i
\(9\) 2.76925i 0.923084i
\(10\) 1.61161 2.45723i 0.509635 0.777045i
\(11\) −2.99062 + 2.99062i −0.901705 + 0.901705i −0.995584 0.0938784i \(-0.970074\pi\)
0.0938784 + 0.995584i \(0.470074\pi\)
\(12\) 0.893758 + 0.352399i 0.258006 + 0.101729i
\(13\) −0.749580 0.749580i −0.207896 0.207896i 0.595477 0.803373i \(-0.296963\pi\)
−0.803373 + 0.595477i \(0.796963\pi\)
\(14\) 0.757193 + 3.64334i 0.202368 + 0.973723i
\(15\) 0.998138 0.257718
\(16\) 2.72991 2.92363i 0.682477 0.730907i
\(17\) −3.64954 −0.885144 −0.442572 0.896733i \(-0.645934\pi\)
−0.442572 + 0.896733i \(0.645934\pi\)
\(18\) −0.796898 3.83438i −0.187831 0.903772i
\(19\) 1.76925 + 1.76925i 0.405894 + 0.405894i 0.880304 0.474410i \(-0.157338\pi\)
−0.474410 + 0.880304i \(0.657338\pi\)
\(20\) 1.52436 3.86611i 0.340858 0.864489i
\(21\) −0.893758 + 0.893758i −0.195034 + 0.195034i
\(22\) −3.28029 + 5.00149i −0.699360 + 1.06632i
\(23\) 1.00000i 0.208514i
\(24\) 1.33893 + 0.230747i 0.273308 + 0.0471010i
\(25\) 0.682370i 0.136474i
\(26\) −1.25359 0.822185i −0.245850 0.161244i
\(27\) 1.95962 1.95962i 0.377130 0.377130i
\(28\) 2.09686 + 4.82677i 0.396269 + 0.912173i
\(29\) 0.0790494 + 0.0790494i 0.0146791 + 0.0146791i 0.714408 0.699729i \(-0.246696\pi\)
−0.699729 + 0.714408i \(0.746696\pi\)
\(30\) 1.38205 0.287231i 0.252326 0.0524409i
\(31\) −2.07656 −0.372960 −0.186480 0.982459i \(-0.559708\pi\)
−0.186480 + 0.982459i \(0.559708\pi\)
\(32\) 2.93858 4.83371i 0.519473 0.854487i
\(33\) −2.03163 −0.353661
\(34\) −5.05325 + 1.05022i −0.866626 + 0.180110i
\(35\) 3.86611 + 3.86611i 0.653492 + 0.653492i
\(36\) −2.20681 5.07987i −0.367802 0.846644i
\(37\) −3.64475 + 3.64475i −0.599193 + 0.599193i −0.940098 0.340905i \(-0.889267\pi\)
0.340905 + 0.940098i \(0.389267\pi\)
\(38\) 2.95889 + 1.94062i 0.479995 + 0.314811i
\(39\) 0.509215i 0.0815397i
\(40\) 0.998138 5.79178i 0.157820 0.915761i
\(41\) 1.90098i 0.296884i 0.988921 + 0.148442i \(0.0474258\pi\)
−0.988921 + 0.148442i \(0.952574\pi\)
\(42\) −0.980327 + 1.49471i −0.151268 + 0.230639i
\(43\) 6.84422 6.84422i 1.04373 1.04373i 0.0447348 0.998999i \(-0.485756\pi\)
0.998999 0.0447348i \(-0.0142443\pi\)
\(44\) −3.10272 + 7.86915i −0.467752 + 1.18632i
\(45\) −4.06884 4.06884i −0.606546 0.606546i
\(46\) −0.287766 1.38463i −0.0424288 0.204152i
\(47\) −8.55356 −1.24767 −0.623833 0.781558i \(-0.714425\pi\)
−0.623833 + 0.781558i \(0.714425\pi\)
\(48\) 1.92032 0.0658004i 0.277174 0.00949746i
\(49\) 0.0763717 0.0109102
\(50\) 0.196363 + 0.944828i 0.0277700 + 0.133619i
\(51\) −1.23963 1.23963i −0.173583 0.173583i
\(52\) −1.97236 0.777677i −0.273516 0.107844i
\(53\) −6.62218 + 6.62218i −0.909627 + 0.909627i −0.996242 0.0866152i \(-0.972395\pi\)
0.0866152 + 0.996242i \(0.472395\pi\)
\(54\) 2.14943 3.27726i 0.292501 0.445979i
\(55\) 8.78817i 1.18500i
\(56\) 4.29235 + 6.07987i 0.573589 + 0.812456i
\(57\) 1.20191i 0.159197i
\(58\) 0.132202 + 0.0867061i 0.0173589 + 0.0113851i
\(59\) −5.45162 + 5.45162i −0.709741 + 0.709741i −0.966481 0.256740i \(-0.917352\pi\)
0.256740 + 0.966481i \(0.417352\pi\)
\(60\) 1.83097 0.795414i 0.236377 0.102688i
\(61\) 2.13515 + 2.13515i 0.273379 + 0.273379i 0.830459 0.557080i \(-0.188078\pi\)
−0.557080 + 0.830459i \(0.688078\pi\)
\(62\) −2.87525 + 0.597563i −0.365158 + 0.0758905i
\(63\) 7.28668 0.918035
\(64\) 2.67786 7.53851i 0.334732 0.942313i
\(65\) −2.20270 −0.273212
\(66\) −2.81304 + 0.584634i −0.346262 + 0.0719635i
\(67\) 3.51996 + 3.51996i 0.430031 + 0.430031i 0.888639 0.458608i \(-0.151652\pi\)
−0.458608 + 0.888639i \(0.651652\pi\)
\(68\) −6.69465 + 2.90831i −0.811846 + 0.352685i
\(69\) 0.339667 0.339667i 0.0408911 0.0408911i
\(70\) 6.46566 + 4.24059i 0.772794 + 0.506847i
\(71\) 1.61740i 0.191950i −0.995384 0.0959749i \(-0.969403\pi\)
0.995384 0.0959749i \(-0.0305968\pi\)
\(72\) −4.51742 6.39867i −0.532384 0.754091i
\(73\) 14.4563i 1.69198i −0.533199 0.845990i \(-0.679010\pi\)
0.533199 0.845990i \(-0.320990\pi\)
\(74\) −3.99778 + 6.09545i −0.464732 + 0.708582i
\(75\) −0.231779 + 0.231779i −0.0267635 + 0.0267635i
\(76\) 4.65540 + 1.83557i 0.534011 + 0.210554i
\(77\) −7.86915 7.86915i −0.896773 0.896773i
\(78\) −0.146535 0.705073i −0.0165918 0.0798338i
\(79\) −12.5492 −1.41190 −0.705950 0.708262i \(-0.749480\pi\)
−0.705950 + 0.708262i \(0.749480\pi\)
\(80\) −0.284631 8.30669i −0.0318228 0.928716i
\(81\) −6.97652 −0.775169
\(82\) 0.547039 + 2.63215i 0.0604104 + 0.290673i
\(83\) 1.26143 + 1.26143i 0.138460 + 0.138460i 0.772940 0.634480i \(-0.218786\pi\)
−0.634480 + 0.772940i \(0.718786\pi\)
\(84\) −0.927259 + 2.35173i −0.101172 + 0.256594i
\(85\) −5.36224 + 5.36224i −0.581616 + 0.581616i
\(86\) 7.50715 11.4462i 0.809517 1.23428i
\(87\) 0.0537009i 0.00575734i
\(88\) −2.03163 + 11.7887i −0.216572 + 1.25668i
\(89\) 12.3891i 1.31324i −0.754222 0.656620i \(-0.771986\pi\)
0.754222 0.656620i \(-0.228014\pi\)
\(90\) −6.80469 4.46295i −0.717278 0.470436i
\(91\) 1.97236 1.97236i 0.206759 0.206759i
\(92\) −0.796898 1.83438i −0.0830823 0.191247i
\(93\) −0.705337 0.705337i −0.0731400 0.0731400i
\(94\) −11.8435 + 2.46143i −1.22156 + 0.253877i
\(95\) 5.19909 0.533416
\(96\) 2.63999 0.643712i 0.269443 0.0656986i
\(97\) 7.54694 0.766276 0.383138 0.923691i \(-0.374843\pi\)
0.383138 + 0.923691i \(0.374843\pi\)
\(98\) 0.105746 0.0219772i 0.0106820 0.00222003i
