Properties

Label 368.2.j.c.93.3
Level $368$
Weight $2$
Character 368.93
Analytic conductor $2.938$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(93,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 93.3
Root \(1.09121 + 0.899589i\) of defining polynomial
Character \(\chi\) \(=\) 368.93
Dual form 368.2.j.c.277.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0678262 - 1.41259i) q^{2} +(1.19673 + 1.19673i) q^{3} +(-1.99080 - 0.191621i) q^{4} +(0.672033 - 0.672033i) q^{5} +(1.77166 - 1.60932i) q^{6} -1.79918i q^{7} +(-0.405709 + 2.79918i) q^{8} -0.135652i q^{9} +(-0.903723 - 0.994886i) q^{10} +(2.49790 - 2.49790i) q^{11} +(-2.15314 - 2.61178i) q^{12} +(-0.0311077 - 0.0311077i) q^{13} +(-2.54149 - 0.122031i) q^{14} +1.60849 q^{15} +(3.92656 + 0.762957i) q^{16} +4.24111 q^{17} +(-0.191621 - 0.00920079i) q^{18} +(-0.864348 - 0.864348i) q^{19} +(-1.46666 + 1.20911i) q^{20} +(2.15314 - 2.15314i) q^{21} +(-3.35907 - 3.69792i) q^{22} -1.00000i q^{23} +(-3.83540 + 2.86435i) q^{24} +4.09674i q^{25} +(-0.0460522 + 0.0418324i) q^{26} +(3.75254 - 3.75254i) q^{27} +(-0.344760 + 3.58180i) q^{28} +(-1.05780 - 1.05780i) q^{29} +(0.109098 - 2.27213i) q^{30} -2.27890 q^{31} +(1.34407 - 5.49486i) q^{32} +5.97864 q^{33} +(0.287658 - 5.99093i) q^{34} +(-1.20911 - 1.20911i) q^{35} +(-0.0259938 + 0.270057i) q^{36} +(-1.42444 + 1.42444i) q^{37} +(-1.27959 + 1.16234i) q^{38} -0.0744553i q^{39} +(1.60849 + 2.15379i) q^{40} +8.94702i q^{41} +(-2.89546 - 3.18753i) q^{42} +(-2.22919 + 2.22919i) q^{43} +(-5.45146 + 4.49417i) q^{44} +(-0.0911629 - 0.0911629i) q^{45} +(-1.41259 - 0.0678262i) q^{46} -9.40918 q^{47} +(3.78600 + 5.61211i) q^{48} +3.76296 q^{49} +(5.78700 + 0.277867i) q^{50} +(5.07548 + 5.07548i) q^{51} +(0.0559683 + 0.0678901i) q^{52} +(-4.89002 + 4.89002i) q^{53} +(-5.04627 - 5.55531i) q^{54} -3.35734i q^{55} +(5.03622 + 0.729943i) q^{56} -2.06879i q^{57} +(-1.56597 + 1.42248i) q^{58} +(-6.23240 + 6.23240i) q^{59} +(-3.20218 - 0.308220i) q^{60} +(0.841880 + 0.841880i) q^{61} +(-0.154569 + 3.21914i) q^{62} -0.244063 q^{63} +(-7.67080 - 2.27130i) q^{64} -0.0418108 q^{65} +(0.405509 - 8.44535i) q^{66} +(-6.47387 - 6.47387i) q^{67} +(-8.44320 - 0.812685i) q^{68} +(1.19673 - 1.19673i) q^{69} +(-1.78998 + 1.62596i) q^{70} +6.62529i q^{71} +(0.379715 + 0.0550354i) q^{72} -0.712123i q^{73} +(1.91554 + 2.10876i) q^{74} +(-4.90271 + 4.90271i) q^{75} +(1.55512 + 1.88637i) q^{76} +(-4.49417 - 4.49417i) q^{77} +(-0.105175 - 0.00505002i) q^{78} +3.84242 q^{79} +(3.15151 - 2.12605i) q^{80} +8.57464 q^{81} +(12.6384 + 0.606842i) q^{82} +(7.62359 + 7.62359i) q^{83} +(-4.69905 + 3.87388i) q^{84} +(2.85017 - 2.85017i) q^{85} +(2.99772 + 3.30012i) q^{86} -2.53180i q^{87} +(5.97864 + 8.00549i) q^{88} +5.80356i q^{89} +(-0.134959 + 0.122592i) q^{90} +(-0.0559683 + 0.0559683i) q^{91} +(-0.191621 + 1.99080i) q^{92} +(-2.72724 - 2.72724i) q^{93} +(-0.638189 + 13.2913i) q^{94} -1.16174 q^{95} +(8.18438 - 4.96740i) q^{96} +19.5071 q^{97} +(0.255227 - 5.31550i) q^{98} +(-0.338846 - 0.338846i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{5} - 4 q^{8} - 6 q^{10} - 4 q^{11} - 8 q^{12} + 18 q^{13} - 2 q^{14} + 8 q^{16} - 8 q^{17} - 4 q^{18} - 8 q^{19} - 32 q^{20} + 8 q^{21} - 34 q^{22} + 12 q^{24} - 14 q^{26}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0678262 1.41259i 0.0479604 0.998849i
\(3\) 1.19673 + 1.19673i 0.690935 + 0.690935i 0.962438 0.271503i \(-0.0875206\pi\)
−0.271503 + 0.962438i \(0.587521\pi\)
\(4\) −1.99080 0.191621i −0.995400 0.0958104i
\(5\) 0.672033 0.672033i 0.300542 0.300542i −0.540684 0.841226i \(-0.681834\pi\)
0.841226 + 0.540684i \(0.181834\pi\)
\(6\) 1.77166 1.60932i 0.723277 0.657002i
\(7\) 1.79918i 0.680026i −0.940421 0.340013i \(-0.889569\pi\)
0.940421 0.340013i \(-0.110431\pi\)
