Properties

Label 368.2.j.c.93.4
Level $368$
Weight $2$
Character 368.93
Analytic conductor $2.938$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(93,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 93.4
Root \(1.41072 - 0.0993495i\) of defining polynomial
Character \(\chi\) \(=\) 368.93
Dual form 368.2.j.c.277.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.586784 - 1.28673i) q^{2} +(-0.955624 - 0.955624i) q^{3} +(-1.31137 - 1.51007i) q^{4} +(2.38359 - 2.38359i) q^{5} +(-1.79038 + 0.668889i) q^{6} +0.198699i q^{7} +(-2.71255 + 0.801301i) q^{8} -1.17357i q^{9} +(-1.66839 - 4.46569i) q^{10} +(-0.110168 + 0.110168i) q^{11} +(-0.189882 + 2.69623i) q^{12} +(1.69353 + 1.69353i) q^{13} +(0.255673 + 0.116593i) q^{14} -4.55562 q^{15} +(-0.560617 + 3.96052i) q^{16} -0.645369 q^{17} +(-1.51007 - 0.688630i) q^{18} +(0.173567 + 0.173567i) q^{19} +(-6.72515 - 0.473617i) q^{20} +(0.189882 - 0.189882i) q^{21} +(0.0771120 + 0.206401i) q^{22} -1.00000i q^{23} +(3.35792 + 1.82643i) q^{24} -6.36297i q^{25} +(3.17285 - 1.18538i) q^{26} +(-3.98836 + 3.98836i) q^{27} +(0.300049 - 0.260568i) q^{28} +(2.98858 + 2.98858i) q^{29} +(-2.67317 + 5.86188i) q^{30} -4.74204 q^{31} +(4.76717 + 3.04533i) q^{32} +0.210558 q^{33} +(-0.378692 + 0.830418i) q^{34} +(0.473617 + 0.473617i) q^{35} +(-1.77217 + 1.53898i) q^{36} +(-1.53702 + 1.53702i) q^{37} +(0.325181 - 0.121488i) q^{38} -3.23674i q^{39} +(-4.55562 + 8.37556i) q^{40} -9.42339i q^{41} +(-0.132908 - 0.355746i) q^{42} +(-2.46931 + 2.46931i) q^{43} +(0.310832 + 0.0218902i) q^{44} +(-2.79730 - 2.79730i) q^{45} +(-1.28673 - 0.586784i) q^{46} +10.2297 q^{47} +(4.32050 - 3.24903i) q^{48} +6.96052 q^{49} +(-8.18746 - 3.73369i) q^{50} +(0.616730 + 0.616730i) q^{51} +(0.336502 - 4.77818i) q^{52} +(6.13987 - 6.13987i) q^{53} +(2.79165 + 7.47226i) q^{54} +0.525189i q^{55} +(-0.159218 - 0.538981i) q^{56} -0.331730i q^{57} +(5.59916 - 2.09186i) q^{58} +(3.18941 - 3.18941i) q^{59} +(5.97411 + 6.87931i) q^{60} +(0.134023 + 0.134023i) q^{61} +(-2.78255 + 6.10175i) q^{62} +0.233187 q^{63} +(6.71583 - 4.34713i) q^{64} +8.07333 q^{65} +(0.123552 - 0.270932i) q^{66} +(8.34921 + 8.34921i) q^{67} +(0.846317 + 0.974552i) q^{68} +(-0.955624 + 0.955624i) q^{69} +(0.887329 - 0.331508i) q^{70} -4.76823i q^{71} +(0.940380 + 3.18336i) q^{72} -5.99750i q^{73} +(1.07584 + 2.87963i) q^{74} +(-6.08061 + 6.08061i) q^{75} +(0.0344876 - 0.489709i) q^{76} +(-0.0218902 - 0.0218902i) q^{77} +(-4.16483 - 1.89927i) q^{78} -0.630585 q^{79} +(8.10396 + 10.7765i) q^{80} +4.10204 q^{81} +(-12.1254 - 5.52949i) q^{82} +(0.711208 + 0.711208i) q^{83} +(-0.535739 - 0.0377293i) q^{84} +(-1.53829 + 1.53829i) q^{85} +(1.72840 + 4.62630i) q^{86} -5.71192i q^{87} +(0.210558 - 0.387113i) q^{88} +13.8549i q^{89} +(-5.24079 + 1.95797i) q^{90} +(-0.336502 + 0.336502i) q^{91} +(-1.51007 + 1.31137i) q^{92} +(4.53161 + 4.53161i) q^{93} +(6.00265 - 13.1630i) q^{94} +0.827425 q^{95} +(-1.64543 - 7.46582i) q^{96} +7.33230 q^{97} +(4.08432 - 8.95634i) q^{98} +(0.129289 + 0.129289i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8} - 6 q^{10} - 4 q^{11} - 8 q^{12} + 18 q^{13} - 2 q^{14} + 8 q^{16} - 8 q^{17} - 4 q^{18} - 8 q^{19} - 32 q^{20} + 8 q^{21} - 34 q^{22} + 12 q^{24} - 14 q^{26}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.586784 1.28673i 0.414919 0.909859i
\(3\) −0.955624 0.955624i −0.551730 0.551730i 0.375210 0.926940i \(-0.377571\pi\)
−0.926940 + 0.375210i \(0.877571\pi\)
\(4\) −1.31137 1.51007i −0.655685 0.755035i
\(5\) 2.38359 2.38359i 1.06597 1.06597i 0.0683082 0.997664i \(-0.478240\pi\)
0.997664 0.0683082i \(-0.0217601\pi\)
\(6\) −1.79038 + 0.668889i −0.730919 + 0.273073i
\(7\) 0.198699i 0.0751012i 0.999295 + 0.0375506i \(0.0119555\pi\)
−0.999295 + 0.0375506i \(0.988044\pi\)
\(8\) −2.71255 + 0.801301i −0.959031 + 0.283303i
\(9\) 1.17357i 0.391189i
\(10\) −1.66839 4.46569i −0.527592 1.41218i
\(11\) −0.110168 + 0.110168i −0.0332168 + 0.0332168i −0.723520 0.690303i \(-0.757477\pi\)
0.690303 + 0.723520i \(0.257477\pi\)
\(12\) −0.189882 + 2.69623i −0.0548141 + 0.778336i
\(13\) 1.69353 + 1.69353i 0.469699 + 0.469699i 0.901817 0.432118i \(-0.142234\pi\)
−0.432118 + 0.901817i \(0.642234\pi\)
\(14\) 0.255673 + 0.116593i 0.0683315 + 0.0311609i
\(15\) −4.55562 −1.17626
\(16\) −0.560617 + 3.96052i −0.140154 + 0.990130i
\(17\) −0.645369 −0.156525 −0.0782625 0.996933i \(-0.524937\pi\)
−0.0782625 + 0.996933i \(0.524937\pi\)
\(18\) −1.51007 0.688630i −0.355927 0.162312i
\(19\) 0.173567 + 0.173567i 0.0398190 + 0.0398190i 0.726736 0.686917i \(-0.241036\pi\)
−0.686917 + 0.726736i \(0.741036\pi\)
\(20\) −6.72515 0.473617i −1.50379 0.105904i
\(21\) 0.189882 0.189882i 0.0414355 0.0414355i
\(22\) 0.0771120 + 0.206401i 0.0164403 + 0.0440049i
\(23\) 1.00000i 0.208514i
\(24\) 3.35792 + 1.82643i 0.685432 + 0.372819i
\(25\) 6.36297i 1.27259i
\(26\) 3.17285 1.18538i 0.622247 0.232473i
\(27\) −3.98836 + 3.98836i −0.767560 + 0.767560i
\(28\) 0.300049 0.260568i 0.0567040 0.0492427i
\(29\) 2.98858 + 2.98858i 0.554966 + 0.554966i 0.927870 0.372904i \(-0.121638\pi\)
−0.372904 + 0.927870i \(0.621638\pi\)
\(30\) −2.67317 + 5.86188i −0.488051 + 1.07023i
\(31\) −4.74204 −0.851696 −0.425848 0.904795i \(-0.640024\pi\)
−0.425848 + 0.904795i \(0.640024\pi\)
\(32\) 4.76717 + 3.04533i 0.842725 + 0.538344i
\(33\) 0.210558 0.0366534
\(34\) −0.378692 + 0.830418i −0.0649451 + 0.142416i
\(35\) 0.473617 + 0.473617i 0.0800558 + 0.0800558i
\(36\) −1.77217 + 1.53898i −0.295361 + 0.256497i
\(37\) −1.53702 + 1.53702i −0.252684 + 0.252684i −0.822070 0.569386i \(-0.807181\pi\)
0.569386 + 0.822070i \(0.307181\pi\)
\(38\) 0.325181 0.121488i 0.0527514 0.0197080i
\(39\) 3.23674i 0.518294i
\(40\) −4.55562 + 8.37556i −0.720307 + 1.32429i
\(41\) 9.42339i 1.47169i −0.677152 0.735843i \(-0.736786\pi\)