\(99\) 8.28178 + 8.28178i 0.832350 + 0.832350i
\(100\) 0.543779 + 1.25173i 0.0543779 + 0.125173i
\(101\) −3.11433 + 3.11433i −0.309888 + 0.309888i −0.844866 0.534978i \(-0.820320\pi\)
0.534978 + 0.844866i \(0.320320\pi\)
\(102\) −2.07314 1.35970i −0.205272 0.134630i
\(103\) 3.73367i 0.367890i 0.982937 + 0.183945i \(0.0588868\pi\)
−0.982937 + 0.183945i \(0.941113\pi\)
\(104\) −2.95476 0.509215i −0.289739 0.0499327i
\(105\) 2.62638i 0.256308i
\(106\) −7.26361 + 11.0749i −0.705504 + 1.07569i
\(107\) 0.0709721 0.0709721i 0.00686113 0.00686113i −0.703668 0.710529i \(-0.748456\pi\)
0.710529 + 0.703668i \(0.248456\pi\)
\(108\) 2.03308 5.15632i 0.195633 0.496167i
\(109\) 2.51118 + 2.51118i 0.240527 + 0.240527i 0.817068 0.576541i \(-0.195598\pi\)
−0.576541 + 0.817068i \(0.695598\pi\)
\(110\) 2.52894 + 12.1683i 0.241125 + 1.16021i
\(111\) −2.47600 −0.235011
\(112\) 7.69288 + 7.18315i 0.726909 + 0.678744i
\(113\) 18.1520 1.70760 0.853799 0.520603i \(-0.174293\pi\)
0.853799 + 0.520603i \(0.174293\pi\)
\(114\) 0.345870 + 1.66420i 0.0323937 + 0.155867i
\(115\) −1.46929 1.46929i −0.137012 0.137012i
\(116\) 0.208001 + 0.0820124i 0.0193124 + 0.00761466i
\(117\) −2.07578 + 2.07578i −0.191906 + 0.191906i
\(118\) −5.97967 + 9.11726i −0.550473 + 0.839311i
\(119\) 9.60296i 0.880302i
\(120\) 2.30631 1.62824i 0.210536 0.148637i
\(121\) 6.88759i 0.626145i
\(122\) 3.57082 + 2.34197i 0.323287 + 0.212032i
\(123\) −0.645701 + 0.645701i −0.0582209 + 0.0582209i
\(124\) −3.80919 + 1.65480i −0.342076 + 0.148606i
\(125\) 8.34905 + 8.34905i 0.746762 + 0.746762i
\(126\) 10.0893 2.09686i 0.898829 0.186803i
\(127\) 12.4430 1.10414 0.552068 0.833799i \(-0.313839\pi\)
0.552068 + 0.833799i \(0.313839\pi\)
\(128\) 1.53851 11.2086i 0.135986 0.990711i
\(129\) 4.64951 0.409366
\(130\) −3.04992 + 0.633864i −0.267496 + 0.0555935i
\(131\) 8.15929 + 8.15929i 0.712880 + 0.712880i 0.967137 0.254257i \(-0.0818308\pi\)
−0.254257 + 0.967137i \(0.581831\pi\)
\(132\) −3.72678 + 1.61900i −0.324374 + 0.140916i
\(133\) −4.65540 + 4.65540i −0.403674 + 0.403674i
\(134\) 5.88675 + 3.86090i 0.508538 + 0.333531i
\(135\) 5.75851i 0.495614i
\(136\) −8.43268 + 5.95342i −0.723096 + 0.510502i
\(137\) 19.1721i 1.63798i −0.573806 0.818991i \(-0.694534\pi\)
0.573806 0.818991i \(-0.305466\pi\)
\(138\) 0.372567 0.568056i 0.0317150 0.0483562i
\(139\) −3.90522 + 3.90522i −0.331237 + 0.331237i −0.853056 0.521819i \(-0.825253\pi\)
0.521819 + 0.853056i \(0.325253\pi\)
\(140\) 10.1728 + 4.01103i 0.859760 + 0.338994i
\(141\) −2.90536 2.90536i −0.244676 0.244676i
\(142\) −0.465433 2.23949i −0.0390582 0.187934i
\(143\) 4.48342 0.374922
\(144\) −8.09627 7.55981i −0.674689 0.629984i
\(145\) 0.232293 0.0192909
\(146\) −4.16003 20.0165i −0.344287 1.65658i
\(147\) 0.0259409 + 0.0259409i 0.00213957 + 0.00213957i
\(148\) −3.78137 + 9.59035i −0.310826 + 0.788322i
\(149\) 3.78869 3.78869i 0.310382 0.310382i −0.534676 0.845057i \(-0.679566\pi\)
0.845057 + 0.534676i \(0.179566\pi\)
\(150\) −0.254229 + 0.387625i −0.0207577 + 0.0316494i
\(151\) 7.90187i 0.643045i −0.946902 0.321523i \(-0.895805\pi\)
0.946902 0.321523i \(-0.104195\pi\)
\(152\) 6.97420 + 1.20191i 0.565683 + 0.0974880i
\(153\) 10.1065i 0.817062i
\(154\) −13.1603 8.63136i −1.06049 0.695535i
\(155\) −3.05106 + 3.05106i −0.245067 + 0.245067i
\(156\) −0.405792 0.934095i −0.0324894 0.0747874i
\(157\) 5.73125 + 5.73125i 0.457404 + 0.457404i 0.897802 0.440399i \(-0.145163\pi\)
−0.440399 + 0.897802i \(0.645163\pi\)
\(158\) −17.3760 + 3.61125i −1.38236 + 0.287295i
\(159\) −4.49867 −0.356768
\(160\) −2.78449 11.4198i −0.220134 0.902811i
\(161\) 2.63128 0.207374
\(162\) −9.65988 + 2.00761i −0.758952 + 0.157733i
\(163\) 15.0985 + 15.0985i 1.18261 + 1.18261i 0.979066 + 0.203542i \(0.0652454\pi\)
0.203542 + 0.979066i \(0.434755\pi\)
\(164\) 1.51489 + 3.48713i 0.118293 + 0.272299i
\(165\) −2.98505 + 2.98505i −0.232386 + 0.232386i
\(166\) 2.10960 + 1.38361i 0.163737 + 0.107389i
\(167\) 24.8170i 1.92040i −0.279316 0.960199i \(-0.590108\pi\)
0.279316 0.960199i \(-0.409892\pi\)
\(168\) −0.607160 + 3.52310i −0.0468434 + 0.271813i
\(169\) 11.8763i 0.913558i
\(170\) −5.88162 + 8.96777i −0.451100 + 0.687796i
\(171\) 4.89951 4.89951i 0.374675 0.374675i
\(172\) 7.10076 18.0091i 0.541428 1.37318i
\(173\) −15.3500 15.3500i −1.16704 1.16704i −0.982899 0.184143i \(-0.941049\pi\)
−0.184143 0.982899i \(-0.558951\pi\)
\(174\) 0.0154533 + 0.0743557i 0.00117151 + 0.00563689i
\(175\) −1.79551 −0.135728
\(176\) 0.579344 + 16.9076i 0.0436697 + 1.27446i
\(177\) −3.70347 −0.278370
\(178\) −3.56516 17.1542i −0.267220 1.28576i
\(179\) 4.97599 + 4.97599i 0.371923 + 0.371923i 0.868177 0.496254i \(-0.165292\pi\)
−0.496254 + 0.868177i \(0.665292\pi\)
\(180\) −10.7062 4.22135i −0.797996 0.314641i
\(181\) −6.45355 + 6.45355i −0.479688 + 0.479688i −0.905032 0.425344i \(-0.860153\pi\)
0.425344 + 0.905032i \(0.360153\pi\)
\(182\) 2.16340 3.29855i 0.160362 0.244505i
\(183\) 1.45048i 0.107223i
\(184\) −1.63128 2.31061i −0.120259 0.170341i
\(185\) 10.7104i 0.787443i
\(186\) −1.17960 0.773656i −0.0864925 0.0567272i
\(187\) 10.9144 10.9144i 0.798139 0.798139i
\(188\) −15.6905 + 6.81631i −1.14435 + 0.497131i
\(189\) 5.15632 + 5.15632i 0.375067 + 0.375067i
\(190\) 7.19880 1.49612i 0.522256 0.108540i