\(8\) −0.405709 + 2.79918i −0.143440 + 0.989659i
\(9\) 0.135652i 0.0452175i
\(10\) −0.903723 0.994886i −0.285782 0.314611i
\(11\) 2.49790 2.49790i 0.753145 0.753145i −0.221920 0.975065i \(-0.571232\pi\)
0.975065 + 0.221920i \(0.0712324\pi\)
\(12\) −2.15314 2.61178i −0.621558 0.753955i
\(13\) −0.0311077 0.0311077i −0.00862773 0.00862773i 0.702780 0.711407i \(-0.251942\pi\)
−0.711407 + 0.702780i \(0.751942\pi\)
\(14\) −2.54149 0.122031i −0.679243 0.0326143i
\(15\) 1.60849 0.415310
\(16\) 3.92656 + 0.762957i 0.981641 + 0.190739i
\(17\) 4.24111 1.02862 0.514310 0.857604i \(-0.328048\pi\)
0.514310 + 0.857604i \(0.328048\pi\)
\(18\) −0.191621 0.00920079i −0.0451654 0.00216865i
\(19\) −0.864348 0.864348i −0.198295 0.198295i 0.600974 0.799269i \(-0.294780\pi\)
−0.799269 + 0.600974i \(0.794780\pi\)
\(20\) −1.46666 + 1.20911i −0.327955 + 0.270365i
\(21\) 2.15314 2.15314i 0.469853 0.469853i
\(22\) −3.35907 3.69792i −0.716157 0.788399i
\(23\) 1.00000i 0.208514i
\(24\) −3.83540 + 2.86435i −0.782898 + 0.584682i
\(25\) 4.09674i 0.819349i
\(26\) −0.0460522 + 0.0418324i −0.00903159 + 0.00820401i
\(27\) 3.75254 3.75254i 0.722177 0.722177i
\(28\) −0.344760 + 3.58180i −0.0651535 + 0.676897i
\(29\) −1.05780 1.05780i −0.196428 0.196428i 0.602039 0.798467i \(-0.294355\pi\)
−0.798467 + 0.602039i \(0.794355\pi\)
\(30\) 0.109098 2.27213i 0.0199184 0.414833i
\(31\) −2.27890 −0.409302 −0.204651 0.978835i \(-0.565606\pi\)
−0.204651 + 0.978835i \(0.565606\pi\)
\(32\) 1.34407 5.49486i 0.237600 0.971363i
\(33\) 5.97864 1.04075
\(34\) 0.287658 5.99093i 0.0493330 1.02744i
\(35\) −1.20911 1.20911i −0.204376 0.204376i
\(36\) −0.0259938 + 0.270057i −0.00433230 + 0.0450095i
\(37\) −1.42444 + 1.42444i −0.234177 + 0.234177i −0.814434 0.580257i \(-0.802952\pi\)
0.580257 + 0.814434i \(0.302952\pi\)
\(38\) −1.27959 + 1.16234i −0.207577 + 0.188556i
\(39\) 0.0744553i 0.0119224i
\(40\) 1.60849 + 2.15379i 0.254325 + 0.340544i
\(41\) 8.94702i 1.39729i 0.715469 + 0.698645i \(0.246213\pi\)
−0.715469 + 0.698645i \(0.753787\pi\)
\(42\) −2.89546 3.18753i −0.446778 0.491847i
\(43\) −2.22919 + 2.22919i −0.339948 + 0.339948i −0.856348 0.516400i \(-0.827272\pi\)
0.516400 + 0.856348i \(0.327272\pi\)
\(44\) −5.45146 + 4.49417i −0.821839 + 0.677521i
\(45\) −0.0911629 0.0911629i −0.0135898 0.0135898i
\(46\) −1.41259 0.0678262i −0.208274 0.0100004i
\(47\) −9.40918 −1.37247 −0.686235 0.727380i \(-0.740738\pi\)
−0.686235 + 0.727380i \(0.740738\pi\)
\(48\) 3.78600 + 5.61211i 0.546462 + 0.810038i
\(49\) 3.76296 0.537565
\(50\) 5.78700 + 0.277867i 0.818406 + 0.0392963i
\(51\) 5.07548 + 5.07548i 0.710710 + 0.710710i
\(52\) 0.0559683 + 0.0678901i 0.00776141 + 0.00941466i
\(53\) −4.89002 + 4.89002i −0.671696 + 0.671696i −0.958107 0.286411i \(-0.907538\pi\)
0.286411 + 0.958107i \(0.407538\pi\)
\(54\) −5.04627 5.55531i −0.686710 0.755982i
\(55\) 3.35734i 0.452704i
\(56\) 5.03622 + 0.729943i 0.672993 + 0.0975428i
\(57\) 2.06879i 0.274018i
\(58\) −1.56597 + 1.42248i −0.205622 + 0.186781i
\(59\) −6.23240 + 6.23240i −0.811389 + 0.811389i −0.984842 0.173453i \(-0.944507\pi\)
0.173453 + 0.984842i \(0.444507\pi\)
\(60\) −3.20218 0.308220i −0.413400 0.0397911i
\(61\) 0.841880 + 0.841880i 0.107792 + 0.107792i 0.758946 0.651154i \(-0.225715\pi\)
−0.651154 + 0.758946i \(0.725715\pi\)
\(62\) −0.154569 + 3.21914i −0.0196303 + 0.408831i
\(63\) −0.244063 −0.0307490
\(64\) −7.67080 2.27130i −0.958850 0.283913i
\(65\) −0.0418108 −0.00518599
\(66\) 0.405509 8.44535i 0.0499147 1.03955i
\(67\) −6.47387 6.47387i −0.790909 0.790909i 0.190733 0.981642i \(-0.438913\pi\)
−0.981642 + 0.190733i \(0.938913\pi\)
\(68\) −8.44320 0.812685i −1.02389 0.0985525i
\(69\) 1.19673 1.19673i 0.144070 0.144070i
\(70\) −1.78998 + 1.62596i −0.213943 + 0.194339i