0.677152 0.735843i \(-0.263214\pi\)
\(42\) −0.132908 0.355746i −0.0205081 0.0548929i
\(43\) −2.46931 + 2.46931i −0.376566 + 0.376566i −0.869862 0.493295i \(-0.835792\pi\)
0.493295 + 0.869862i \(0.335792\pi\)
\(44\) 0.310832 + 0.0218902i 0.0468597 + 0.00330008i
\(45\) −2.79730 2.79730i −0.416997 0.416997i
\(46\) −1.28673 0.586784i −0.189719 0.0865165i
\(47\) 10.2297 1.49216 0.746081 0.665855i \(-0.231933\pi\)
0.746081 + 0.665855i \(0.231933\pi\)
\(48\) 4.32050 3.24903i 0.623611 0.468956i
\(49\) 6.96052 0.994360
\(50\) −8.18746 3.73369i −1.15788 0.528023i
\(51\) 0.616730 + 0.616730i 0.0863594 + 0.0863594i
\(52\) 0.336502 4.77818i 0.0466644 0.662614i
\(53\) 6.13987 6.13987i 0.843377 0.843377i −0.145920 0.989296i \(-0.546614\pi\)
0.989296 + 0.145920i \(0.0466141\pi\)
\(54\) 2.79165 + 7.47226i 0.379896 + 1.01685i
\(55\) 0.525189i 0.0708165i
\(56\) −0.159218 0.538981i −0.0212764 0.0720243i
\(57\) 0.331730i 0.0439387i
\(58\) 5.59916 2.09186i 0.735206 0.274675i
\(59\) 3.18941 3.18941i 0.415225 0.415225i −0.468329 0.883554i \(-0.655144\pi\)
0.883554 + 0.468329i \(0.155144\pi\)
\(60\) 5.97411 + 6.87931i 0.771254 + 0.888115i
\(61\) 0.134023 + 0.134023i 0.0171599 + 0.0171599i 0.715635 0.698475i \(-0.246138\pi\)
−0.698475 + 0.715635i \(0.746138\pi\)
\(62\) −2.78255 + 6.10175i −0.353385 + 0.774923i
\(63\) 0.233187 0.0293788
\(64\) 6.71583 4.34713i 0.839479 0.543392i
\(65\) 8.07333 1.00137
\(66\) 0.123552 0.270932i 0.0152082 0.0333494i
\(67\) 8.34921 + 8.34921i 1.02002 + 1.02002i 0.999796 + 0.0202224i \(0.00643742\pi\)
0.0202224 + 0.999796i \(0.493563\pi\)
\(68\) 0.846317 + 0.974552i 0.102631 + 0.118182i
\(69\) −0.955624 + 0.955624i −0.115044 + 0.115044i
\(70\) 0.887329 0.331508i 0.106056 0.0396228i
\(71\) 4.76823i 0.565885i −0.959137 0.282942i \(-0.908689\pi\)
0.959137 0.282942i \(-0.0913105\pi\)
\(72\) 0.940380 + 3.18336i 0.110825 + 0.375162i
\(73\) 5.99750i 0.701954i −0.936384 0.350977i \(-0.885850\pi\)
0.936384 0.350977i \(-0.114150\pi\)
\(74\) 1.07584 + 2.87963i 0.125063 + 0.334750i
\(75\) −6.08061 + 6.08061i −0.702128 + 0.702128i
\(76\) 0.0344876 0.489709i 0.00395600 0.0561735i
\(77\) −0.0218902 0.0218902i −0.00249463 0.00249463i
\(78\) −4.16483 1.89927i −0.471574 0.215050i
\(79\) −0.630585 −0.0709463 −0.0354732 0.999371i \(-0.511294\pi\)
−0.0354732 + 0.999371i \(0.511294\pi\)
\(80\) 8.10396 + 10.7765i 0.906050 + 1.20485i
\(81\) 4.10204 0.455782
\(82\) −12.1254 5.52949i −1.33903 0.610630i
\(83\) 0.711208 + 0.711208i 0.0780653 + 0.0780653i 0.745061 0.666996i \(-0.232420\pi\)
−0.666996 + 0.745061i \(0.732420\pi\)
\(84\) −0.535739 0.0377293i −0.0584539 0.00411660i
\(85\) −1.53829 + 1.53829i −0.166851 + 0.166851i
\(86\) 1.72840 + 4.62630i 0.186378 + 0.498867i
\(87\) 5.71192i 0.612382i
\(88\) 0.210558 0.387113i 0.0224456 0.0412664i
\(89\) 13.8549i 1.46862i 0.678815 + 0.734310i \(0.262494\pi\)
−0.678815 + 0.734310i \(0.737506\pi\)
\(90\) −5.24079 + 1.95797i −0.552428 + 0.206388i
\(91\) −0.336502 + 0.336502i −0.0352750 + 0.0352750i
\(92\) −1.51007 + 1.31137i −0.157436 + 0.136720i
\(93\) 4.53161 + 4.53161i 0.469906 + 0.469906i
\(94\) 6.00265 13.1630i 0.619126 1.35766i
\(95\) 0.827425 0.0848920
\(96\) −1.64543 7.46582i −0.167936 0.761977i
\(97\) 7.33230 0.744482 0.372241 0.928136i \(-0.378589\pi\)
0.372241 + 0.928136i \(0.378589\pi\)
\(98\) 4.08432 8.95634i 0.412578 0.904727i
\(99\) 0.129289 + 0.129289i 0.0129941 + 0.0129941i
\(100\) −9.60853 + 8.34421i −0.960853 + 0.834421i
\(101\) −9.48832 + 9.48832i −0.944123 + 0.944123i −0.998519 0.0543965i \(-0.982677\pi\)
0.0543965 + 0.998519i \(0.482677\pi\)
\(102\) 1.15545 0.431680i 0.114407 0.0427427i
\(103\) 17.8894i 1.76270i −0.472467 0.881348i \(-0.656637\pi\)
0.472467 0.881348i \(-0.343363\pi\)
\(104\) −5.95079 3.23674i −0.583523 0.317389i
\(105\) 0.905198i 0.0883383i
\(106\) −4.29761 11.5032i −0.417421 1.11729i
\(107\) −0.476373 + 0.476373i −0.0460527 + 0.0460527i −0.729758 0.683705i \(-0.760367\pi\)
0.683705 + 0.729758i \(0.260367\pi\)
\(108\) 11.2529 + 0.792483i 1.08281 + 0.0762567i
\(109\) −13.5122 13.5122i −1.29423 1.29423i −0.932142 0.362092i \(-0.882063\pi\)
−0.362092 0.932142i \(-0.617937\pi\)
\(110\) 0.675779 + 0.308172i 0.0644330 + 0.0293831i
\(111\) 2.93762 0.278826
\(112\) −0.786951 0.111394i −0.0743599 0.0105258i
\(113\) 0.977296 0.0919363 0.0459681 0.998943i \(-0.485363\pi\)
0.0459681 + 0.998943i \(0.485363\pi\)
\(114\) −0.426848 0.194654i −0.0399780 0.0182310i
\(115\) −2.38359 2.38359i −0.222271 0.222271i
\(116\) 0.593828 8.43210i 0.0551356 0.782901i
\(117\) 1.98747 1.98747i 0.183741 0.183741i
\(118\) −2.23243 5.97541i −0.205512 0.550081i
\(119\) 0.128234i 0.0117552i
\(120\) 12.3573 3.65043i 1.12807 0.333237i
\(121\) 10.9757i 0.997793i
\(122\) 0.251094 0.0938095i 0.0227330 0.00849311i
\(123\) −9.00521 + 9.00521i −0.811973 + 0.811973i
\(124\) 6.21857 + 7.16081i 0.558444 + 0.643060i
\(125\) −3.24877 3.24877i −0.290578 0.290578i
\(126\) 0.136830 0.300049i 0.0121898 0.0267305i
\(127\) −15.5758 −1.38212 −0.691062 0.722795i \(-0.742857\pi\)
−0.691062 + 0.722795i \(0.742857\pi\)
\(128\) −1.65287 11.1923i −0.146094 0.989271i
\(129\) 4.71946 0.415526
\(130\) 4.73730 10.3882i 0.415488 0.911108i
\(131\) 5.80329 + 5.80329i 0.507036 + 0.507036i 0.913615 0.406579i \(-0.133279\pi\)
−0.406579 + 0.913615i \(0.633279\pi\)
\(132\) −0.276119 0.317957i −0.0240331 0.0276746i
\(133\) −0.0344876 + 0.0344876i −0.00299046 + 0.00299046i
\(134\) 15.6424 5.84403i 1.35130 0.504847i
\(135\) 19.0132i 1.63640i
\(136\) 1.75059 0.517135i 0.150112 0.0443439i
\(137\) 21.8496i 1.86674i 0.358915 + 0.933370i \(0.383147\pi\)
−0.358915 + 0.933370i \(0.616853\pi\)
\(138\) 0.668889 + 1.79038i 0.0569396 + 0.152407i
\(139\) −11.8543 + 11.8543i −1.00547 + 1.00547i −0.00548673 + 0.999985i \(0.501746\pi\)
−0.999985 + 0.00548673i \(0.998254\pi\)