\(191\) −8.83309 −0.639140 −0.319570 0.947563i \(-0.603538\pi\)
−0.319570 + 0.947563i \(0.603538\pi\)
\(192\) 3.47016 1.65100i 0.250437 0.119151i
\(193\) 25.7203 1.85139 0.925693 0.378276i \(-0.123483\pi\)
0.925693 + 0.378276i \(0.123483\pi\)
\(194\) 10.4497 2.17176i 0.750244 0.155923i
\(195\) −0.748185 0.748185i −0.0535786 0.0535786i
\(196\) 0.140095 0.0608604i 0.0100068 0.00434717i
\(197\) 13.6056 13.6056i 0.969360 0.969360i −0.0301846 0.999544i \(-0.509610\pi\)
0.999544 + 0.0301846i \(0.00960950\pi\)
\(198\) 13.8504 + 9.08395i 0.984304 + 0.645568i
\(199\) 18.1665i 1.28779i 0.765113 + 0.643896i \(0.222683\pi\)
−0.765113 + 0.643896i \(0.777317\pi\)
\(200\) 1.11314 + 1.57669i 0.0787106 + 0.111489i
\(201\) 2.39123i 0.168664i
\(202\) −3.41599 + 5.20839i −0.240348 + 0.366461i
\(203\) −0.208001 + 0.208001i −0.0145988 + 0.0145988i
\(204\) −3.26181 1.28609i −0.228372 0.0900445i
\(205\) 2.79310 + 2.79310i 0.195078 + 0.195078i
\(206\) 1.07443 + 5.16974i 0.0748588 + 0.360193i
\(207\) −2.76925 −0.192476
\(208\) −4.23778 + 0.145209i −0.293837 + 0.0100684i
\(209\) −10.5823 −0.731994
\(210\) 0.755784 + 3.63656i 0.0521540 + 0.250946i
\(211\) 14.8891 + 14.8891i 1.02501 + 1.02501i 0.999679 + 0.0253303i \(0.00806373\pi\)
0.0253303 + 0.999679i \(0.491936\pi\)
\(212\) −6.87040 + 17.4248i −0.471861 + 1.19674i
\(213\) 0.549376 0.549376i 0.0376426 0.0376426i
\(214\) 0.0778465 0.118693i 0.00532147 0.00811370i
\(215\) 20.1123i 1.37165i
\(216\) 1.33124 7.72462i 0.0905793 0.525594i
\(217\) 5.46400i 0.370920i
\(218\) 4.19968 + 2.75441i 0.284438 + 0.186552i
\(219\) 4.91032 4.91032i 0.331808 0.331808i
\(220\) 7.00328 + 16.1209i 0.472161 + 1.08687i
\(221\) 2.73563 + 2.73563i 0.184018 + 0.184018i
\(222\) −3.42833 + 0.712509i −0.230095 + 0.0478205i
\(223\) −13.1617 −0.881375 −0.440687 0.897661i \(-0.645265\pi\)
−0.440687 + 0.897661i \(0.645265\pi\)
\(224\) 12.7188 + 7.73223i 0.849813 + 0.516631i
\(225\) 1.88966 0.125977
\(226\) 25.1338 5.22354i 1.67187 0.347465i
\(227\) −20.0761 20.0761i −1.33250 1.33250i −0.903127 0.429373i \(-0.858734\pi\)
−0.429373 0.903127i \(-0.641266\pi\)
\(228\) 0.957802 + 2.20477i 0.0634320 + 0.146014i
\(229\) 8.36396 8.36396i 0.552706 0.552706i −0.374515 0.927221i \(-0.622191\pi\)
0.927221 + 0.374515i \(0.122191\pi\)
\(230\) −2.45723 1.61161i −0.162025 0.106266i
\(231\) 5.34578i 0.351726i
\(232\) 0.311604 + 0.0537009i 0.0204578 + 0.00352564i
\(233\) 3.94663i 0.258552i 0.991609 + 0.129276i \(0.0412653\pi\)
−0.991609 + 0.129276i \(0.958735\pi\)
\(234\) −2.27684 + 3.47152i −0.148842 + 0.226940i
\(235\) −12.5677 + 12.5677i −0.819824 + 0.819824i
\(236\) −5.65597 + 14.3447i −0.368172 + 0.933763i
\(237\) −4.26256 4.26256i −0.276883 0.276883i
\(238\) −2.76341 13.2965i −0.179125 0.861885i
\(239\) 11.4254 0.739050 0.369525 0.929221i \(-0.379520\pi\)
0.369525 + 0.929221i \(0.379520\pi\)
\(240\) 2.72483 2.91819i 0.175887 0.188368i
\(241\) 7.33232 0.472316 0.236158 0.971715i \(-0.424112\pi\)
0.236158 + 0.971715i \(0.424112\pi\)
\(242\) −1.98202 9.53674i −0.127409 0.613045i
\(243\) −8.24856 8.24856i −0.529146 0.529146i
\(244\) 5.61819 + 2.21519i 0.359668 + 0.141813i
\(245\) 0.112212 0.112212i 0.00716897 0.00716897i
\(246\) −0.708244 + 1.07987i −0.0451560 + 0.0688497i
\(247\) 2.65240i 0.168768i
\(248\) −4.79811 + 3.38744i −0.304681 + 0.215103i
\(249\) 0.856931i 0.0543058i
\(250\) 13.9629 + 9.15774i 0.883091 + 0.579187i
\(251\) 8.12841 8.12841i 0.513061 0.513061i −0.402402 0.915463i \(-0.631825\pi\)
0.915463 + 0.402402i \(0.131825\pi\)
\(252\) 13.3665 5.80674i 0.842013 0.365790i
\(253\) 2.99062 + 2.99062i 0.188019 + 0.188019i
\(254\) 17.2289 3.58067i 1.08104 0.224671i
\(255\) −3.64275 −0.228118
\(256\) −1.09521 15.9625i −0.0684503 0.997655i
\(257\) −11.6453 −0.726417 −0.363208 0.931708i \(-0.618319\pi\)
−0.363208 + 0.931708i \(0.618319\pi\)
\(258\) 6.43783 1.33797i 0.400802 0.0832985i
\(259\) −9.59035 9.59035i −0.595915 0.595915i
\(260\) −4.04060 + 1.75533i −0.250587 + 0.108861i
\(261\) 0.218908 0.218908i 0.0135500 0.0135500i
\(262\) 13.6455 + 8.94960i 0.843024 + 0.552908i
\(263\) 15.1470i 0.934002i −0.884257 0.467001i \(-0.845334\pi\)
0.884257 0.467001i \(-0.154666\pi\)
\(264\) −4.69430 + 3.31415i −0.288914 + 0.203972i
\(265\) 19.4598i 1.19541i
\(266\) −5.10632 + 7.78565i −0.313089 + 0.477369i
\(267\) 4.20816 4.20816i 0.257535 0.257535i
\(268\) 9.26199 + 3.65190i 0.565766 + 0.223075i
\(269\) 14.2175 + 14.2175i 0.866859 + 0.866859i 0.992123 0.125264i \(-0.0399779\pi\)
−0.125264 + 0.992123i \(0.539978\pi\)
\(270\) −1.65711 7.97339i −0.100848 0.485245i
\(271\) −29.2477 −1.77667 −0.888335 0.459196i \(-0.848137\pi\)
−0.888335 + 0.459196i \(0.848137\pi\)
\(272\) −9.96291 + 10.6699i −0.604090 + 0.646958i
\(273\) 1.33989 0.0810936
\(274\) −5.51708 26.5462i −0.333299 1.60371i
\(275\) −2.04071 2.04071i −0.123059 0.123059i
\(276\) 0.352399 0.893758i 0.0212119 0.0537979i
\(277\) 18.1466 18.1466i 1.09033 1.09033i 0.0948326 0.995493i \(-0.469768\pi\)
0.995493 0.0948326i \(-0.0302316\pi\)
\(278\) −4.28348 + 6.53106i −0.256906 + 0.391707i
\(279\) 5.75051i 0.344274i
\(280\) 15.2398 + 2.62638i 0.910752 + 0.156956i
\(281\) 7.80937i 0.465868i 0.972493 + 0.232934i \(0.0748326\pi\)
−0.972493 + 0.232934i \(0.925167\pi\)
\(282\) −4.85890 3.18677i −0.289344 0.189770i