\(71\) 6.62529i 0.786278i 0.919479 + 0.393139i \(0.128611\pi\)
−0.919479 + 0.393139i \(0.871389\pi\)
\(72\) 0.379715 + 0.0550354i 0.0447499 + 0.00648599i
\(73\) 0.712123i 0.0833477i −0.999131 0.0416739i \(-0.986731\pi\)
0.999131 0.0416739i \(-0.0132690\pi\)
\(74\) 1.91554 + 2.10876i 0.222676 + 0.245139i
\(75\) −4.90271 + 4.90271i −0.566117 + 0.566117i
\(76\) 1.55512 + 1.88637i 0.178384 + 0.216381i
\(77\) −4.49417 4.49417i −0.512158 0.512158i
\(78\) −0.105175 0.00505002i −0.0119087 0.000571803i
\(79\) 3.84242 0.432306 0.216153 0.976360i \(-0.430649\pi\)
0.216153 + 0.976360i \(0.430649\pi\)
\(80\) 3.15151 2.12605i 0.352350 0.237699i
\(81\) 8.57464 0.952738
\(82\) 12.6384 + 0.606842i 1.39568 + 0.0670145i
\(83\) 7.62359 + 7.62359i 0.836798 + 0.836798i 0.988436 0.151638i \(-0.0484549\pi\)
−0.151638 + 0.988436i \(0.548455\pi\)
\(84\) −4.69905 + 3.87388i −0.512709 + 0.422675i
\(85\) 2.85017 2.85017i 0.309144 0.309144i
\(86\) 2.99772 + 3.30012i 0.323253 + 0.355861i
\(87\) 2.53180i 0.271437i
\(88\) 5.97864 + 8.00549i 0.637326 + 0.853388i
\(89\) 5.80356i 0.615176i 0.951520 + 0.307588i \(0.0995219\pi\)
−0.951520 + 0.307588i \(0.900478\pi\)
\(90\) −0.134959 + 0.122592i −0.0142259 + 0.0129224i
\(91\) −0.0559683 + 0.0559683i −0.00586707 + 0.00586707i
\(92\) −0.191621 + 1.99080i −0.0199778 + 0.207555i
\(93\) −2.72724 2.72724i −0.282801 0.282801i
\(94\) −0.638189 + 13.2913i −0.0658242 + 1.37089i
\(95\) −1.16174 −0.119192
\(96\) 8.18438 4.96740i 0.835315 0.506983i
\(97\) 19.5071 1.98064 0.990322 0.138785i \(-0.0443198\pi\)
0.990322 + 0.138785i \(0.0443198\pi\)
\(98\) 0.255227 5.31550i 0.0257818 0.536947i
\(99\) −0.338846 0.338846i −0.0340553 0.0340553i
\(100\) 0.785021 8.15579i 0.0785021 0.815579i
\(101\) 3.89729 3.89729i 0.387795 0.387795i −0.486105 0.873900i \(-0.661583\pi\)
0.873900 + 0.486105i \(0.161583\pi\)
\(102\) 7.51381 6.82531i 0.743978 0.675806i
\(103\) 11.3587i 1.11920i −0.828762 0.559602i \(-0.810954\pi\)
0.828762 0.559602i \(-0.189046\pi\)
\(104\) 0.0996967 0.0744553i 0.00977607 0.00730095i
\(105\) 2.89396i 0.282422i
\(106\) 6.57591 + 7.23925i 0.638709 + 0.703138i
\(107\) −11.7696 + 11.7696i −1.13781 + 1.13781i −0.148963 + 0.988843i \(0.547594\pi\)
−0.988843 + 0.148963i \(0.952406\pi\)
\(108\) −8.18963 + 6.75150i −0.788047 + 0.649663i
\(109\) 5.49682 + 5.49682i 0.526500 + 0.526500i 0.919527 0.393027i \(-0.128572\pi\)
−0.393027 + 0.919527i \(0.628572\pi\)
\(110\) −4.74253 0.227716i −0.452183 0.0217118i
\(111\) −3.40936 −0.323602
\(112\) 1.37270 7.06459i 0.129708 0.667541i
\(113\) 3.27215 0.307818 0.153909 0.988085i \(-0.450814\pi\)
0.153909 + 0.988085i \(0.450814\pi\)
\(114\) −2.92234 0.140318i −0.273703 0.0131420i
\(115\) −0.672033 0.672033i −0.0626674 0.0626674i
\(116\) 1.90316 + 2.30855i 0.176704 + 0.214344i
\(117\) −0.00421984 + 0.00421984i −0.000390124 + 0.000390124i
\(118\) 8.38108 + 9.22652i 0.771541 + 0.849370i
\(119\) 7.63051i 0.699488i
\(120\) −0.652579 + 4.50245i −0.0595721 + 0.411016i
\(121\) 1.47900i 0.134455i
\(122\) 1.24633 1.13213i 0.112837 0.102498i
\(123\) −10.7072 + 10.7072i −0.965436 + 0.965436i
\(124\) 4.53683 + 0.436684i 0.407419 + 0.0392154i
\(125\) 6.11331 + 6.11331i 0.546791 + 0.546791i
\(126\) −0.0165539 + 0.344760i −0.00147474 + 0.0307137i
\(127\) 5.18531 0.460122 0.230061 0.973176i \(-0.426107\pi\)
0.230061 + 0.973176i \(0.426107\pi\)
\(128\) −3.72870 + 10.6816i −0.329573 + 0.944130i
\(129\) −5.33549 −0.469764
\(130\) −0.00283587 + 0.0590614i −0.000248722 + 0.00518003i
\(131\) −12.5660 12.5660i −1.09790 1.09790i −0.994656 0.103242i \(-0.967079\pi\)
−0.103242 0.994656i \(-0.532921\pi\)
\(132\) −11.9023 1.14563i −1.03596 0.0997145i
\(133\) −1.55512 + 1.55512i −0.134846 + 0.134846i
\(134\) −9.58399 + 8.70579i −0.827931 + 0.752066i
\(135\) 5.04367i 0.434090i