\(140\) 0.0941072 1.33628i 0.00795351 0.112936i
\(141\) −9.77579 9.77579i −0.823270 0.823270i
\(142\) −6.13544 2.79792i −0.514875 0.234796i
\(143\) −0.373144 −0.0312039
\(144\) 4.64793 + 0.657922i 0.387328 + 0.0548268i
\(145\) 14.2471 1.18316
\(146\) −7.71718 3.51923i −0.638679 0.291254i
\(147\) −6.65164 6.65164i −0.548618 0.548618i
\(148\) 4.33660 + 0.305404i 0.356466 + 0.0251040i
\(149\) −8.38711 + 8.38711i −0.687099 + 0.687099i −0.961590 0.274491i \(-0.911491\pi\)
0.274491 + 0.961590i \(0.411491\pi\)
\(150\) 4.25613 + 11.3921i 0.347511 + 0.930163i
\(151\) 15.0923i 1.22819i −0.789230 0.614097i \(-0.789520\pi\)
0.789230 0.614097i \(-0.210480\pi\)
\(152\) −0.609889 0.331730i −0.0494685 0.0269068i
\(153\) 0.757384i 0.0612308i
\(154\) −0.0410118 + 0.0153221i −0.00330482 + 0.00123469i
\(155\) −11.3031 + 11.3031i −0.907884 + 0.907884i
\(156\) −4.88771 + 4.24457i −0.391330 + 0.339838i
\(157\) 11.9073 + 11.9073i 0.950307 + 0.950307i 0.998822 0.0485157i \(-0.0154491\pi\)
−0.0485157 + 0.998822i \(0.515449\pi\)
\(158\) −0.370017 + 0.811395i −0.0294370 + 0.0645511i
\(159\) −11.7348 −0.930632
\(160\) 18.6218 4.10416i 1.47218 0.324462i
\(161\) 0.198699 0.0156597
\(162\) 2.40701 5.27823i 0.189112 0.414697i
\(163\) 4.28797 + 4.28797i 0.335860 + 0.335860i 0.854807 0.518947i \(-0.173676\pi\)
−0.518947 + 0.854807i \(0.673676\pi\)
\(164\) −14.2300 + 12.3575i −1.11117 + 0.964962i
\(165\) 0.501883 0.501883i 0.0390716 0.0390716i
\(166\) 1.33246 0.497811i 0.103419 0.0386376i
\(167\) 6.68260i 0.517115i 0.965996 + 0.258557i \(0.0832471\pi\)
−0.965996 + 0.258557i \(0.916753\pi\)
\(168\) −0.362911 + 0.667215i −0.0279992 + 0.0514768i
\(169\) 7.26395i 0.558765i
\(170\) 1.07673 + 2.88202i 0.0825813 + 0.221041i
\(171\) 0.203693 0.203693i 0.0155768 0.0155768i
\(172\) 6.96701 + 0.490650i 0.531230 + 0.0374117i
\(173\) −3.18817 3.18817i −0.242392 0.242392i 0.575447 0.817839i \(-0.304828\pi\)
−0.817839 + 0.575447i \(0.804828\pi\)
\(174\) −7.34972 3.35166i −0.557181 0.254089i
\(175\) 1.26432 0.0955734
\(176\) −0.374560 0.498084i −0.0282335 0.0375445i
\(177\) −6.09574 −0.458184
\(178\) 17.8276 + 8.12984i 1.33624 + 0.609358i
\(179\) −4.02322 4.02322i −0.300709 0.300709i 0.540582 0.841291i \(-0.318204\pi\)
−0.841291 + 0.540582i \(0.818204\pi\)
\(180\) −0.555821 + 7.89241i −0.0414284 + 0.588266i
\(181\) −7.39749 + 7.39749i −0.549851 + 0.549851i −0.926398 0.376546i \(-0.877112\pi\)
0.376546 + 0.926398i \(0.377112\pi\)
\(182\) 0.235535 + 0.630442i 0.0174590 + 0.0467315i
\(183\) 0.256151i 0.0189352i
\(184\) 0.801301 + 2.71255i 0.0590727 + 0.199972i
\(185\) 7.32722i 0.538708i
\(186\) 8.49005 3.17190i 0.622520 0.232575i
\(187\) 0.0710989 0.0710989i 0.00519926 0.00519926i
\(188\) −13.4150 15.4476i −0.978388 1.12663i
\(189\) −0.792483 0.792483i −0.0576447 0.0576447i
\(190\) 0.485519 1.06468i 0.0352233 0.0772397i
\(191\) 22.3903 1.62011 0.810054 0.586356i \(-0.199438\pi\)
0.810054 + 0.586356i \(0.199438\pi\)
\(192\) −10.5720 2.26358i −0.762971 0.163360i
\(193\) 18.2552 1.31404 0.657018 0.753875i \(-0.271818\pi\)
0.657018 + 0.753875i \(0.271818\pi\)
\(194\) 4.30247 9.43472i 0.308900 0.677374i
\(195\) −7.71506 7.71506i −0.552487 0.552487i
\(196\) −9.12782 10.5109i −0.651987 0.750776i
\(197\) −8.05327 + 8.05327i −0.573772 + 0.573772i −0.933180 0.359409i \(-0.882978\pi\)
0.359409 + 0.933180i \(0.382978\pi\)
\(198\) 0.242226 0.0904962i 0.0172142 0.00643128i
\(199\) 17.8585i 1.26595i −0.774170 0.632977i \(-0.781833\pi\)
0.774170 0.632977i \(-0.218167\pi\)
\(200\) 5.09866 + 17.2599i 0.360529 + 1.22046i
\(201\) 15.9574i 1.12555i
\(202\) 6.64135 + 17.7765i 0.467284 + 1.25075i
\(203\) −0.593828 + 0.593828i −0.0416786 + 0.0416786i
\(204\) 0.122544 1.74007i 0.00857977 0.121829i
\(205\) −22.4615 22.4615i −1.56878 1.56878i
\(206\) −23.0189 10.4972i −1.60380 0.731376i
\(207\) −1.17357 −0.0815686
\(208\) −7.65666 + 5.75782i −0.530894 + 0.399233i
\(209\) −0.0382430 −0.00264533
\(210\) −1.16475 0.531156i −0.0803754 0.0366532i
\(211\) 2.27372 + 2.27372i 0.156530 + 0.156530i 0.781027 0.624497i \(-0.214696\pi\)
−0.624497 + 0.781027i \(0.714696\pi\)
\(212\) −17.3233 1.21999i −1.18977 0.0837891i
\(213\) −4.55663 + 4.55663i −0.312215 + 0.312215i
\(214\) 0.333438 + 0.892494i 0.0227933 + 0.0610096i
\(215\) 11.7716i 0.802819i
\(216\) 7.62274 14.0145i 0.518662 0.953565i
\(217\) 0.942239i 0.0639634i
\(218\) −25.3154 + 9.45788i −1.71457 + 0.640568i
\(219\) −5.73135 + 5.73135i −0.387289 + 0.387289i
\(220\) 0.793072 0.688717i 0.0534689 0.0464333i
\(221\) −1.09295 1.09295i −0.0735197 0.0735197i
\(222\) 1.72375 3.77993i 0.115690 0.253692i
\(223\) −3.29492 −0.220644 −0.110322 0.993896i \(-0.535188\pi\)
−0.110322 + 0.993896i \(0.535188\pi\)
\(224\) −0.605105 + 0.947233i −0.0404303 + 0.0632897i
\(225\) −7.46738 −0.497825
\(226\) 0.573461 1.25752i 0.0381461 0.0836490i
\(227\) 18.7245 + 18.7245i 1.24279 + 1.24279i 0.958838 + 0.283953i \(0.0916459\pi\)
0.283953 + 0.958838i \(0.408354\pi\)
\(228\) −0.500935 + 0.435021i −0.0331752 + 0.0288099i
\(229\) −9.90184 + 9.90184i −0.654332 + 0.654332i −0.954033 0.299701i \(-0.903113\pi\)
0.299701 + 0.954033i \(0.403113\pi\)
\(230\) −4.46569 + 1.66839i −0.294459 + 0.110011i
\(231\) 0.0418377i 0.00275272i
\(232\) −10.5014 5.71192i −0.689452 0.375006i
\(233\) 16.7592i 1.09793i 0.835846 + 0.548964i \(0.184978\pi\)
−0.835846 + 0.548964i \(0.815022\pi\)
\(234\) −1.39113 3.72355i −0.0909409 0.243416i
\(235\) 24.3835 24.3835i 1.59060 1.59060i
\(236\) −8.99872 0.633732i −0.585766 0.0412524i
\(237\) 0.602602 + 0.602602i 0.0391432 + 0.0391432i
\(238\) −0.165003 0.0752457i −0.0106956 0.00487746i
\(239\) −16.9820 −1.09847 −0.549237 0.835667i \(-0.685082\pi\)
−0.549237 + 0.835667i \(0.685082\pi\)
\(240\) 2.55396 18.0426i 0.164858 1.16465i
\(241\) −23.6419 −1.52291 −0.761455 0.648218i \(-0.775514\pi\)
−0.761455 + 0.648218i \(0.775514\pi\)