\(283\) 6.93643 6.93643i 0.412328 0.412328i −0.470221 0.882549i \(-0.655826\pi\)
0.882549 + 0.470221i \(0.155826\pi\)
\(284\) −1.28890 2.96692i −0.0764822 0.176055i
\(285\) 1.76596 + 1.76596i 0.104606 + 0.104606i
\(286\) 6.20786 1.29018i 0.367078 0.0762897i
\(287\) −5.00202 −0.295260
\(288\) −13.3858 8.13767i −0.788764 0.479517i
\(289\) −3.68085 −0.216520
\(290\) 0.321639 0.0668461i 0.0188873 0.00392534i
\(291\) 2.56345 + 2.56345i 0.150272 + 0.150272i
\(292\) −11.5202 26.5183i −0.674167 1.55187i
\(293\) −17.8367 + 17.8367i −1.04203 + 1.04203i −0.0429542 + 0.999077i \(0.513677\pi\)
−0.999077 + 0.0429542i \(0.986323\pi\)
\(294\) 0.0433834 + 0.0284536i 0.00253017 + 0.00165945i
\(295\) 16.0200i 0.932723i
\(296\) −2.47600 + 14.3672i −0.143915 + 0.835077i
\(297\) 11.7210i 0.680120i
\(298\) 4.15566 6.33618i 0.240731 0.367045i
\(299\) −0.749580 + 0.749580i −0.0433494 + 0.0433494i
\(300\) −0.240466 + 0.609874i −0.0138833 + 0.0352111i
\(301\) 18.0091 + 18.0091i 1.03802 + 1.03802i
\(302\) −2.27389 10.9411i −0.130848 0.629592i
\(303\) −2.11567 −0.121542
\(304\) 10.0025 0.342740i 0.573685 0.0196575i
\(305\) 6.27433 0.359267
\(306\) 2.90831 + 13.9937i 0.166257 + 0.799969i
\(307\) −7.49984 7.49984i −0.428038 0.428038i 0.459921 0.887960i \(-0.347878\pi\)
−0.887960 + 0.459921i \(0.847878\pi\)
\(308\) −20.7059 8.16411i −1.17983 0.465193i
\(309\) −1.26821 + 1.26821i −0.0721457 + 0.0721457i
\(310\) −3.34659 + 5.10258i −0.190074 + 0.289807i
\(311\) 11.2453i 0.637660i 0.947812 + 0.318830i \(0.103290\pi\)
−0.947812 + 0.318830i \(0.896710\pi\)
\(312\) −0.830672 1.17660i −0.0470275 0.0666118i
\(313\) 32.0265i 1.81025i 0.425149 + 0.905123i \(0.360222\pi\)
−0.425149 + 0.905123i \(0.639778\pi\)
\(314\) 9.58491 + 6.28638i 0.540908 + 0.354761i
\(315\) 10.7062 10.7062i 0.603229 0.603229i
\(316\) −23.0201 + 10.0005i −1.29498 + 0.562570i
\(317\) 3.70621 + 3.70621i 0.208162 + 0.208162i 0.803486 0.595324i \(-0.202976\pi\)
−0.595324 + 0.803486i \(0.702976\pi\)
\(318\) −6.22898 + 1.29457i −0.349304 + 0.0725956i
\(319\) −0.472813 −0.0264724
\(320\) −7.14170 15.0108i −0.399233 0.839130i
\(321\) 0.0482137 0.00269103
\(322\) 3.64334 0.757193i 0.203035 0.0421967i
\(323\) −6.45696 6.45696i −0.359275 0.359275i
\(324\) −12.7976 + 5.55957i −0.710978 + 0.308865i
\(325\) 0.511492 0.511492i 0.0283724 0.0283724i
\(326\) 25.2507 + 16.5610i 1.39851 + 0.917228i
\(327\) 1.70593i 0.0943381i
\(328\) 3.10103 + 4.39244i 0.171226 + 0.242532i
\(329\) 22.5068i 1.24084i
\(330\) −3.27418 + 4.99218i −0.180238 + 0.274810i
\(331\) −12.6447 + 12.6447i −0.695018 + 0.695018i −0.963332 0.268314i \(-0.913534\pi\)
0.268314 + 0.963332i \(0.413534\pi\)
\(332\) 3.31917 + 1.30871i 0.182163 + 0.0718249i
\(333\) 10.0932 + 10.0932i 0.553106 + 0.553106i
\(334\) −7.14150 34.3623i −0.390766 1.88022i
\(335\) 10.3437 0.565136
\(336\) 0.173139 + 5.05289i 0.00944551 + 0.275658i
\(337\) −7.17715 −0.390964 −0.195482 0.980707i \(-0.562627\pi\)
−0.195482 + 0.980707i \(0.562627\pi\)
\(338\) −3.41759 16.4442i −0.185892 0.894446i
\(339\) 6.16564 + 6.16564i 0.334871 + 0.334871i
\(340\) −5.56323 + 14.1095i −0.301709 + 0.765197i
\(341\) 6.21018 6.21018i 0.336300 0.336300i
\(342\) 5.37408 8.19390i 0.290597 0.443076i
\(343\) 18.6199i 1.00538i
\(344\) 4.64951 26.9792i 0.250685 1.45462i
\(345\) 0.998138i 0.0537380i
\(346\) −25.6713 16.8369i −1.38010 0.905155i
\(347\) −6.56460 + 6.56460i −0.352406 + 0.352406i −0.861004 0.508598i \(-0.830164\pi\)
0.508598 + 0.861004i \(0.330164\pi\)
\(348\) 0.0427941 + 0.0985079i 0.00229400 + 0.00528058i
\(349\) 16.2157 + 16.2157i 0.868005 + 0.868005i 0.992251 0.124246i \(-0.0396513\pi\)
−0.124246 + 0.992251i \(0.539651\pi\)
\(350\) −2.48611 + 0.516686i −0.132888 + 0.0276181i
\(351\) −2.93779 −0.156808
\(352\) 5.66760 + 23.2440i 0.302084 + 1.23891i
\(353\) −30.8325 −1.64105 −0.820523 0.571613i \(-0.806318\pi\)
−0.820523 + 0.571613i \(0.806318\pi\)
\(354\) −5.12792 + 1.06573i −0.272546 + 0.0566431i
\(355\) −2.37643 2.37643i −0.126128 0.126128i
\(356\) −9.87282 22.7263i −0.523259 1.20449i
\(357\) 3.26181 3.26181i 0.172633 0.172633i
\(358\) 8.32181 + 5.45797i 0.439821 + 0.288462i
\(359\) 6.97708i 0.368236i −0.982904 0.184118i \(-0.941057\pi\)
0.982904 0.184118i \(-0.0589429\pi\)
\(360\) −16.0389 2.76410i −0.845325 0.145681i
\(361\) 12.7395i 0.670499i
\(362\) −7.07864 + 10.7929i −0.372045 + 0.567260i
\(363\) 2.33949 2.33949i 0.122791 0.122791i
\(364\) 2.04629 5.18982i 0.107255 0.272020i
\(365\) −21.2405 21.2405i −1.11178 1.11178i
\(366\) 0.417400 + 2.00838i 0.0218178 + 0.104979i
\(367\) −29.5172 −1.54079 −0.770394 0.637569i \(-0.779940\pi\)
−0.770394 + 0.637569i \(0.779940\pi\)
\(368\) −2.92363 2.72991i −0.152405 0.142306i
\(369\) 5.26431 0.274049
\(370\) 3.08209 + 14.8299i 0.160230 + 0.770969i
\(371\) −17.4248 17.4248i −0.904651 0.904651i
\(372\) −1.85594 0.731775i −0.0962259 0.0379408i
\(373\) −24.5447 + 24.5447i −1.27087 + 1.27087i −0.325244 + 0.945630i \(0.605446\pi\)
−0.945630 + 0.325244i \(0.894554\pi\)
\(374\) 11.9716 18.2531i 0.619034 0.943847i
\(375\) 5.67179i 0.292890i
\(376\) −19.7640 + 13.9532i −1.01925 + 0.719584i
\(377\) 0.118508i 0.00610346i
\(378\) 8.62339 + 5.65576i 0.443539 + 0.290901i
\(379\) −21.9729 + 21.9729i −1.12867 + 1.12867i −0.138279 + 0.990393i \(0.544157\pi\)
−0.990393 + 0.138279i \(0.955843\pi\)