\(136\) −1.72066 + 11.8716i −0.147545 + 1.01798i
\(137\) 11.0784i 0.946488i 0.880931 + 0.473244i \(0.156917\pi\)
−0.880931 + 0.473244i \(0.843083\pi\)
\(138\) −1.60932 1.77166i −0.136994 0.150814i
\(139\) −3.40558 + 3.40558i −0.288857 + 0.288857i −0.836628 0.547771i \(-0.815476\pi\)
0.547771 + 0.836628i \(0.315476\pi\)
\(140\) 2.17540 + 2.63878i 0.183855 + 0.223018i
\(141\) −11.2603 11.2603i −0.948288 0.948288i
\(142\) 9.35880 + 0.449369i 0.785373 + 0.0377102i
\(143\) −0.155408 −0.0129959
\(144\) 0.103497 0.532648i 0.00862475 0.0443873i
\(145\) −1.42175 −0.118070
\(146\) −1.00594 0.0483006i −0.0832518 0.00399739i
\(147\) 4.50326 + 4.50326i 0.371423 + 0.371423i
\(148\) 3.10874 2.56283i 0.255536 0.210663i
\(149\) 0.00548598 0.00548598i 0.000449429 0.000449429i −0.706882 0.707331i \(-0.749899\pi\)
0.707331 + 0.706882i \(0.249899\pi\)
\(150\) 6.59297 + 7.25804i 0.538314 + 0.592616i
\(151\) 16.7120i 1.36000i −0.733211 0.680001i \(-0.761979\pi\)
0.733211 0.680001i \(-0.238021\pi\)
\(152\) 2.77014 2.06879i 0.224688 0.167801i
\(153\) 0.575317i 0.0465116i
\(154\) −6.65322 + 6.04357i −0.536132 + 0.487005i
\(155\) −1.53149 + 1.53149i −0.123013 + 0.123013i
\(156\) −0.0142672 + 0.148226i −0.00114229 + 0.0118675i
\(157\) −2.04476 2.04476i −0.163189 0.163189i 0.620789 0.783978i \(-0.286812\pi\)
−0.783978 + 0.620789i \(0.786812\pi\)
\(158\) 0.260617 5.42775i 0.0207336 0.431809i
\(159\) −11.7041 −0.928197
\(160\) −2.78947 4.59598i −0.220527 0.363345i
\(161\) −1.79918 −0.141795
\(162\) 0.581585 12.1124i 0.0456937 0.951642i
\(163\) 0.473260 + 0.473260i 0.0370686 + 0.0370686i 0.725398 0.688330i \(-0.241656\pi\)
−0.688330 + 0.725398i \(0.741656\pi\)
\(164\) 1.71443 17.8117i 0.133875 1.39086i
\(165\) 4.01785 4.01785i 0.312789 0.312789i
\(166\) 11.2861 10.2519i 0.875968 0.795702i
\(167\) 1.41315i 0.109353i −0.998504 0.0546765i \(-0.982587\pi\)
0.998504 0.0546765i \(-0.0174128\pi\)
\(168\) 5.15347 + 6.90057i 0.397599 + 0.532390i
\(169\) 12.9981i 0.999851i
\(170\) −3.83279 4.21942i −0.293961 0.323615i
\(171\) −0.117251 + 0.117251i −0.00896640 + 0.00896640i
\(172\) 4.86502 4.01071i 0.370955 0.305813i
\(173\) −13.9983 13.9983i −1.06427 1.06427i −0.997787 0.0664845i \(-0.978822\pi\)
−0.0664845 0.997787i \(-0.521178\pi\)
\(174\) −3.57639 0.171722i −0.271125 0.0130182i
\(175\) 7.37077 0.557178
\(176\) 11.7139 7.90237i 0.882972 0.595663i
\(177\) −14.9170 −1.12123
\(178\) 8.19803 + 0.393634i 0.614468 + 0.0295041i
\(179\) 1.82472 + 1.82472i 0.136386 + 0.136386i 0.772004 0.635618i \(-0.219255\pi\)
−0.635618 + 0.772004i \(0.719255\pi\)
\(180\) 0.164018 + 0.198956i 0.0122252 + 0.0148293i
\(181\) −2.45441 + 2.45441i −0.182435 + 0.182435i −0.792416 0.609981i \(-0.791177\pi\)
0.609981 + 0.792416i \(0.291177\pi\)
\(182\) 0.0752639 + 0.0828562i 0.00557893 + 0.00614171i
\(183\) 2.01501i 0.148954i
\(184\) 2.79918 + 0.405709i 0.206358 + 0.0299093i
\(185\) 1.91455i 0.140760i
\(186\) −4.03743 + 3.66748i −0.296039 + 0.268912i
\(187\) 10.5939 10.5939i 0.774700 0.774700i
\(188\) 18.7318 + 1.80299i 1.36616 + 0.131497i
\(189\) −6.75150 6.75150i −0.491099 0.491099i
\(190\) −0.0787965 + 1.64106i −0.00571650 + 0.119055i
\(191\) −0.477663 −0.0345625 −0.0172813 0.999851i \(-0.505501\pi\)
−0.0172813 + 0.999851i \(0.505501\pi\)
\(192\) −6.46176 11.8981i −0.466338 0.858669i
\(193\) −5.57344 −0.401185 −0.200593 0.979675i \(-0.564287\pi\)
−0.200593 + 0.979675i \(0.564287\pi\)
\(194\) 1.32309 27.5554i 0.0949925 1.97837i
\(195\) −0.0500365 0.0500365i −0.00358318 0.00358318i
\(196\) −7.49129 0.721061i −0.535092 0.0515043i
\(197\) −10.1950 + 10.1950i −0.726362 + 0.726362i −0.969893 0.243531i \(-0.921694\pi\)
0.243531 + 0.969893i \(0.421694\pi\)
\(198\) −0.501632 + 0.455667i −0.0356494 + 0.0323828i
\(199\) 7.12208i 0.504871i −0.967614 0.252435i \(-0.918768\pi\)