\(242\) 14.1228 + 6.44038i 0.907851 + 0.414003i
\(243\) 8.04507 + 8.04507i 0.516092 + 0.516092i
\(244\) 0.0266302 0.378138i 0.00170483 0.0242078i
\(245\) 16.5910 16.5910i 1.05996 1.05996i
\(246\) 6.30320 + 16.8714i 0.401878 + 1.07568i
\(247\) 0.587881i 0.0374060i
\(248\) 12.8630 3.79980i 0.816802 0.241288i
\(249\) 1.35929i 0.0861418i
\(250\) −6.08662 + 2.27398i −0.384952 + 0.143819i
\(251\) 10.3035 10.3035i 0.650352 0.650352i −0.302726 0.953078i \(-0.597897\pi\)
0.953078 + 0.302726i \(0.0978966\pi\)
\(252\) −0.305794 0.352128i −0.0192632 0.0221820i
\(253\) 0.110168 + 0.110168i 0.00692619 + 0.00692619i
\(254\) −9.13960 + 20.0419i −0.573469 + 1.25754i
\(255\) 2.94006 0.184114
\(256\) −15.3714 4.44067i −0.960714 0.277542i
\(257\) 0.589308 0.0367600 0.0183800 0.999831i \(-0.494149\pi\)
0.0183800 + 0.999831i \(0.494149\pi\)
\(258\) 2.76930 6.07270i 0.172409 0.378070i
\(259\) −0.305404 0.305404i −0.0189769 0.0189769i
\(260\) −10.5871 12.1913i −0.656585 0.756071i
\(261\) 3.50730 3.50730i 0.217096 0.217096i
\(262\) 10.8726 4.06202i 0.671710 0.250952i
\(263\) 5.79720i 0.357471i −0.983897 0.178735i \(-0.942799\pi\)
0.983897 0.178735i \(-0.0572006\pi\)
\(264\) −0.571149 + 0.168720i −0.0351518 + 0.0103840i
\(265\) 29.2699i 1.79803i
\(266\) 0.0241396 + 0.0646132i 0.00148010 + 0.00396169i
\(267\) 13.2401 13.2401i 0.810281 0.810281i
\(268\) 1.65898 23.5568i 0.101338 1.43896i
\(269\) 5.32110 + 5.32110i 0.324433 + 0.324433i 0.850465 0.526032i \(-0.176321\pi\)
−0.526032 + 0.850465i \(0.676321\pi\)
\(270\) 24.4649 + 11.1566i 1.48889 + 0.678971i
\(271\) −17.3009 −1.05096 −0.525479 0.850807i \(-0.676114\pi\)
−0.525479 + 0.850807i \(0.676114\pi\)
\(272\) 0.361805 2.55600i 0.0219376 0.154980i
\(273\) 0.643138 0.0389245
\(274\) 28.1147 + 12.8210i 1.69847 + 0.774545i
\(275\) 0.700995 + 0.700995i 0.0422716 + 0.0422716i
\(276\) 2.69623 + 0.189882i 0.162294 + 0.0114295i
\(277\) −7.24556 + 7.24556i −0.435343 + 0.435343i −0.890441 0.455098i \(-0.849604\pi\)
0.455098 + 0.890441i \(0.349604\pi\)
\(278\) 8.29745 + 22.2093i 0.497648 + 1.33203i
\(279\) 5.56510i 0.333174i
\(280\) −1.66422 0.905198i −0.0994560 0.0540959i
\(281\) 4.03701i 0.240828i −0.992724 0.120414i \(-0.961578\pi\)
0.992724 0.120414i \(-0.0384221\pi\)
\(282\) −18.3151 + 6.84257i −1.09065 + 0.407469i
\(283\) 10.6603 10.6603i 0.633689 0.633689i −0.315303 0.948991i \(-0.602106\pi\)
0.948991 + 0.315303i \(0.102106\pi\)
\(284\) −7.20036 + 6.25291i −0.427262 + 0.371042i
\(285\) −0.790707 0.790707i −0.0468374 0.0468374i
\(286\) −0.218955 + 0.480137i −0.0129471 + 0.0283911i
\(287\) 1.87242 0.110525
\(288\) 3.57390 5.59460i 0.210594 0.329665i
\(289\) −16.5835 −0.975500
\(290\) 8.35996 18.3322i 0.490913 1.07650i
\(291\) −7.00692 7.00692i −0.410753 0.410753i
\(292\) −9.05663 + 7.86494i −0.529999 + 0.460261i
\(293\) 9.87783 9.87783i 0.577069 0.577069i −0.357026 0.934095i \(-0.616209\pi\)
0.934095 + 0.357026i \(0.116209\pi\)
\(294\) −12.4620 + 4.65582i −0.726796 + 0.271533i
\(295\) 15.2045i 0.885238i
\(296\) 2.93762 5.40084i 0.170746 0.313918i
\(297\) 0.878778i 0.0509919i
\(298\) 5.87057 + 15.7134i 0.340073 + 0.910253i
\(299\) 1.69353 1.69353i 0.0979391 0.0979391i
\(300\) 17.1561 + 1.20821i 0.990506 + 0.0697561i
\(301\) −0.490650 0.490650i −0.0282806 0.0282806i
\(302\) −19.4198 8.85592i −1.11748 0.509601i
\(303\) 18.1345 1.04180
\(304\) −0.784721 + 0.590111i −0.0450068 + 0.0338452i
\(305\) 0.638911 0.0365839
\(306\) 0.974552 + 0.444420i 0.0557114 + 0.0254058i
\(307\) 13.7274 + 13.7274i 0.783464 + 0.783464i 0.980414 0.196950i \(-0.0631036\pi\)
−0.196950 + 0.980414i \(0.563104\pi\)
\(308\) −0.00434957 + 0.0617620i −0.000247840 + 0.00351922i
\(309\) −17.0955 + 17.0955i −0.972532 + 0.972532i
\(310\) 7.91159 + 21.1765i 0.449348 + 1.20274i
\(311\) 27.0977i 1.53657i 0.640110 + 0.768284i \(0.278889\pi\)
−0.640110 + 0.768284i \(0.721111\pi\)
\(312\) 2.59361 + 8.77983i 0.146834 + 0.497060i
\(313\) 8.78013i 0.496282i 0.968724 + 0.248141i \(0.0798196\pi\)
−0.968724 + 0.248141i \(0.920180\pi\)
\(314\) 22.3086 8.33453i 1.25894 0.470345i
\(315\) 0.555821 0.555821i 0.0313170 0.0313170i
\(316\) 0.826930 + 0.952227i 0.0465185 + 0.0535669i
\(317\) −5.92370 5.92370i −0.332708 0.332708i 0.520906 0.853614i \(-0.325594\pi\)
−0.853614 + 0.520906i \(0.825594\pi\)
\(318\) −6.88580 + 15.0996i −0.386136 + 0.846743i
\(319\) −0.658491 −0.0368684
\(320\) 5.64600 26.3695i 0.315621 1.47410i
\(321\) 0.910467 0.0508173
\(322\) 0.116593 0.255673i 0.00649749 0.0142481i
\(323\) −0.112015 0.112015i −0.00623267 0.00623267i
\(324\) −5.37929 6.19436i −0.298849 0.344131i
\(325\) 10.7759 10.7759i 0.597737 0.597737i
\(326\) 8.03360 3.00137i 0.444940 0.166231i
\(327\) 25.8252i 1.42813i
\(328\) 7.55097 + 25.5614i 0.416933 + 1.41139i
\(329\) 2.03264i 0.112063i
\(330\) −0.351293 0.940287i −0.0193381 0.0517611i
\(331\) 21.1008 21.1008i 1.15981 1.15981i 0.175289 0.984517i \(-0.443914\pi\)
0.984517 0.175289i \(-0.0560860\pi\)
\(332\) 0.141316 2.00663i 0.00775575 0.110128i
\(333\) 1.80379 + 1.80379i 0.0988472 + 0.0988472i
\(334\) 8.59873 + 3.92124i 0.470501 + 0.214561i
\(335\) 39.8021 2.17462
\(336\) 0.645578 + 0.858480i 0.0352192 + 0.0468339i
\(337\) −13.0955 −0.713357 −0.356678 0.934227i \(-0.616091\pi\)
−0.356678 + 0.934227i \(0.616091\pi\)
\(338\) −9.34677 4.26236i −0.508397 0.231842i
\(339\) −0.933927 0.933927i −0.0507239 0.0507239i
\(340\) 4.34020 + 0.305657i 0.235380 + 0.0165766i
\(341\) 0.522420 0.522420i 0.0282907 0.0282907i
\(342\) −0.142575 0.381622i −0.00770957 0.0206358i
\(343\) 2.77394i 0.149779i
\(344\) 4.71946 8.67679i 0.254456 0.467821i
\(345\) 4.55562i 0.245267i
\(346\) −5.97309 + 2.23156i −0.321116 + 0.119970i
\(347\) −18.5247 + 18.5247i −0.994460 + 0.994460i −0.999985 0.00552468i \(-0.998241\pi\)
0.00552468 + 0.999985i \(0.498241\pi\)