\(380\) 9.53712 4.14315i 0.489244 0.212539i
\(381\) 4.22647 + 4.22647i 0.216529 + 0.216529i
\(382\) −12.2305 + 2.54187i −0.625769 + 0.130053i
\(383\) 10.3368 0.528184 0.264092 0.964497i \(-0.414928\pi\)
0.264092 + 0.964497i \(0.414928\pi\)
\(384\) 4.32977 3.28461i 0.220953 0.167617i
\(385\) −23.1241 −1.17852
\(386\) 35.6130 7.40143i 1.81265 0.376723i
\(387\) −18.9534 18.9534i −0.963454 0.963454i
\(388\) 13.8440 6.01414i 0.702821 0.305322i
\(389\) −22.5187 + 22.5187i −1.14174 + 1.14174i −0.153612 + 0.988131i \(0.549091\pi\)
−0.988131 + 0.153612i \(0.950909\pi\)
\(390\) −1.25126 0.820654i −0.0633600 0.0415554i
\(391\) 3.64954i 0.184565i
\(392\) 0.176465 0.124584i 0.00891285 0.00629242i
\(393\) 5.54288i 0.279601i
\(394\) 14.9235 22.7539i 0.751833 1.14633i
\(395\) −18.4385 + 18.4385i −0.927740 + 0.927740i
\(396\) 21.7917 + 8.59221i 1.09507 + 0.431775i
\(397\) −5.33488 5.33488i −0.267750 0.267750i 0.560443 0.828193i \(-0.310631\pi\)
−0.828193 + 0.560443i \(0.810631\pi\)
\(398\) 5.22772 + 25.1539i 0.262042 + 1.26085i
\(399\) −3.16257 −0.158326
\(400\) 1.99500 + 1.86281i 0.0997499 + 0.0931404i
\(401\) 10.1801 0.508370 0.254185 0.967156i \(-0.418193\pi\)
0.254185 + 0.967156i \(0.418193\pi\)
\(402\) 0.688114 + 3.31095i 0.0343200 + 0.165135i
\(403\) 1.55655 + 1.55655i 0.0775370 + 0.0775370i
\(404\) −3.23107 + 8.19468i −0.160752 + 0.407700i
\(405\) −10.2505 + 10.2505i −0.509353 + 0.509353i
\(406\) −0.228148 + 0.347859i −0.0113228 + 0.0172640i
\(407\) 21.8001i 1.08059i
\(408\) −4.88648 0.842121i −0.241917 0.0416912i
\(409\) 15.1443i 0.748838i −0.927260 0.374419i \(-0.877842\pi\)
0.927260 0.374419i \(-0.122158\pi\)
\(410\) 4.67116 + 3.06364i 0.230692 + 0.151302i
\(411\) 6.51212 6.51212i 0.321219 0.321219i
\(412\) 2.97536 + 6.84898i 0.146585 + 0.337425i
\(413\) −14.3447 14.3447i −0.705859 0.705859i
\(414\) −3.83438 + 0.796898i −0.188450 + 0.0391654i
\(415\) 3.70681 0.181960
\(416\) −5.82596 + 1.42055i −0.285641 + 0.0696482i
\(417\) −2.65295 −0.129915
\(418\) −14.6526 + 3.04524i −0.716680 + 0.148947i
\(419\) −14.4452 14.4452i −0.705696 0.705696i 0.259931 0.965627i \(-0.416300\pi\)
−0.965627 + 0.259931i \(0.916300\pi\)
\(420\) 2.09296 + 4.81778i 0.102126 + 0.235084i
\(421\) 9.41803 9.41803i 0.459007 0.459007i −0.439323 0.898329i \(-0.644782\pi\)
0.898329 + 0.439323i \(0.144782\pi\)
\(422\) 24.9005 + 16.3313i 1.21214 + 0.794994i
\(423\) 23.6870i 1.15170i
\(424\) −4.49867 + 26.1039i −0.218475 + 1.26772i
\(425\) 2.49034i 0.120799i
\(426\) 0.602589 0.918773i 0.0291955 0.0445147i
\(427\) −5.61819 + 5.61819i −0.271883 + 0.271883i
\(428\) 0.0736324 0.186747i 0.00355915 0.00902678i
\(429\) 1.52287 + 1.52287i 0.0735248 + 0.0735248i
\(430\) −5.78764 27.8480i −0.279105 1.34295i
\(431\) 21.0570 1.01428 0.507139 0.861864i \(-0.330703\pi\)
0.507139 + 0.861864i \(0.330703\pi\)
\(432\) −0.379619 11.0788i −0.0182644 0.533029i
\(433\) 11.2435 0.540329 0.270165 0.962814i \(-0.412922\pi\)
0.270165 + 0.962814i \(0.412922\pi\)
\(434\) −1.57235 7.56559i −0.0754754 0.363160i
\(435\) 0.0789022 + 0.0789022i 0.00378307 + 0.00378307i
\(436\) 6.60762 + 2.60531i 0.316447 + 0.124772i
\(437\) 1.76925 1.76925i 0.0846348 0.0846348i
\(438\) 5.38593 8.21198i 0.257350 0.392384i
\(439\) 1.55838i 0.0743776i 0.999308 + 0.0371888i \(0.0118403\pi\)
−0.999308 + 0.0371888i \(0.988160\pi\)
\(440\) 14.3360 + 20.3061i 0.683440 + 0.968054i
\(441\) 0.211493i 0.0100711i
\(442\) 4.57504 + 3.00060i 0.217612 + 0.142724i
\(443\) −9.91757 + 9.91757i −0.471198 + 0.471198i −0.902302 0.431104i \(-0.858124\pi\)
0.431104 + 0.902302i \(0.358124\pi\)
\(444\) −4.54193 + 1.97312i −0.215550 + 0.0936401i
\(445\) −18.2031 18.2031i −0.862912 0.862912i
\(446\) −18.2241 + 3.78750i −0.862935 + 0.179343i
\(447\) 2.57378 0.121736
\(448\) 19.8359 + 7.04619i 0.937159 + 0.332901i
\(449\) 8.61435 0.406536 0.203268 0.979123i \(-0.434844\pi\)
0.203268 + 0.979123i \(0.434844\pi\)
\(450\) 2.61647 0.543779i 0.123342 0.0256340i
\(451\) −5.68512 5.68512i −0.267702 0.267702i
\(452\) 33.2977 14.4653i 1.56619 0.680390i
\(453\) 2.68400 2.68400i 0.126105 0.126105i
\(454\) −33.5752 22.0207i −1.57576 1.03348i
\(455\) 5.79593i 0.271717i
\(456\) 1.96065 + 2.77715i 0.0918161 + 0.130052i
\(457\) 13.8329i 0.647078i −0.946215 0.323539i \(-0.895127\pi\)
0.946215 0.323539i \(-0.104873\pi\)
\(458\) 9.17410 13.9878i 0.428677 0.653608i
\(459\) −7.15173 + 7.15173i −0.333814 + 0.333814i
\(460\) −3.86611 1.52436i −0.180258 0.0710739i
\(461\) −14.5907 14.5907i −0.679558 0.679558i 0.280343 0.959900i \(-0.409552\pi\)
−0.959900 + 0.280343i \(0.909552\pi\)
\(462\) −1.53833 7.40190i −0.0715698 0.344368i
\(463\) 14.9968 0.696958 0.348479 0.937317i \(-0.386698\pi\)
0.348479 + 0.937317i \(0.386698\pi\)
\(464\) 0.446908 0.0153135i 0.0207472 0.000710910i
\(465\) −2.07269 −0.0961187
\(466\) 1.13571 + 5.46460i 0.0526106 + 0.253143i
\(467\) −12.7424 12.7424i −0.589647 0.589647i 0.347889 0.937536i \(-0.386899\pi\)
−0.937536 + 0.347889i \(0.886899\pi\)
\(468\) −2.15359 + 5.46195i −0.0995495 + 0.252479i
\(469\) −9.26199 + 9.26199i −0.427679 + 0.427679i
\(470\) −13.7850 + 21.0181i −0.635854 + 0.969492i
\(471\) 3.89343i 0.179400i
\(472\) −3.70347 + 21.4897i −0.170466 + 0.989144i
\(473\) 40.9369i 1.88228i
\(474\) −7.12867 4.67543i −0.327431 0.214750i
\(475\) −1.20729 + 1.20729i −0.0553941 + 0.0553941i