0.967614 0.252435i \(-0.0812315\pi\)
\(200\) −11.4675 1.66209i −0.810876 0.117527i
\(201\) 15.4950i 1.09293i
\(202\) −5.24092 5.76960i −0.368750 0.405947i
\(203\) −1.90316 + 1.90316i −0.133576 + 0.133576i
\(204\) −9.13170 11.0768i −0.639347 0.775533i
\(205\) 6.01269 + 6.01269i 0.419945 + 0.419945i
\(206\) −16.0451 0.770416i −1.11792 0.0536774i
\(207\) −0.135652 −0.00942850
\(208\) −0.0984125 0.145880i −0.00682368 0.0101150i
\(209\) −4.31811 −0.298690
\(210\) −4.08797 0.196286i −0.282097 0.0135451i
\(211\) −2.97638 2.97638i −0.204902 0.204902i 0.597194 0.802097i \(-0.296282\pi\)
−0.802097 + 0.597194i \(0.796282\pi\)
\(212\) 10.6721 8.79802i 0.732962 0.604251i
\(213\) −7.92872 + 7.92872i −0.543267 + 0.543267i
\(214\) 15.8272 + 17.4238i 1.08193 + 1.19107i
\(215\) 2.99618i 0.204337i
\(216\) 8.98160 + 12.0265i 0.611120 + 0.818298i
\(217\) 4.10014i 0.278336i
\(218\) 8.13756 7.39190i 0.551145 0.500643i
\(219\) 0.852223 0.852223i 0.0575879 0.0575879i
\(220\) −0.643336 + 6.68379i −0.0433737 + 0.450621i
\(221\) −0.131931 0.131931i −0.00887465 0.00887465i
\(222\) −0.231244 + 4.81602i −0.0155201 + 0.323230i
\(223\) 12.5625 0.841247 0.420623 0.907235i \(-0.361811\pi\)
0.420623 + 0.907235i \(0.361811\pi\)
\(224\) −9.88623 2.41821i −0.660552 0.161574i
\(225\) 0.555733 0.0370489
\(226\) 0.221938 4.62220i 0.0147631 0.307464i
\(227\) −8.30662 8.30662i −0.551330 0.551330i 0.375495 0.926824i \(-0.377473\pi\)
−0.926824 + 0.375495i \(0.877473\pi\)
\(228\) −0.396423 + 4.11854i −0.0262538 + 0.272757i
\(229\) −16.9537 + 16.9537i −1.12033 + 1.12033i −0.128639 + 0.991691i \(0.541061\pi\)
−0.991691 + 0.128639i \(0.958939\pi\)
\(230\) −0.994886 + 0.903723i −0.0656008 + 0.0595897i
\(231\) 10.7566i 0.707736i
\(232\) 3.39011 2.53180i 0.222572 0.166221i
\(233\) 25.2401i 1.65353i −0.562546 0.826766i \(-0.690178\pi\)
0.562546 0.826766i \(-0.309822\pi\)
\(234\) 0.00567467 + 0.00624710i 0.000370965 + 0.000408386i
\(235\) −6.32328 + 6.32328i −0.412485 + 0.412485i
\(236\) 13.6017 11.2132i 0.885396 0.729917i
\(237\) 4.59836 + 4.59836i 0.298695 + 0.298695i
\(238\) −10.7788 0.517549i −0.698683 0.0335477i
\(239\) 20.6753 1.33737 0.668687 0.743544i \(-0.266857\pi\)
0.668687 + 0.743544i \(0.266857\pi\)
\(240\) 6.31584 + 1.22721i 0.407686 + 0.0792160i
\(241\) 16.6390 1.07181 0.535906 0.844278i \(-0.319970\pi\)
0.535906 + 0.844278i \(0.319970\pi\)
\(242\) −2.08921 0.100315i −0.134300 0.00644849i
\(243\) −0.996062 0.996062i −0.0638974 0.0638974i
\(244\) −1.51469 1.83734i −0.0969682 0.117623i
\(245\) 2.52883 2.52883i 0.161561 0.161561i
\(246\) 14.3986 + 15.8511i 0.918023 + 1.01063i
\(247\) 0.0537757i 0.00342167i
\(248\) 0.924570 6.37904i 0.0587102 0.405069i
\(249\) 18.2468i 1.15635i
\(250\) 9.05022 8.22094i 0.572386 0.519938i
\(251\) 7.92099 7.92099i 0.499969 0.499969i −0.411459 0.911428i \(-0.634981\pi\)
0.911428 + 0.411459i \(0.134981\pi\)
\(252\) 0.485880 + 0.0467675i 0.0306076 + 0.00294608i
\(253\) −2.49790 2.49790i −0.157042 0.157042i
\(254\) 0.351700 7.32470i 0.0220676 0.459592i
\(255\) 6.82178 0.427197
\(256\) 14.8358 + 5.99160i 0.927237 + 0.374475i
\(257\) −7.54288 −0.470512 −0.235256 0.971933i \(-0.575593\pi\)
−0.235256 + 0.971933i \(0.575593\pi\)
\(258\) −0.361886 + 7.53684i −0.0225301 + 0.469223i
\(259\) 2.56283 + 2.56283i 0.159246 + 0.159246i
\(260\) 0.0832369 + 0.00801182i 0.00516214 + 0.000496872i
\(261\) −0.143492 + 0.143492i −0.00888196 + 0.00888196i
\(262\) −18.6029 + 16.8983i −1.14929 + 1.04398i
\(263\) 30.0275i 1.85158i 0.378044 + 0.925788i \(0.376597\pi\)
−0.378044 + 0.925788i \(0.623403\pi\)
\(264\) −2.42559 + 16.7353i −0.149285 + 1.02999i
\(265\) 6.57251i 0.403746i
\(266\) 2.09126 + 2.30221i 0.128223 + 0.141158i
\(267\) −6.94532 + 6.94532i −0.425047 + 0.425047i
\(268\) 11.6476 + 14.1287i 0.711493 + 0.863047i