\(348\) −8.62539 + 7.49044i −0.462369 + 0.401530i
\(349\) 14.6830 + 14.6830i 0.785961 + 0.785961i 0.980829 0.194868i \(-0.0624279\pi\)
−0.194868 + 0.980829i \(0.562428\pi\)
\(350\) 0.741881 1.62684i 0.0396552 0.0869583i
\(351\) −13.5088 −0.721045
\(352\) −0.860687 + 0.189691i −0.0458748 + 0.0101106i
\(353\) 1.40458 0.0747581 0.0373790 0.999301i \(-0.488099\pi\)
0.0373790 + 0.999301i \(0.488099\pi\)
\(354\) −3.57688 + 7.84360i −0.190109 + 0.416883i
\(355\) −11.3655 11.3655i −0.603217 0.603217i
\(356\) 20.9219 18.1689i 1.10886 0.962952i
\(357\) −0.122544 + 0.122544i −0.00648570 + 0.00648570i
\(358\) −7.53757 + 2.81605i −0.398373 + 0.148833i
\(359\) 27.5559i 1.45435i −0.686454 0.727174i \(-0.740834\pi\)
0.686454 0.727174i \(-0.259166\pi\)
\(360\) 9.82929 + 5.34633i 0.518049 + 0.281776i
\(361\) 18.9397i 0.996829i
\(362\) 5.17788 + 13.8593i 0.272143 + 0.728430i
\(363\) 10.4887 10.4887i 0.550512 0.550512i
\(364\) 0.949420 + 0.0668626i 0.0497631 + 0.00350455i
\(365\) −14.2956 14.2956i −0.748264 0.748264i
\(366\) −0.329598 0.150305i −0.0172284 0.00785658i
\(367\) 2.58686 0.135033 0.0675165 0.997718i \(-0.478492\pi\)
0.0675165 + 0.997718i \(0.478492\pi\)
\(368\) 3.96052 + 0.560617i 0.206456 + 0.0292242i
\(369\) −11.0590 −0.575707
\(370\) 9.42819 + 4.29949i 0.490148 + 0.223520i
\(371\) 1.21999 + 1.21999i 0.0633386 + 0.0633386i
\(372\) 0.900426 12.7857i 0.0466849 0.662905i
\(373\) −6.22966 + 6.22966i −0.322560 + 0.322560i −0.849748 0.527189i \(-0.823246\pi\)
0.527189 + 0.849748i \(0.323246\pi\)
\(374\) −0.0497657 0.133205i −0.00257332 0.00688787i
\(375\) 6.20919i 0.320641i
\(376\) −27.7487 + 8.19710i −1.43103 + 0.422733i
\(377\) 10.1225i 0.521334i
\(378\) −1.48473 + 0.554699i −0.0763664 + 0.0285306i
\(379\) 1.65615 1.65615i 0.0850706 0.0850706i −0.663291 0.748362i \(-0.730841\pi\)
0.748362 + 0.663291i \(0.230841\pi\)
\(380\) −1.08506 1.24947i −0.0556624 0.0640964i
\(381\) 14.8846 + 14.8846i 0.762559 + 0.762559i
\(382\) 13.1383 28.8104i 0.672213 1.47407i
\(383\) 17.3779 0.887968 0.443984 0.896035i \(-0.353565\pi\)
0.443984 + 0.896035i \(0.353565\pi\)
\(384\) −9.11613 + 12.2752i −0.465205 + 0.626414i
\(385\) −0.104355 −0.00531840
\(386\) 10.7118 23.4895i 0.545218 1.19559i
\(387\) 2.89790 + 2.89790i 0.147309 + 0.147309i
\(388\) −9.61536 11.0723i −0.488146 0.562110i
\(389\) 10.5112 10.5112i 0.532941 0.532941i −0.388505 0.921446i \(-0.627008\pi\)
0.921446 + 0.388505i \(0.127008\pi\)
\(390\) −14.4543 + 5.40016i −0.731922 + 0.273448i
\(391\) 0.645369i 0.0326377i
\(392\) −18.8807 + 5.57747i −0.953621 + 0.281705i
\(393\) 11.0915i 0.559494i
\(394\) 5.63689 + 15.0879i 0.283982 + 0.760120i
\(395\) −1.50305 + 1.50305i −0.0756269 + 0.0756269i
\(396\) 0.0256897 0.364782i 0.00129095 0.0183310i
\(397\) 23.9835 + 23.9835i 1.20370 + 1.20370i 0.973033 + 0.230666i \(0.0740906\pi\)
0.230666 + 0.973033i \(0.425909\pi\)
\(398\) −22.9791 10.4791i −1.15184 0.525268i
\(399\) 0.0659144 0.00329985
\(400\) 25.2007 + 3.56719i 1.26003 + 0.178360i
\(401\) −6.10812 −0.305025 −0.152513 0.988302i \(-0.548736\pi\)
−0.152513 + 0.988302i \(0.548736\pi\)
\(402\) −20.5329 9.36354i −1.02409 0.467011i
\(403\) −8.03077 8.03077i −0.400041 0.400041i
\(404\) 26.7707 + 1.88532i 1.33189 + 0.0937982i
\(405\) 9.77757 9.77757i 0.485851 0.485851i
\(406\) 0.415650 + 1.11255i 0.0206284 + 0.0552148i
\(407\) 0.338659i 0.0167867i
\(408\) −2.16709 1.17872i −0.107287 0.0583555i
\(409\) 32.3334i 1.59878i 0.600810 + 0.799392i \(0.294845\pi\)
−0.600810 + 0.799392i \(0.705155\pi\)
\(410\) −42.0820 + 15.7219i −2.07828 + 0.776450i
\(411\) 20.8800 20.8800i 1.02994 1.02994i
\(412\) −27.0143 + 23.4596i −1.33090 + 1.15577i
\(413\) 0.633732 + 0.633732i 0.0311839 + 0.0311839i
\(414\) −0.688630 + 1.51007i −0.0338443 + 0.0742158i
\(415\) 3.39045 0.166431
\(416\) 2.91598 + 13.2307i 0.142968 + 0.648687i
\(417\) 22.6566 1.10950
\(418\) −0.0224404 + 0.0492086i −0.00109760 + 0.00240687i
\(419\) 9.28588 + 9.28588i 0.453645 + 0.453645i 0.896562 0.442917i \(-0.146057\pi\)
−0.442917 + 0.896562i \(0.646057\pi\)
\(420\) −1.36691 + 1.18705i −0.0666985 + 0.0579221i
\(421\) −4.53002 + 4.53002i −0.220779 + 0.220779i −0.808827 0.588047i \(-0.799897\pi\)
0.588047 + 0.808827i \(0.299897\pi\)
\(422\) 4.25986 1.59149i 0.207367 0.0774727i
\(423\) 12.0053i 0.583717i
\(424\) −11.7348 + 21.5746i −0.569893 + 1.04775i
\(425\) 4.10646i 0.199193i
\(426\) 3.18942 + 8.53693i 0.154528 + 0.413616i
\(427\) −0.0266302 + 0.0266302i −0.00128873 + 0.00128873i
\(428\) 1.34406 + 0.0946550i 0.0649675 + 0.00457532i
\(429\) 0.356585 + 0.356585i 0.0172161 + 0.0172161i
\(430\) 15.1470 + 6.90740i 0.730452 + 0.333105i
\(431\) 24.7717 1.19321 0.596605 0.802535i \(-0.296516\pi\)
0.596605 + 0.802535i \(0.296516\pi\)
\(432\) −13.5600 18.0319i −0.652407 0.867561i
\(433\) 18.8955 0.908059 0.454030 0.890987i \(-0.349986\pi\)
0.454030 + 0.890987i \(0.349986\pi\)
\(434\) −1.21241 0.552891i −0.0581976 0.0265396i
\(435\) −13.6148 13.6148i −0.652782 0.652782i
\(436\) −2.68486 + 38.1239i −0.128582 + 1.82580i
\(437\) 0.173567 0.173567i 0.00830285 0.00830285i
\(438\) 4.01166 + 10.7378i 0.191685 + 0.513071i
\(439\) 11.0160i 0.525766i −0.964828 0.262883i \(-0.915327\pi\)
0.964828 0.262883i \(-0.0846733\pi\)
\(440\) −0.420835 1.42460i −0.0200625 0.0679152i
\(441\) 8.16864i 0.388983i
\(442\) −2.04766 + 0.765010i −0.0973972 + 0.0363878i
\(443\) 3.85949 3.85949i 0.183370 0.183370i −0.609453 0.792822i \(-0.708611\pi\)
0.792822 + 0.609453i \(0.208611\pi\)
\(444\) −3.85230 4.43601i −0.182822 0.210523i
\(445\) 33.0244 + 33.0244i 1.56551 + 1.56551i
\(446\) −1.93340 + 4.23968i −0.0915493 + 0.200755i
\(447\) 16.0298 0.758186
\(448\) 0.863772 + 1.33443i 0.0408094 + 0.0630459i
\(449\) −38.5451 −1.81905 −0.909527 0.415644i \(-0.863556\pi\)
−0.909527 + 0.415644i \(0.863556\pi\)
\(450\) −4.38173 + 9.60853i −0.206557 + 0.452950i