\(476\) −7.65258 17.6155i −0.350755 0.807405i
\(477\) 18.3385 + 18.3385i 0.839662 + 0.839662i
\(478\) 15.8200 3.28786i 0.723588 0.150383i
\(479\) −10.2952 −0.470400 −0.235200 0.971947i \(-0.575574\pi\)
−0.235200 + 0.971947i \(0.575574\pi\)
\(480\) 2.93311 4.82471i 0.133878 0.220217i
\(481\) 5.46406 0.249140
\(482\) 10.1525 2.10999i 0.462435 0.0961076i
\(483\) 0.893758 + 0.893758i 0.0406674 + 0.0406674i
\(484\) −5.48871 12.6345i −0.249487 0.574294i
\(485\) 11.0887 11.0887i 0.503510 0.503510i
\(486\) −13.7948 9.04752i −0.625746 0.410404i
\(487\) 10.8868i 0.493327i 0.969101 + 0.246663i \(0.0793342\pi\)
−0.969101 + 0.246663i \(0.920666\pi\)
\(488\) 8.41655 + 1.45048i 0.380999 + 0.0656602i
\(489\) 10.2569i 0.463835i
\(490\) 0.123081 0.187663i 0.00556024 0.00847774i
\(491\) 28.6304 28.6304i 1.29207 1.29207i 0.358565 0.933505i \(-0.383266\pi\)
0.933505 0.358565i \(-0.116734\pi\)
\(492\) −0.669904 + 1.69902i −0.0302016 + 0.0765977i
\(493\) −0.288494 0.288494i −0.0129931 0.0129931i
\(494\) −0.763270 3.67258i −0.0343411 0.165237i
\(495\) 24.3367 1.09385
\(496\) −5.66880 + 6.07108i −0.254537 + 0.272599i
\(497\) 4.25582 0.190900
\(498\) 0.246596 + 1.18653i 0.0110502 + 0.0531696i
\(499\) 14.0373 + 14.0373i 0.628398 + 0.628398i 0.947665 0.319267i \(-0.103437\pi\)
−0.319267 + 0.947665i \(0.603437\pi\)
\(500\) 21.9687 + 8.66200i 0.982470 + 0.387377i
\(501\) 8.42952 8.42952i 0.376603 0.376603i
\(502\) 8.91573 13.5939i 0.397928 0.606725i
\(503\) 19.8160i 0.883550i 0.897126 + 0.441775i \(0.145651\pi\)
−0.897126 + 0.441775i \(0.854349\pi\)
\(504\) 16.8367 11.8866i 0.749966 0.529471i
\(505\) 9.15172i 0.407246i
\(506\) 5.00149 + 3.28029i 0.222343 + 0.145827i
\(507\) 4.03397 4.03397i 0.179155 0.179155i
\(508\) 22.8252 9.91579i 1.01270 0.439942i
\(509\) −3.76825 3.76825i −0.167025 0.167025i 0.618645 0.785670i \(-0.287682\pi\)
−0.785670 + 0.618645i \(0.787682\pi\)
\(510\) −5.04384 + 1.04826i −0.223345 + 0.0464177i
\(511\) 38.0385 1.68272
\(512\) −6.10991 21.7869i −0.270023 0.962854i
\(513\) 6.93414 0.306150
\(514\) −16.1245 + 3.35114i −0.711219 + 0.147812i
\(515\) 5.48585 + 5.48585i 0.241736 + 0.241736i
\(516\) 8.52897 3.70518i 0.375467 0.163112i
\(517\) 25.5804 25.5804i 1.12503 1.12503i
\(518\) −16.0388 10.5193i −0.704706 0.462190i
\(519\) 10.4278i 0.457730i
\(520\) −5.08959 + 3.59322i −0.223193 + 0.157573i
\(521\) 39.7301i 1.74061i 0.492517 + 0.870303i \(0.336077\pi\)
−0.492517 + 0.870303i \(0.663923\pi\)
\(522\) 0.240111 0.366100i 0.0105094 0.0160237i
\(523\) 7.97407 7.97407i 0.348682 0.348682i −0.510937 0.859618i \(-0.670701\pi\)
0.859618 + 0.510937i \(0.170701\pi\)
\(524\) 21.4694 + 8.46512i 0.937893 + 0.369801i
\(525\) −0.609874 0.609874i −0.0266171 0.0266171i
\(526\) −4.35879 20.9729i −0.190052 0.914461i
\(527\) 7.57848 0.330124
\(528\) −5.54615 + 5.93972i −0.241365 + 0.258493i
\(529\) −1.00000 −0.0434783
\(530\) 5.59988 + 26.9446i 0.243243 + 1.17040i
\(531\) 15.0969 + 15.0969i 0.655151 + 0.655151i
\(532\) −4.82990 + 12.2497i −0.209403 + 0.531090i
\(533\) 1.42494 1.42494i 0.0617210 0.0617210i
\(534\) 4.61576 7.03769i 0.199743 0.304551i
\(535\) 0.208557i 0.00901672i
\(536\) 13.8753 + 2.39123i 0.599321 + 0.103285i
\(537\) 3.38036i 0.145873i
\(538\) 23.7773 + 15.5947i 1.02511 + 0.672334i
\(539\) −0.228399 + 0.228399i −0.00983782 + 0.00983782i
\(540\) −4.58895 10.5633i −0.197477 0.454572i
\(541\) 20.3483 + 20.3483i 0.874843 + 0.874843i 0.992995 0.118152i \(-0.0376971\pi\)
−0.118152 + 0.992995i \(0.537697\pi\)
\(542\) −40.4971 + 8.41650i −1.73950 + 0.361519i
\(543\) −4.38411 −0.188140
\(544\) −10.7245 + 17.6408i −0.459808 + 0.756344i
\(545\) 7.37931 0.316095
\(546\) 1.85524 0.385574i 0.0793971 0.0165011i
\(547\) 9.56242 + 9.56242i 0.408860 + 0.408860i 0.881341 0.472481i \(-0.156642\pi\)
−0.472481 + 0.881341i \(0.656642\pi\)
\(548\) −15.2782 35.1689i −0.652652 1.50234i
\(549\) 5.91278 5.91278i 0.252351 0.252351i
\(550\) −3.41287 2.23837i −0.145525 0.0954445i
\(551\) 0.279717i 0.0119163i
\(552\) 0.230747 1.33893i 0.00982124 0.0569886i
\(553\) 33.0205i 1.40418i
\(554\) 19.9043 30.3483i 0.845654 1.28938i
\(555\) −3.63796 + 3.63796i −0.154423 + 0.154423i
\(556\) −4.05160 + 10.2757i −0.171826 + 0.435788i
\(557\) −31.7035 31.7035i −1.34332 1.34332i −0.892731 0.450591i \(-0.851213\pi\)
−0.450591 0.892731i \(-0.648787\pi\)
\(558\) 1.65480 + 7.96230i 0.0700534 + 0.337071i
\(559\) −10.2606 −0.433977
\(560\) 21.8572 0.748945i 0.923636 0.0316487i
\(561\) 7.41451 0.313041
\(562\) 2.24727 + 10.8131i 0.0947955 + 0.456121i
\(563\) −4.75332 4.75332i −0.200329 0.200329i 0.599812 0.800141i \(-0.295242\pi\)
−0.800141 + 0.599812i \(0.795242\pi\)
\(564\) −7.64481 3.01426i −0.321905 0.126923i
\(565\) 26.6706 26.6706i 1.12204 1.12204i
\(566\) 7.60830 11.6004i 0.319801 0.487603i
\(567\) 18.3572i 0.770929i
\(568\) −2.63843 3.73718i −0.110706 0.156809i
\(569\) 9.29390i 0.389621i 0.980841 + 0.194810i \(0.0624091\pi\)
−0.980841 + 0.194810i \(0.937591\pi\)
\(570\) 2.95338 + 1.93701i 0.123703 + 0.0811324i
\(571\) −7.99665 + 7.99665i −0.334649 + 0.334649i −0.854349 0.519700i \(-0.826044\pi\)
0.519700 + 0.854349i \(0.326044\pi\)
\(572\) 8.22430 3.57283i 0.343875 0.149387i
\(573\) −3.00031 3.00031i −0.125340 0.125340i
\(574\) −6.92593 + 1.43941i −0.289083 + 0.0600799i
\(575\) 0.682370 0.0284568