\(269\) −21.5430 21.5430i −1.31350 1.31350i −0.918819 0.394680i \(-0.870856\pi\)
−0.394680 0.918819i \(-0.629144\pi\)
\(270\) −7.12461 0.342093i −0.433590 0.0208191i
\(271\) 12.2999 0.747167 0.373584 0.927596i \(-0.378129\pi\)
0.373584 + 0.927596i \(0.378129\pi\)
\(272\) 16.6530 + 3.23578i 1.00974 + 0.196198i
\(273\) −0.133958 −0.00810753
\(274\) 15.6491 + 0.751403i 0.945399 + 0.0453939i
\(275\) 10.2333 + 10.2333i 0.617088 + 0.617088i
\(276\) −2.61178 + 2.15314i −0.157211 + 0.129604i
\(277\) −17.5832 + 17.5832i −1.05647 + 1.05647i −0.0581665 + 0.998307i \(0.518525\pi\)
−0.998307 + 0.0581665i \(0.981475\pi\)
\(278\) 4.57968 + 5.04166i 0.274671 + 0.302379i
\(279\) 0.309138i 0.0185076i
\(280\) 3.87505 2.89396i 0.231579 0.172947i
\(281\) 22.4042i 1.33652i 0.743928 + 0.668260i \(0.232961\pi\)
−0.743928 + 0.668260i \(0.767039\pi\)
\(282\) −16.6699 + 15.1424i −0.992677 + 0.901716i
\(283\) −2.23454 + 2.23454i −0.132830 + 0.132830i −0.770396 0.637566i \(-0.779941\pi\)
0.637566 + 0.770396i \(0.279941\pi\)
\(284\) 1.26954 13.1896i 0.0753335 0.782660i
\(285\) −1.39029 1.39029i −0.0823540 0.0823540i
\(286\) −0.0105407 + 0.219527i −0.000623286 + 0.0129809i
\(287\) 16.0973 0.950193
\(288\) −0.745391 0.182326i −0.0439226 0.0107437i
\(289\) 0.987008 0.0580593
\(290\) −0.0964317 + 2.00834i −0.00566266 + 0.117934i
\(291\) 23.3448 + 23.3448i 1.36850 + 1.36850i
\(292\) −0.136458 + 1.41769i −0.00798558 + 0.0829643i
\(293\) 4.97588 4.97588i 0.290694 0.290694i −0.546660 0.837354i \(-0.684101\pi\)
0.837354 + 0.546660i \(0.184101\pi\)
\(294\) 6.66668 6.05580i 0.388809 0.353182i
\(295\) 8.37675i 0.487713i
\(296\) −3.40936 4.56518i −0.198165 0.265346i
\(297\) 18.7470i 1.08781i
\(298\) −0.00737732 0.00812151i −0.000427357 0.000470466i
\(299\) −0.0311077 + 0.0311077i −0.00179901 + 0.00179901i
\(300\) 10.6998 8.82086i 0.617752 0.509272i
\(301\) 4.01071 + 4.01071i 0.231173 + 0.231173i
\(302\) −23.6071 1.13351i −1.35844 0.0652262i
\(303\) 9.32805 0.535882
\(304\) −2.73446 4.05338i −0.156832 0.232477i
\(305\) 1.13154 0.0647919
\(306\) −0.812685 0.0390216i −0.0464581 0.00223071i
\(307\) 6.06375 + 6.06375i 0.346076 + 0.346076i 0.858646 0.512569i \(-0.171306\pi\)
−0.512569 + 0.858646i \(0.671306\pi\)
\(308\) 8.08581 + 9.80816i 0.460732 + 0.558872i
\(309\) 13.5933 13.5933i 0.773297 0.773297i
\(310\) 2.05949 + 2.26724i 0.116971 + 0.128771i
\(311\) 22.9860i 1.30342i −0.758470 0.651708i \(-0.774053\pi\)
0.758470 0.651708i \(-0.225947\pi\)
\(312\) 0.208414 + 0.0302072i 0.0117991 + 0.00171015i
\(313\) 17.5784i 0.993589i −0.867868 0.496795i \(-0.834510\pi\)
0.867868 0.496795i \(-0.165490\pi\)
\(314\) −3.02708 + 2.74971i −0.170828 + 0.155175i
\(315\) −0.164018 + 0.164018i −0.00924139 + 0.00924139i
\(316\) −7.64949 0.736287i −0.430317 0.0414194i
\(317\) 20.6141 + 20.6141i 1.15780 + 1.15780i 0.984947 + 0.172855i \(0.0552993\pi\)
0.172855 + 0.984947i \(0.444701\pi\)
\(318\) −0.793846 + 16.5331i −0.0445167 + 0.927129i
\(319\) −5.28453 −0.295877
\(320\) −6.68142 + 3.62864i −0.373503 + 0.202847i
\(321\) −28.1701 −1.57230
\(322\) −0.122031 + 2.54149i −0.00680055 + 0.141632i
\(323\) −3.66579 3.66579i −0.203970 0.203970i
\(324\) −17.0704 1.64308i −0.948355 0.0912822i
\(325\) 0.127440 0.127440i 0.00706911 0.00706911i
\(326\) 0.700619 0.636421i 0.0388037 0.0352481i
\(327\) 13.1565i 0.727554i
\(328\) −25.0443 3.62989i −1.38284 0.200427i
\(329\) 16.9288i 0.933315i
\(330\) −5.40304 5.94807i −0.297428 0.327431i
\(331\) 21.2365 21.2365i 1.16726 1.16726i 0.184416 0.982848i \(-0.440961\pi\)
0.982848 0.184416i \(-0.0590393\pi\)
\(332\) −13.7162 16.6379i −0.752774 0.913122i
\(333\) 0.193229 + 0.193229i 0.0105889 + 0.0105889i
\(334\) −1.99620 0.0958488i −0.109227 0.00524461i
\(335\) −8.70130 −0.475403
\(336\) 10.0972 6.81168i 0.550847 0.371608i