\(451\) 1.03815 + 1.03815i 0.0488848 + 0.0488848i
\(452\) −1.28160 1.47578i −0.0602812 0.0694150i
\(453\) −14.4226 + 14.4226i −0.677631 + 0.677631i
\(454\) 35.0808 13.1063i 1.64642 0.615107i
\(455\) 1.60416i 0.0752043i
\(456\) 0.265815 + 0.899833i 0.0124479 + 0.0421385i
\(457\) 18.3632i 0.858996i −0.903068 0.429498i \(-0.858691\pi\)
0.903068 0.429498i \(-0.141309\pi\)
\(458\) 6.93080 + 18.5513i 0.323855 + 0.866844i
\(459\) 2.57396 2.57396i 0.120142 0.120142i
\(460\) −0.473617 + 6.72515i −0.0220825 + 0.313562i
\(461\) 8.09188 + 8.09188i 0.376876 + 0.376876i 0.869974 0.493098i \(-0.164135\pi\)
−0.493098 + 0.869974i \(0.664135\pi\)
\(462\) 0.0538340 + 0.0245497i 0.00250458 + 0.00114215i
\(463\) −26.6880 −1.24030 −0.620148 0.784485i \(-0.712927\pi\)
−0.620148 + 0.784485i \(0.712927\pi\)
\(464\) −13.5118 + 10.1609i −0.627269 + 0.471707i
\(465\) 21.6030 1.00181
\(466\) 21.5646 + 9.83399i 0.998960 + 0.455551i
\(467\) 10.7335 + 10.7335i 0.496689 + 0.496689i 0.910406 0.413717i \(-0.135770\pi\)
−0.413717 + 0.910406i \(0.635770\pi\)
\(468\) −5.60751 0.394908i −0.259207 0.0182546i
\(469\) −1.65898 + 1.65898i −0.0766046 + 0.0766046i
\(470\) −17.0672 45.6829i −0.787253 2.10720i
\(471\) 22.7578i 1.04862i
\(472\) −6.09574 + 11.2071i −0.280579 + 0.515848i
\(473\) 0.544077i 0.0250167i
\(474\) 1.12899 0.421792i 0.0518560 0.0193735i
\(475\) 1.10440 1.10440i 0.0506735 0.0506735i
\(476\) −0.193643 + 0.168162i −0.00887559 + 0.00770771i
\(477\) −7.20556 7.20556i −0.329920 0.329920i
\(478\) −9.96476 + 21.8513i −0.455777 + 0.999456i
\(479\) −15.0208 −0.686317 −0.343159 0.939277i \(-0.611497\pi\)
−0.343159 + 0.939277i \(0.611497\pi\)
\(480\) −21.7175 13.8734i −0.991261 0.633231i
\(481\) −5.20595 −0.237371
\(482\) −13.8727 + 30.4209i −0.631883 + 1.38563i
\(483\) −0.189882 0.189882i −0.00863991 0.00863991i
\(484\) 16.5741 14.3932i 0.753368 0.654238i
\(485\) 17.4772 17.4772i 0.793598 0.793598i
\(486\) 15.0726 5.63115i 0.683706 0.255434i
\(487\) 35.4382i 1.60586i −0.596073 0.802930i \(-0.703273\pi\)
0.596073 0.802930i \(-0.296727\pi\)
\(488\) −0.470936 0.256151i −0.0213183 0.0115954i
\(489\) 8.19538i 0.370608i
\(490\) −11.6129 31.0835i −0.524617 1.40421i
\(491\) −19.3127 + 19.3127i −0.871572 + 0.871572i −0.992644 0.121072i \(-0.961367\pi\)
0.121072 + 0.992644i \(0.461367\pi\)
\(492\) 25.4077 + 1.78933i 1.14547 + 0.0806691i
\(493\) −1.92874 1.92874i −0.0868659 0.0868659i
\(494\) 0.756446 + 0.344959i 0.0340341 + 0.0155204i
\(495\) 0.616345 0.0277026
\(496\) 2.65847 18.7809i 0.119369 0.843289i
\(497\) 0.947443 0.0424986
\(498\) −1.74905 0.797612i −0.0783769 0.0357418i
\(499\) −17.7085 17.7085i −0.792743 0.792743i 0.189197 0.981939i \(-0.439412\pi\)
−0.981939 + 0.189197i \(0.939412\pi\)
\(500\) −0.645527 + 9.16619i −0.0288688 + 0.409925i
\(501\) 6.38605 6.38605i 0.285308 0.285308i
\(502\) −7.21195 19.3038i −0.321885 0.861571i
\(503\) 36.4638i 1.62584i 0.582375 + 0.812921i \(0.302124\pi\)
−0.582375 + 0.812921i \(0.697876\pi\)
\(504\) −0.632530 + 0.186853i −0.0281751 + 0.00832308i
\(505\) 45.2325i 2.01282i
\(506\) 0.206401 0.0771120i 0.00917566 0.00342805i
\(507\) −6.94160 + 6.94160i −0.308287 + 0.308287i
\(508\) 20.4256 + 23.5205i 0.906238 + 1.04355i
\(509\) −15.9196 15.9196i −0.705624 0.705624i 0.259988 0.965612i \(-0.416281\pi\)
−0.965612 + 0.259988i \(0.916281\pi\)
\(510\) 1.72518 3.78307i 0.0763921 0.167517i
\(511\) 1.19170 0.0527176
\(512\) −14.7337 + 17.1732i −0.651142 + 0.758956i
\(513\) −1.38450 −0.0611270
\(514\) 0.345796 0.758282i 0.0152524 0.0334464i
\(515\) −42.6410 42.6410i −1.87899 1.87899i
\(516\) −6.18896 7.12672i −0.272454 0.313736i
\(517\) −1.12699 + 1.12699i −0.0495649 + 0.0495649i
\(518\) −0.572179 + 0.213767i −0.0251401 + 0.00939240i
\(519\) 6.09338i 0.267470i
\(520\) −21.8993 + 6.46917i −0.960347 + 0.283692i
\(521\) 33.2196i 1.45538i −0.685909 0.727688i \(-0.740595\pi\)
0.685909 0.727688i \(-0.259405\pi\)
\(522\) −2.45494 6.57099i −0.107450 0.287604i
\(523\) −27.4509 + 27.4509i −1.20034 + 1.20034i −0.226282 + 0.974062i \(0.572657\pi\)
−0.974062 + 0.226282i \(0.927343\pi\)
\(524\) 1.15311 16.3736i 0.0503738 0.715286i
\(525\) −1.20821 1.20821i −0.0527307 0.0527307i
\(526\) −7.45946 3.40170i −0.325248 0.148321i
\(527\) 3.06037 0.133312
\(528\) −0.118042 + 0.833919i −0.00513714 + 0.0362917i
\(529\) −1.00000 −0.0434783
\(530\) −37.6625 17.1751i −1.63596 0.746037i
\(531\) −3.74298 3.74298i −0.162432 0.162432i
\(532\) 0.0973048 + 0.00685266i 0.00421870 + 0.000297101i
\(533\) 15.9587 15.9587i 0.691250 0.691250i
\(534\) −9.26741 24.8056i −0.401040 1.07344i
\(535\) 2.27095i 0.0981819i
\(536\) −29.3378 15.9574i −1.26720 0.689255i
\(537\) 7.68936i 0.331821i
\(538\) 9.96917 3.72451i 0.429802 0.160575i
\(539\) −0.766825 + 0.766825i −0.0330295 + 0.0330295i
\(540\) 28.7112 24.9333i 1.23554 1.07296i
\(541\) −19.2548 19.2548i −0.827830 0.827830i 0.159386 0.987216i \(-0.449048\pi\)
−0.987216 + 0.159386i \(0.949048\pi\)
\(542\) −10.1519 + 22.2617i −0.436062 + 0.956222i
\(543\) 14.1384 0.606738
\(544\) −3.07659 1.96536i −0.131908 0.0842642i
\(545\) −64.4150 −2.75924
\(546\) 0.377383 0.827548i 0.0161505 0.0354158i
\(547\) 13.3090 + 13.3090i 0.569051 + 0.569051i 0.931862 0.362812i \(-0.118183\pi\)
−0.362812 + 0.931862i \(0.618183\pi\)
\(548\) 32.9945 28.6530i 1.40945 1.22399i
\(549\) 0.157285 0.157285i 0.00671276 0.00671276i
\(550\) 1.31333 0.490662i 0.0560004 0.0209219i
\(551\) 1.03744i 0.0441964i
\(552\) 1.82643 3.35792i 0.0777381 0.142922i
\(553\) 0.125297i 0.00532816i
\(554\) 5.07153 + 13.5747i 0.215469 + 0.576733i
\(555\) 7.00207 7.00207i 0.297221 0.297221i
\(556\) 33.4463 + 2.35545i 1.41844 + 0.0998932i
\(557\) −15.1073 15.1073i −0.640118 0.640118i 0.310467 0.950584i \(-0.399515\pi\)
−0.950584 + 0.310467i \(0.899515\pi\)
\(558\) 7.16081 + 3.26551i 0.303141 + 0.138240i