\(576\) −20.8760 7.41567i −0.869835 0.308986i
\(577\) −25.4622 −1.06001 −0.530003 0.847996i \(-0.677809\pi\)
−0.530003 + 0.847996i \(0.677809\pi\)
\(578\) −5.09660 + 1.05922i −0.211990 + 0.0440579i
\(579\) 8.73632 + 8.73632i 0.363069 + 0.363069i
\(580\) 0.426114 0.185114i 0.0176934 0.00768643i
\(581\) −3.31917 + 3.31917i −0.137702 + 0.137702i
\(582\) 4.28709 + 2.81174i 0.177706 + 0.116550i
\(583\) 39.6088i 1.64043i
\(584\) −23.5822 33.4029i −0.975839 1.38222i
\(585\) 6.09984i 0.252197i
\(586\) −19.5644 + 29.8300i −0.808197 + 1.23226i
\(587\) −7.76960 + 7.76960i −0.320686 + 0.320686i −0.849030 0.528344i \(-0.822813\pi\)
0.528344 + 0.849030i \(0.322813\pi\)
\(588\) 0.0682578 + 0.0269133i 0.00281490 + 0.00110988i
\(589\) −3.67395 3.67395i −0.151383 0.151383i
\(590\) 4.61003 + 22.1818i 0.189792 + 0.913209i
\(591\) 9.24275 0.380196
\(592\) 0.706062 + 20.6057i 0.0290190 + 0.846890i
\(593\) 38.0898 1.56416 0.782081 0.623177i \(-0.214158\pi\)
0.782081 + 0.623177i \(0.214158\pi\)
\(594\) 3.37290 + 16.2292i 0.138392 + 0.665891i
\(595\) −14.1095 14.1095i −0.578435 0.578435i
\(596\) 3.93070 9.96910i 0.161008 0.408350i
\(597\) −6.17057 + 6.17057i −0.252545 + 0.252545i
\(598\) −0.822185 + 1.25359i −0.0336216 + 0.0512632i
\(599\) 12.2577i 0.500836i −0.968138 0.250418i \(-0.919432\pi\)
0.968138 0.250418i \(-0.0805680\pi\)
\(600\) −0.157455 + 0.913646i −0.00642807 + 0.0372994i
\(601\) 12.6119i 0.514452i 0.966351 + 0.257226i \(0.0828085\pi\)
−0.966351 + 0.257226i \(0.917192\pi\)
\(602\) 30.1182 + 19.7534i 1.22753 + 0.805089i
\(603\) 9.74765 9.74765i 0.396955 0.396955i
\(604\) −6.29698 14.4950i −0.256221 0.589795i
\(605\) −10.1199 10.1199i −0.411431 0.411431i
\(606\) −2.92941 + 0.608819i −0.118999 + 0.0247316i
\(607\) −15.2647 −0.619576 −0.309788 0.950806i \(-0.600258\pi\)
−0.309788 + 0.950806i \(0.600258\pi\)
\(608\) 13.7511 3.35296i 0.557683 0.135980i
\(609\) −0.141302 −0.00572585
\(610\) 8.68760 1.80554i 0.351751 0.0731042i
\(611\) 6.41158 + 6.41158i 0.259385 + 0.259385i
\(612\) 8.05385 + 18.5392i 0.325558 + 0.749402i
\(613\) 19.9931 19.9931i 0.807512 0.807512i −0.176745 0.984257i \(-0.556557\pi\)
0.984257 + 0.176745i \(0.0565567\pi\)
\(614\) −12.5427 8.22627i −0.506181 0.331985i
\(615\) 1.89744i 0.0765124i
\(616\) −31.0193 5.34578i −1.24980 0.215388i
\(617\) 13.3767i 0.538527i −0.963067 0.269264i \(-0.913220\pi\)
0.963067 0.269264i \(-0.0867803\pi\)
\(618\) −1.39104 + 2.12094i −0.0559560 + 0.0853166i
\(619\) 15.5329 15.5329i 0.624318 0.624318i −0.322314 0.946633i \(-0.604461\pi\)
0.946633 + 0.322314i \(0.104461\pi\)
\(620\) −3.16543 + 8.02820i −0.127127 + 0.322420i
\(621\) −1.95962 1.95962i −0.0786370 0.0786370i
\(622\) 3.23600 + 15.5705i 0.129752 + 0.624319i
\(623\) 32.5991 1.30606
\(624\) −1.48876 1.39011i −0.0595979 0.0556490i
\(625\) 21.1225 0.844901
\(626\) 9.21616 + 44.3448i 0.368352 + 1.77237i
\(627\) −3.59446 3.59446i −0.143549 0.143549i
\(628\) 15.0805 + 5.94608i 0.601778 + 0.237274i
\(629\) 13.3017 13.3017i 0.530372 0.530372i
\(630\) 11.7433 17.9050i 0.467862 0.713354i
\(631\) 14.6461i 0.583054i 0.956563 + 0.291527i \(0.0941633\pi\)
−0.956563 + 0.291527i \(0.905837\pi\)
\(632\) −28.9964 + 20.4713i −1.15342 + 0.814305i
\(633\) 10.1147i 0.402022i
\(634\) 6.19824 + 4.06520i 0.246164 + 0.161450i
\(635\) 18.2824 18.2824i 0.725513 0.725513i
\(636\) −8.25228 + 3.58498i −0.327224 + 0.142154i
\(637\) −0.0572467 0.0572467i −0.00226820 0.00226820i
\(638\) −0.654669 + 0.136060i −0.0259186 + 0.00538665i
\(639\) −4.47898 −0.177186
\(640\) −14.2082 18.7292i −0.561628 0.740337i
\(641\) −25.9309 −1.02421 −0.512104 0.858924i \(-0.671134\pi\)
−0.512104 + 0.858924i \(0.671134\pi\)
\(642\) 0.0667580 0.0138743i 0.00263473 0.000547574i
\(643\) −27.2600 27.2600i −1.07503 1.07503i −0.996947 0.0780842i \(-0.975120\pi\)
−0.0780842 0.996947i \(-0.524880\pi\)
\(644\) 4.82677 2.09686i 0.190201 0.0826279i
\(645\) 6.83148 6.83148i 0.268989 0.268989i
\(646\) −10.7986 7.08239i −0.424864 0.278653i
\(647\) 32.0376i 1.25953i 0.776787 + 0.629763i \(0.216848\pi\)
−0.776787 + 0.629763i \(0.783152\pi\)
\(648\) −16.1200 + 11.3807i −0.633255 + 0.447074i
\(649\) 32.6074i 1.27995i
\(650\) 0.561035 0.855415i 0.0220056 0.0335521i
\(651\) 1.85594 1.85594i 0.0727399 0.0727399i
\(652\) 39.7284 + 15.6645i 1.55589 + 0.613468i
\(653\) 22.7295 + 22.7295i 0.889473 + 0.889473i 0.994472 0.105000i \(-0.0334841\pi\)
−0.105000 + 0.994472i \(0.533484\pi\)
\(654\) 0.490909 + 2.36207i 0.0191961 + 0.0923644i
\(655\) 23.9767 0.936848
\(656\) 5.55777 + 5.18951i 0.216994 + 0.202616i
\(657\) −40.0331 −1.56184
\(658\) −6.47670 31.1635i −0.252488 1.21488i
\(659\) 26.7819 + 26.7819i 1.04327 + 1.04327i 0.999020 + 0.0442537i \(0.0140910\pi\)
0.0442537 + 0.999020i \(0.485909\pi\)
\(660\) −3.09694 + 7.85450i −0.120548 + 0.305736i
\(661\) 17.8416 17.8416i 0.693957 0.693957i −0.269143 0.963100i \(-0.586741\pi\)
0.963100 + 0.269143i \(0.0867405\pi\)
\(662\) −13.8695 + 21.1470i −0.539054 + 0.821901i
\(663\) 1.85840i 0.0721743i
\(664\) 4.97241 + 0.856931i 0.192967 + 0.0332554i
\(665\) 13.6803i 0.530498i
\(666\) 16.8798 + 11.0709i 0.654081 + 0.428987i
\(667\) 0.0790494 0.0790494i 0.00306080 0.00306080i
\(668\) −19.7766 45.5239i −0.765181 1.76137i
\(669\) −4.47060 4.47060i −0.172844 0.172844i
\(670\) 14.3221 2.97656i 0.553312 0.114995i