\(337\) 16.1040 0.877242 0.438621 0.898672i \(-0.355467\pi\)
0.438621 + 0.898672i \(0.355467\pi\)
\(338\) −18.3609 0.881610i −0.998701 0.0479532i
\(339\) 3.91590 + 3.91590i 0.212682 + 0.212682i
\(340\) −6.22026 + 5.12796i −0.337341 + 0.278103i
\(341\) −5.69246 + 5.69246i −0.308264 + 0.308264i
\(342\) 0.157674 + 0.173580i 0.00852605 + 0.00938611i
\(343\) 19.3645i 1.04558i
\(344\) −5.33549 7.14430i −0.287670 0.385195i
\(345\) 1.60849i 0.0865982i
\(346\) −20.7233 + 18.8244i −1.11409 + 1.01200i
\(347\) −1.50740 + 1.50740i −0.0809215 + 0.0809215i −0.746409 0.665488i \(-0.768224\pi\)
0.665488 + 0.746409i \(0.268224\pi\)
\(348\) −0.485145 + 5.04031i −0.0260065 + 0.270189i
\(349\) 12.1021 + 12.1021i 0.647810 + 0.647810i 0.952463 0.304654i \(-0.0985407\pi\)
−0.304654 + 0.952463i \(0.598541\pi\)
\(350\) 0.499932 10.4119i 0.0267225 0.556537i
\(351\) −0.233466 −0.0124615
\(352\) −10.3683 17.0829i −0.552630 0.910524i
\(353\) −25.8399 −1.37532 −0.687661 0.726032i \(-0.741362\pi\)
−0.687661 + 0.726032i \(0.741362\pi\)
\(354\) −1.01177 + 21.0716i −0.0537748 + 1.11994i
\(355\) 4.45242 + 4.45242i 0.236310 + 0.236310i
\(356\) 1.11208 11.5537i 0.0589403 0.612346i
\(357\) 9.13170 9.13170i 0.483301 0.483301i
\(358\) 2.70134 2.45381i 0.142770 0.129688i
\(359\) 32.5305i 1.71689i 0.512903 + 0.858447i \(0.328570\pi\)
−0.512903 + 0.858447i \(0.671430\pi\)
\(360\) 0.292167 0.218196i 0.0153985 0.0114999i
\(361\) 17.5058i 0.921358i
\(362\) 3.30059 + 3.63354i 0.173475 + 0.190975i
\(363\) 1.76997 1.76997i 0.0928993 0.0928993i
\(364\) 0.122146 0.100697i 0.00640221 0.00527796i
\(365\) −0.478570 0.478570i −0.0250495 0.0250495i
\(366\) 2.84638 + 0.136671i 0.148783 + 0.00714389i
\(367\) −27.7341 −1.44771 −0.723854 0.689954i \(-0.757631\pi\)
−0.723854 + 0.689954i \(0.757631\pi\)
\(368\) 0.762957 3.92656i 0.0397719 0.204686i
\(369\) 1.21368 0.0631819
\(370\) 2.70446 + 0.129856i 0.140598 + 0.00675092i
\(371\) 8.79802 + 8.79802i 0.456771 + 0.456771i
\(372\) 4.90678 + 5.95197i 0.254405 + 0.308595i
\(373\) −12.4335 + 12.4335i −0.643780 + 0.643780i −0.951483 0.307703i \(-0.900440\pi\)
0.307703 + 0.951483i \(0.400440\pi\)
\(374\) −14.2462 15.6833i −0.736654 0.810963i
\(375\) 14.6320i 0.755595i
\(376\) 3.81739 26.3380i 0.196867 1.35828i
\(377\) 0.0658112i 0.00338945i
\(378\) −9.99500 + 9.07914i −0.514087 + 0.466981i
\(379\) 20.8578 20.8578i 1.07139 1.07139i 0.0741473 0.997247i \(-0.476377\pi\)
0.997247 0.0741473i \(-0.0236235\pi\)
\(380\) 2.31279 + 0.222614i 0.118644 + 0.0114198i
\(381\) 6.20544 + 6.20544i 0.317914 + 0.317914i
\(382\) −0.0323981 + 0.674741i −0.00165763 + 0.0345227i
\(383\) 35.8926 1.83403 0.917013 0.398857i \(-0.130593\pi\)
0.917013 + 0.398857i \(0.130593\pi\)
\(384\) −17.2453 + 8.32080i −0.880046 + 0.424619i
\(385\) −6.04046 −0.307850
\(386\) −0.378026 + 7.87297i −0.0192410 + 0.400724i
\(387\) 0.302395 + 0.302395i 0.0153716 + 0.0153716i
\(388\) −38.8347 3.73796i −1.97153 0.189766i
\(389\) 19.6559 19.6559i 0.996592 0.996592i −0.00340262 0.999994i \(-0.501083\pi\)
0.999994 + 0.00340262i \(0.00108309\pi\)
\(390\) −0.0740746 + 0.0672870i −0.00375091 + 0.00340721i
\(391\) 4.24111i 0.214482i
\(392\) −1.52667 + 10.5332i −0.0771083 + 0.532006i
\(393\) 30.0764i 1.51715i
\(394\) 13.7098 + 15.0928i 0.690689 + 0.760362i
\(395\) 2.58223 2.58223i 0.129926 0.129926i
\(396\) 0.609645 + 0.739504i 0.0306358 + 0.0371615i
\(397\) −24.5721 24.5721i −1.23324 1.23324i −0.962712 0.270528i \(-0.912802\pi\)
−0.270528 0.962712i \(-0.587198\pi\)
\(398\) −10.0606 0.483064i −0.504290 0.0242138i
\(399\) −3.72212 −0.186339
\(400\) −3.12564 + 16.0861i −0.156282 + 0.804306i
\(401\) 8.10606 0.404797 0.202399 0.979303i \(-0.435126\pi\)
0.202399 + 0.979303i \(0.435126\pi\)
\(402\) −21.8880 1.05097i −1.09168 0.0524175i