\(559\) −8.36368 −0.353746
\(560\) −2.14128 + 1.61025i −0.0904858 + 0.0680455i
\(561\) −0.135888 −0.00573718
\(562\) −5.19455 2.36885i −0.219119 0.0999239i
\(563\) −18.6896 18.6896i −0.787673 0.787673i 0.193439 0.981112i \(-0.438036\pi\)
−0.981112 + 0.193439i \(0.938036\pi\)
\(564\) −1.94244 + 27.5818i −0.0817915 + 1.16140i
\(565\) 2.32947 2.32947i 0.0980015 0.0980015i
\(566\) −7.46168 19.9722i −0.313638 0.839496i
\(567\) 0.815071i 0.0342298i
\(568\) 3.82079 + 12.9341i 0.160317 + 0.542701i
\(569\) 11.4387i 0.479536i −0.970830 0.239768i \(-0.922929\pi\)
0.970830 0.239768i \(-0.0770714\pi\)
\(570\) −1.48140 + 0.553456i −0.0620492 + 0.0231817i
\(571\) −11.6909 + 11.6909i −0.489249 + 0.489249i −0.908069 0.418820i \(-0.862444\pi\)
0.418820 + 0.908069i \(0.362444\pi\)
\(572\) 0.489330 + 0.563473i 0.0204599 + 0.0235600i
\(573\) −21.3967 21.3967i −0.893861 0.893861i
\(574\) 1.09870 2.40931i 0.0458590 0.100562i
\(575\) −6.36297 −0.265354
\(576\) −5.10165 7.88148i −0.212569 0.328395i
\(577\) −35.4727 −1.47675 −0.738374 0.674391i \(-0.764406\pi\)
−0.738374 + 0.674391i \(0.764406\pi\)
\(578\) −9.73093 + 21.3386i −0.404753 + 0.887567i
\(579\) −17.4451 17.4451i −0.724992 0.724992i
\(580\) −18.6832 21.5141i −0.775778 0.893324i
\(581\) −0.141316 + 0.141316i −0.00586279 + 0.00586279i
\(582\) −13.1276 + 4.90450i −0.544156 + 0.203298i
\(583\) 1.35283i 0.0560286i
\(584\) 4.80580 + 16.2685i 0.198865 + 0.673195i
\(585\) 9.47459i 0.391726i
\(586\) −6.91399 18.5063i −0.285614 0.764488i
\(587\) 9.32268 9.32268i 0.384788 0.384788i −0.488036 0.872824i \(-0.662286\pi\)
0.872824 + 0.488036i \(0.162286\pi\)
\(588\) −1.32167 + 18.7672i −0.0545049 + 0.773946i
\(589\) −0.823063 0.823063i −0.0339137 0.0339137i
\(590\) −19.5641 8.92172i −0.805441 0.367302i
\(591\) 15.3918 0.633134
\(592\) −5.22570 6.94906i −0.214775 0.285605i
\(593\) 8.32328 0.341796 0.170898 0.985289i \(-0.445333\pi\)
0.170898 + 0.985289i \(0.445333\pi\)
\(594\) −1.13075 0.515652i −0.0463954 0.0211575i
\(595\) −0.305657 0.305657i −0.0125307 0.0125307i
\(596\) 23.6637 + 1.66651i 0.969304 + 0.0682630i
\(597\) −17.0660 + 17.0660i −0.698464 + 0.698464i
\(598\) −1.18538 3.17285i −0.0484740 0.129747i
\(599\) 40.0370i 1.63587i −0.575313 0.817933i \(-0.695120\pi\)
0.575313 0.817933i \(-0.304880\pi\)
\(600\) 11.6215 21.3663i 0.474448 0.872277i
\(601\) 9.90326i 0.403963i 0.979389 + 0.201981i \(0.0647380\pi\)
−0.979389 + 0.201981i \(0.935262\pi\)
\(602\) −0.919241 + 0.343431i −0.0374655 + 0.0139972i
\(603\) 9.79835 9.79835i 0.399020 0.399020i
\(604\) −22.7904 + 19.7916i −0.927330 + 0.805309i
\(605\) 26.1616 + 26.1616i 1.06362 + 1.06362i
\(606\) 10.6410 23.3343i 0.432263 0.947891i
\(607\) −33.7530 −1.36999 −0.684995 0.728548i \(-0.740196\pi\)
−0.684995 + 0.728548i \(0.740196\pi\)
\(608\) 0.298855 + 1.35599i 0.0121202 + 0.0549929i
\(609\) 1.13495 0.0459906
\(610\) 0.374902 0.822108i 0.0151794 0.0332862i
\(611\) 17.3243 + 17.3243i 0.700867 + 0.700867i
\(612\) 1.14370 0.993210i 0.0462314 0.0401481i
\(613\) 12.9941 12.9941i 0.524827 0.524827i −0.394198 0.919026i \(-0.628978\pi\)
0.919026 + 0.394198i \(0.128978\pi\)
\(614\) 25.7185 9.60850i 1.03791 0.387767i
\(615\) 42.9294i 1.73108i
\(616\) 0.0769190 + 0.0418377i 0.00309916 + 0.00168569i
\(617\) 42.9224i 1.72799i 0.503501 + 0.863995i \(0.332045\pi\)
−0.503501 + 0.863995i \(0.667955\pi\)
\(618\) 11.9660 + 32.0288i 0.481345 + 1.28839i
\(619\) 4.50065 4.50065i 0.180896 0.180896i −0.610850 0.791746i \(-0.709172\pi\)
0.791746 + 0.610850i \(0.209172\pi\)
\(620\) 31.8909 + 2.24591i 1.28077 + 0.0901979i
\(621\) 3.98836 + 3.98836i 0.160047 + 0.160047i
\(622\) 34.8675 + 15.9005i 1.39806 + 0.637550i
\(623\) −2.75296 −0.110295
\(624\) 12.8192 + 1.81458i 0.513178 + 0.0726412i
\(625\) 16.3274 0.653097
\(626\) 11.2977 + 5.15203i 0.451546 + 0.205917i
\(627\) 0.0365460 + 0.0365460i 0.00145950 + 0.00145950i
\(628\) 2.36597 33.5957i 0.0944125 1.34062i
\(629\) 0.991942 0.991942i 0.0395513 0.0395513i
\(630\) −0.389047 1.04134i −0.0155000 0.0414880i
\(631\) 21.5372i 0.857383i 0.903451 + 0.428691i \(0.141025\pi\)
−0.903451 + 0.428691i \(0.858975\pi\)
\(632\) 1.71049 0.505288i 0.0680397 0.0200993i
\(633\) 4.34565i 0.172724i
\(634\) −11.0982 + 4.14630i −0.440764 + 0.164670i
\(635\) −37.1262 + 37.1262i −1.47331 + 1.47331i
\(636\) 15.3887 + 17.7204i 0.610201 + 0.702659i
\(637\) 11.7878 + 11.7878i 0.467050 + 0.467050i
\(638\) −0.386392 + 0.847303i −0.0152974 + 0.0335450i
\(639\) −5.59584 −0.221368
\(640\) −30.6176 22.7381i −1.21027 0.898803i
\(641\) 19.9600 0.788373 0.394187 0.919030i \(-0.371026\pi\)
0.394187 + 0.919030i \(0.371026\pi\)
\(642\) 0.534247 1.17153i 0.0210851 0.0462366i
\(643\) 11.5859 + 11.5859i 0.456905 + 0.456905i 0.897638 0.440733i \(-0.145282\pi\)
−0.440733 + 0.897638i \(0.645282\pi\)
\(644\) −0.260568 0.300049i −0.0102678 0.0118236i
\(645\) 11.2493 11.2493i 0.442939 0.442939i
\(646\) −0.209862 + 0.0784049i −0.00825690 + 0.00308480i
\(647\) 21.3677i 0.840053i 0.907512 + 0.420026i \(0.137979\pi\)
−0.907512 + 0.420026i \(0.862021\pi\)
\(648\) −11.1270 + 3.28697i −0.437109 + 0.129124i
\(649\) 0.702740i 0.0275850i
\(650\) −7.54257 20.1888i −0.295844 0.791868i
\(651\) −0.900426 + 0.900426i −0.0352905 + 0.0352905i
\(652\) 0.852017 12.0983i 0.0333675 0.473804i
\(653\) −35.5745 35.5745i −1.39214 1.39214i −0.820522 0.571615i \(-0.806317\pi\)
−0.571615 0.820522i \(-0.693683\pi\)
\(654\) 33.2301 + 15.1538i 1.29940 + 0.592560i
\(655\) 27.6653 1.08097
\(656\) 37.3215 + 5.28292i 1.45716 + 0.206263i
\(657\) −7.03847 −0.274597
\(658\) 2.61547 + 1.19272i 0.101962 + 0.0464971i
\(659\) 23.0602 + 23.0602i 0.898296 + 0.898296i 0.995285 0.0969891i \(-0.0309212\pi\)
−0.0969891 + 0.995285i \(0.530921\pi\)
\(660\) −1.41603 0.0997237i −0.0551190 0.00388174i
\(661\) −26.3968 + 26.3968i −1.02671 + 1.02671i −0.0270814 + 0.999633i \(0.508621\pi\)