\(671\) −12.7709 −0.493014
\(672\) 1.69379 + 6.94655i 0.0653392 + 0.267969i
\(673\) −14.7037 −0.566784 −0.283392 0.959004i \(-0.591460\pi\)
−0.283392 + 0.959004i \(0.591460\pi\)
\(674\) −9.93767 + 2.06534i −0.382785 + 0.0795540i
\(675\) 1.33719 + 1.33719i 0.0514684 + 0.0514684i
\(676\) −9.46416 21.7856i −0.364006 0.837907i
\(677\) −26.5869 + 26.5869i −1.02182 + 1.02182i −0.0220606 + 0.999757i \(0.507023\pi\)
−0.999757 + 0.0220606i \(0.992977\pi\)
\(678\) 10.3114 + 6.76284i 0.396006 + 0.259725i
\(679\) 19.8581i 0.762084i
\(680\) −3.64275 + 21.1374i −0.139693 + 0.810581i
\(681\) 13.6384i 0.522625i
\(682\) 6.81170 10.3859i 0.260834 0.397695i
\(683\) 3.64714 3.64714i 0.139554 0.139554i −0.633879 0.773433i \(-0.718538\pi\)
0.773433 + 0.633879i \(0.218538\pi\)
\(684\) 5.08316 12.8920i 0.194359 0.492937i
\(685\) −28.1694 28.1694i −1.07630 1.07630i
\(686\) 5.35818 + 25.7816i 0.204576 + 0.984347i
\(687\) 5.68192 0.216779
\(688\) −1.32586 38.6940i −0.0505481 1.47520i
\(689\) 9.92772 0.378216
\(690\) −0.287231 1.38205i −0.0109347 0.0526137i
\(691\) 26.3238 + 26.3238i 1.00141 + 1.00141i 0.999999 + 0.00140609i \(0.000447571\pi\)
0.00140609 + 0.999999i \(0.499552\pi\)
\(692\) −40.3903 15.9254i −1.53541 0.605394i
\(693\) −21.7917 + 21.7917i −0.827797 + 0.827797i
\(694\) −7.20045 + 10.9786i −0.273325 + 0.416741i
\(695\) 11.4758i 0.435302i
\(696\) 0.0876011 + 0.124082i 0.00332051 + 0.00470331i
\(697\) 6.93772i 0.262785i
\(698\) 27.1190 + 17.7863i 1.02647 + 0.673222i
\(699\) −1.34054 + 1.34054i −0.0507038 + 0.0507038i
\(700\) −3.29364 + 1.43084i −0.124488 + 0.0540805i
\(701\) 4.09012 + 4.09012i 0.154482 + 0.154482i 0.780116 0.625635i \(-0.215160\pi\)
−0.625635 + 0.780116i \(0.715160\pi\)
\(702\) −4.06774 + 0.845397i −0.153527 + 0.0319075i
\(703\) −12.8970 −0.486418
\(704\) 14.5363 + 30.5532i 0.547859 + 1.15152i
\(705\) −8.53764 −0.321546
\(706\) −42.6914 + 8.87255i −1.60671 + 0.333923i
\(707\) −8.19468 8.19468i −0.308193 0.308193i
\(708\) −6.79358 + 2.95129i −0.255318 + 0.110916i
\(709\) 35.5748 35.5748i 1.33604 1.33604i 0.436178 0.899860i \(-0.356332\pi\)
0.899860 0.436178i \(-0.143668\pi\)
\(710\) −3.97432 2.60661i −0.149154 0.0978243i
\(711\) 34.7520i 1.30330i
\(712\) −20.2100 28.6263i −0.757403 1.07282i
\(713\) 2.07656i 0.0777676i
\(714\) 3.57775 5.45502i 0.133894 0.204149i
\(715\) 6.58744 6.58744i 0.246356 0.246356i
\(716\) 13.0932 + 5.16251i 0.489317 + 0.192932i
\(717\) 3.88084 + 3.88084i 0.144933 + 0.144933i
\(718\) −2.00777 9.66065i −0.0749292 0.360532i
\(719\) 9.02570 0.336602 0.168301 0.985736i \(-0.446172\pi\)
0.168301 + 0.985736i \(0.446172\pi\)
\(720\) −23.0033 + 0.788217i −0.857283 + 0.0293751i
\(721\) −9.82434 −0.365878
\(722\) −3.66600 17.6394i −0.136434 0.656472i
\(723\) 2.49054 + 2.49054i 0.0926243 + 0.0926243i
\(724\) −6.69545 + 16.9811i −0.248834 + 0.631097i
\(725\) −0.0539409 + 0.0539409i −0.00200332 + 0.00200332i
\(726\) 2.56609 3.91254i 0.0952365 0.145208i
\(727\) 13.8698i 0.514401i −0.966358 0.257200i \(-0.917200\pi\)
0.966358 0.257200i \(-0.0828001\pi\)
\(728\) 1.33989 7.77481i 0.0496595 0.288154i
\(729\) 15.3260i 0.567631i
\(730\) −35.5224 23.2978i −1.31474 0.862291i
\(731\) −24.9783 + 24.9783i −0.923855 + 0.923855i
\(732\) 1.15589 + 2.66074i 0.0427228 + 0.0983437i
\(733\) −3.11508 3.11508i −0.115058 0.115058i 0.647234 0.762292i \(-0.275926\pi\)
−0.762292 + 0.647234i \(0.775926\pi\)
\(734\) −40.8703 + 8.49407i −1.50855 + 0.313522i
\(735\) 0.0762295 0.00281177
\(736\) −4.83371 2.93858i −0.178173 0.108318i
\(737\) −21.0537 −0.775523
\(738\) 7.28910 1.51489i 0.268315 0.0557639i
\(739\) −16.6142 16.6142i −0.611165 0.611165i 0.332085 0.943250i \(-0.392248\pi\)
−0.943250 + 0.332085i \(0.892248\pi\)
\(740\) 8.53508 + 19.6469i 0.313756 + 0.722236i
\(741\) 0.900930 0.900930i 0.0330965 0.0330965i
\(742\) −29.1411 19.1126i −1.06980 0.701645i
\(743\) 34.8345i 1.27796i −0.769225 0.638978i \(-0.779358\pi\)
0.769225 0.638978i \(-0.220642\pi\)
\(744\) −2.78036 0.479159i −0.101933 0.0175668i
\(745\) 11.1334i 0.407895i
\(746\) −26.9221 + 41.0483i −0.985687 + 1.50289i
\(747\) 3.49322 3.49322i 0.127810 0.127810i
\(748\) 11.3235 28.7188i 0.414028 1.05006i
\(749\) 0.186747 + 0.186747i 0.00682360 + 0.00682360i
\(750\) 1.63215 + 7.85331i 0.0595977 + 0.286762i
\(751\) −13.9840 −0.510284 −0.255142 0.966904i \(-0.582122\pi\)
−0.255142 + 0.966904i \(0.582122\pi\)
\(752\) −23.3504 + 25.0074i −0.851503 + 0.911927i
\(753\) 5.52190 0.201229
\(754\) −0.0341025 0.164089i −0.00124194 0.00597577i
\(755\) −11.6101 11.6101i −0.422536 0.422536i
\(756\) 13.5677 + 5.34959i 0.493453 + 0.194563i
\(757\) −8.30456 + 8.30456i −0.301834 + 0.301834i −0.841731 0.539897i \(-0.818463\pi\)
0.539897 + 0.841731i \(0.318463\pi\)
\(758\) −24.1012 + 36.7473i −0.875395 + 1.33472i
\(759\) 2.03163i 0.0737434i
\(760\) 12.0131 8.48117i 0.435761 0.307644i
\(761\) 29.3207i 1.06288i 0.847097 + 0.531438i \(0.178348\pi\)
−0.847097 + 0.531438i \(0.821652\pi\)
\(762\) 7.06831 + 4.63584i 0.256058 + 0.167939i
\(763\) −6.60762 + 6.60762i −0.239212 + 0.239212i
\(764\) −16.2033 + 7.03907i −0.586213 + 0.254665i
\(765\) 14.8494 + 14.8494i 0.536881 + 0.536881i
\(766\) 14.3126 2.97457i 0.517134 0.107476i
\(767\) 8.17286 0.295105
\(768\) 5.04992 5.79393i 0.182223 0.209070i
\(769\) −44.4923