−0.999633 + 0.0270814i \(0.991379\pi\)
\(662\) −14.7695 39.5328i −0.574034 1.53648i
\(663\) 2.08889i 0.0811259i
\(664\) −2.49908 1.35929i −0.0969831 0.0527509i
\(665\) 0.164409i 0.00637549i
\(666\) 3.37944 1.26257i 0.130950 0.0489234i
\(667\) 2.98858 2.98858i 0.115718 0.115718i
\(668\) 10.0912 8.76336i 0.390440 0.339064i
\(669\) 3.14870 + 3.14870i 0.121736 + 0.121736i
\(670\) 23.3552 51.2147i 0.902291 1.97860i
\(671\) −0.0295300 −0.00113999
\(672\) 1.48345 0.326946i 0.0572254 0.0126122i
\(673\) −26.3257 −1.01478 −0.507391 0.861716i \(-0.669390\pi\)
−0.507391 + 0.861716i \(0.669390\pi\)
\(674\) −7.68422 + 16.8504i −0.295985 + 0.649054i
\(675\) 25.3778 + 25.3778i 0.976793 + 0.976793i
\(676\) −10.9691 + 9.52572i −0.421887 + 0.366374i
\(677\) 34.7259 34.7259i 1.33462 1.33462i 0.433445 0.901180i \(-0.357298\pi\)
0.901180 0.433445i \(-0.142702\pi\)
\(678\) −1.74973 + 0.653703i −0.0671979 + 0.0251053i
\(679\) 1.45692i 0.0559115i
\(680\) 2.94006 5.40533i 0.112746 0.207285i
\(681\) 35.7872i 1.37137i
\(682\) −0.365669 0.978764i −0.0140022 0.0374788i
\(683\) −21.2863 + 21.2863i −0.814498 + 0.814498i −0.985305 0.170807i \(-0.945363\pi\)
0.170807 + 0.985305i \(0.445363\pi\)
\(684\) −0.574707 0.0404736i −0.0219745 0.00154755i
\(685\) 52.0805 + 52.0805i 1.98989 + 1.98989i
\(686\) 3.56933 + 1.62770i 0.136278 + 0.0621460i
\(687\) 18.9249 0.722029
\(688\) −8.39541 11.1641i −0.320072 0.425627i
\(689\) 20.7961 0.792267
\(690\) 5.86188 + 2.67317i 0.223158 + 0.101766i
\(691\) −16.7977 16.7977i −0.639016 0.639016i 0.311296 0.950313i \(-0.399237\pi\)
−0.950313 + 0.311296i \(0.899237\pi\)
\(692\) −0.633487 + 8.99523i −0.0240815 + 0.341947i
\(693\) −0.0256897 + 0.0256897i −0.000975870 + 0.000975870i
\(694\) 12.9664 + 34.7064i 0.492198 + 1.31744i
\(695\) 56.5117i 2.14361i
\(696\) 4.57696 + 15.4938i 0.173489 + 0.587293i
\(697\) 6.08156i 0.230356i
\(698\) 27.5088 10.2774i 1.04122 0.389004i
\(699\) 16.0154 16.0154i 0.605760 0.605760i
\(700\) −1.65799 1.90921i −0.0626660 0.0721612i
\(701\) 9.14173 + 9.14173i 0.345279 + 0.345279i 0.858347 0.513069i \(-0.171491\pi\)
−0.513069 + 0.858347i \(0.671491\pi\)
\(702\) −7.92673 + 17.3822i −0.299175 + 0.656049i
\(703\) −0.533551 −0.0201233
\(704\) −0.260954 + 1.21878i −0.00983509 + 0.0459346i
\(705\) −46.6029 −1.75517
\(706\) 0.824182 1.80732i 0.0310185 0.0680193i
\(707\) −1.88532 1.88532i −0.0709048 0.0709048i
\(708\) 7.99378 + 9.20499i 0.300424 + 0.345945i
\(709\) 6.26542 6.26542i 0.235303 0.235303i −0.579599 0.814902i \(-0.696791\pi\)
0.814902 + 0.579599i \(0.196791\pi\)
\(710\) −21.2934 + 7.95528i −0.799129 + 0.298556i
\(711\) 0.740034i 0.0277534i
\(712\) −11.1020 37.5822i −0.416064 1.40845i
\(713\) 4.74204i 0.177591i
\(714\) 0.0857745 + 0.229588i 0.00321003 + 0.00859210i
\(715\) −0.889421 + 0.889421i −0.0332625 + 0.0332625i
\(716\) −0.799410 + 11.3513i −0.0298753 + 0.424217i
\(717\) 16.2284 + 16.2284i 0.606061 + 0.606061i
\(718\) −35.4572 16.1694i −1.32325 0.603436i
\(719\) −14.6826 −0.547569 −0.273784 0.961791i \(-0.588275\pi\)
−0.273784 + 0.961791i \(0.588275\pi\)
\(720\) 12.6470 9.51054i 0.471325 0.354437i
\(721\) 3.55461 0.132381
\(722\) −24.3704 11.1135i −0.906973 0.413603i
\(723\) 22.5928 + 22.5928i 0.840234 + 0.840234i
\(724\) 20.8716 + 1.46988i 0.775686 + 0.0546275i
\(725\) 19.0163 19.0163i 0.706246 0.706246i
\(726\) −7.34155 19.6507i −0.272470 0.729306i
\(727\) 38.0962i 1.41291i 0.707757 + 0.706456i \(0.249707\pi\)
−0.707757 + 0.706456i \(0.750293\pi\)
\(728\) 0.643138 1.18242i 0.0238363 0.0438233i
\(729\) 27.6822i 1.02527i
\(730\) −26.7830 + 10.0062i −0.991282 + 0.370345i
\(731\) 1.59362 1.59362i 0.0589420 0.0589420i
\(732\) −0.386806 + 0.335909i −0.0142968 + 0.0124155i
\(733\) −9.11245 9.11245i −0.336576 0.336576i 0.518501 0.855077i \(-0.326490\pi\)
−0.855077 + 0.518501i \(0.826490\pi\)
\(734\) 1.51793 3.32860i 0.0560277 0.122861i
\(735\) −31.7095 −1.16962
\(736\) 3.04533 4.76717i 0.112252 0.175720i
\(737\) −1.83963 −0.0677636
\(738\) −6.48923 + 14.2300i −0.238872 + 0.523812i
\(739\) −24.5125 24.5125i −0.901708 0.901708i 0.0938755 0.995584i \(-0.470074\pi\)
−0.995584 + 0.0938755i \(0.970074\pi\)
\(740\) 11.0646 9.60870i 0.406743 0.353223i
\(741\) 0.561793 0.561793i 0.0206380 0.0206380i
\(742\) 2.28567 0.853931i 0.0839095 0.0313488i
\(743\) 35.3509i 1.29690i 0.761258 + 0.648449i \(0.224582\pi\)
−0.761258 + 0.648449i \(0.775418\pi\)
\(744\) −15.9234 8.66102i −0.583780 0.317528i
\(745\) 39.9828i 1.46486i
\(746\) 4.36045 + 11.6714i 0.159648 + 0.427320i
\(747\) 0.834651 0.834651i 0.0305383 0.0305383i
\(748\) −0.200601 0.0141273i −0.00733470 0.000516545i
\(749\) −0.0946550 0.0946550i −0.00345862 0.00345862i
\(750\) 7.98958 + 3.64345i 0.291738 + 0.133040i
\(751\) −47.2423 −1.72390 −0.861948 0.506997i \(-0.830755\pi\)
−0.861948 + 0.506997i \(0.830755\pi\)
\(752\) −5.73497 + 40.5151i −0.209133 + 1.47743i
\(753\) −19.6926 −0.717637
\(754\) 13.0249 + 5.93970i 0.474340 + 0.216311i
\(755\) −35.9738 35.9738i −1.30922 1.30922i
\(756\) −0.157466 + 2.23594i −0.00572697 + 0.0813205i
\(757\) −3.51361 + 3.51361i −0.127704 + 0.127704i −0.768070 0.640366i \(-0.778783\pi\)
0.640366 + 0.768070i \(0.278783\pi\)
\(758\) −1.15922 3.10282i −0.0421048 0.112700i
\(759\) 0.210558i 0.00764277i
\(760\) −2.24443 + 0.663016i −0.0814140 + 0.0240501i
\(761\) 15.6852i 0.568587i −0.958737 0.284294i \(-0.908241\pi\)
0.958737 0.284294i \(-0.0917591\pi\)
\(762\) 27.8865 10.4185i 1.01022 0.377421i
\(763\) 2.68486 2.68486i 0.0971986 0.0971986i
\(764\) −29.3620 33.8109i −1.06228 1.22324i
\(765\) 1.80529 + 1.80529i 0.0652704 + 0.0652704i
\(766\) 10.1971 22.3607i 0.368435 0.807925i
\(767\) 10.8027 0.390062
\(768\) 10.4457 + 18.9329i 0.376926 + 0.683182i
\(769\) 36.5815 1.31916 0.659582 0.751632i \(-0.270733\pi\)
0.659582 + 0.751632i \(0.270733\pi\)