\(403\) 0.0708913 + 0.0708913i 0.00353135 + 0.00353135i
\(404\) −8.50553 + 7.01192i −0.423166 + 0.348856i
\(405\) 5.76244 5.76244i 0.286338 0.286338i
\(406\) 2.55930 + 2.81747i 0.127016 + 0.139828i
\(407\) 7.11623i 0.352739i
\(408\) −16.2664 + 12.1480i −0.805304 + 0.601416i
\(409\) 21.0782i 1.04225i 0.853480 + 0.521126i \(0.174488\pi\)
−0.853480 + 0.521126i \(0.825512\pi\)
\(410\) 8.90126 8.08563i 0.439602 0.399321i
\(411\) −13.2579 + 13.2579i −0.653962 + 0.653962i
\(412\) −2.17656 + 22.6128i −0.107231 + 1.11406i
\(413\) 11.2132 + 11.2132i 0.551765 + 0.551765i
\(414\) −0.00920079 + 0.191621i −0.000452194 + 0.00941765i
\(415\) 10.2466 0.502986
\(416\) −0.212743 + 0.129122i −0.0104306 + 0.00633071i
\(417\) −8.15114 −0.399163
\(418\) −0.292881 + 6.09970i −0.0143253 + 0.298346i
\(419\) −7.77798 7.77798i −0.379979 0.379979i 0.491115 0.871095i \(-0.336589\pi\)
−0.871095 + 0.491115i \(0.836589\pi\)
\(420\) −0.554543 + 5.76130i −0.0270589 + 0.281122i
\(421\) 12.0592 12.0592i 0.587729 0.587729i −0.349287 0.937016i \(-0.613576\pi\)
0.937016 + 0.349287i \(0.113576\pi\)
\(422\) −4.40627 + 4.00251i −0.214494 + 0.194839i
\(423\) 1.27638i 0.0620597i
\(424\) −11.7041 15.6720i −0.568402 0.761098i
\(425\) 17.3747i 0.842798i
\(426\) 10.6622 + 11.7378i 0.516586 + 0.568697i
\(427\) 1.51469 1.51469i 0.0733011 0.0733011i
\(428\) 25.6861 21.1755i 1.24159 1.02356i
\(429\) −0.185982 0.185982i −0.00897929 0.00897929i
\(430\) 4.23236 + 0.203219i 0.204102 + 0.00980010i
\(431\) −29.8754 −1.43905 −0.719525 0.694467i \(-0.755640\pi\)
−0.719525 + 0.694467i \(0.755640\pi\)
\(432\) 17.5976 11.8716i 0.846666 0.571171i
\(433\) −15.2159 −0.731227 −0.365614 0.930767i \(-0.619141\pi\)
−0.365614 + 0.930767i \(0.619141\pi\)
\(434\) 5.79180 + 0.278097i 0.278016 + 0.0133491i
\(435\) −1.70145 1.70145i −0.0815785 0.0815785i
\(436\) −9.88976 11.9964i −0.473634 0.574522i
\(437\) −0.864348 + 0.864348i −0.0413474 + 0.0413474i
\(438\) −1.14603 1.26164i −0.0547597 0.0602835i
\(439\) 9.52025i 0.454377i −0.973851 0.227188i \(-0.927047\pi\)
0.973851 0.227188i \(-0.0729533\pi\)
\(440\) 9.39780 + 1.36210i 0.448022 + 0.0649358i
\(441\) 0.510454i 0.0243073i
\(442\) −0.195313 + 0.177416i −0.00929007 + 0.00843881i
\(443\) −9.68850 + 9.68850i −0.460315 + 0.460315i −0.898759 0.438444i \(-0.855530\pi\)
0.438444 + 0.898759i \(0.355530\pi\)
\(444\) 6.78736 + 0.653305i 0.322114 + 0.0310045i
\(445\) 3.90019 + 3.90019i 0.184887 + 0.184887i
\(446\) 0.852067 17.7456i 0.0403465 0.840279i
\(447\) 0.0131305 0.000621052
\(448\) −4.08648 + 13.8011i −0.193068 + 0.652042i
\(449\) 21.9967 1.03809 0.519045 0.854747i \(-0.326288\pi\)
0.519045 + 0.854747i \(0.326288\pi\)
\(450\) 0.0376933 0.785021i 0.00177688 0.0370062i
\(451\) 22.3487 + 22.3487i 1.05236 + 1.05236i
\(452\) −6.51420 0.627012i −0.306402 0.0294922i
\(453\) 19.9998 19.9998i 0.939673 0.939673i
\(454\) −12.2972 + 11.1704i −0.577137 + 0.524253i
\(455\) 0.0752251i 0.00352661i
\(456\) 5.79091 + 0.839327i 0.271184 + 0.0393051i
\(457\) 28.1401i 1.31634i 0.752870 + 0.658170i \(0.228669\pi\)
−0.752870 + 0.658170i \(0.771331\pi\)
\(458\) 22.7986 + 25.0984i 1.06531 + 1.17277i
\(459\) 15.9149 15.9149i 0.742846 0.742846i
\(460\) 1.20911 + 1.46666i 0.0563749 + 0.0683833i
\(461\) 22.0754 + 22.0754i 1.02815 + 1.02815i 0.999592 + 0.0285604i \(0.00909230\pi\)
0.0285604 + 0.999592i \(0.490908\pi\)
\(462\) −15.1947 0.729583i −0.706921 0.0339433i
\(463\) −15.5046 −0.720558 −0.360279 0.932845i \(-0.617318\pi\)
−0.360279 + 0.932845i \(0.617318\pi\)
\(464\) −3.34645 4.96055i −0.155355 0.230288i
\(465\) −3.66558 −0.169987
\(466\) −35.6538 1.71194i −1.65163 0.0793040i
\(467\) −7.62488 7.62488i −0.352837 0.352837i 0.508327 0.861164i \(-0.330264\pi\)
−0.861164 + 0.508327i \(0.830264\pi\)
\(468\) 0.00920945 0.00759224i 0.000425707 0.000350951i
\(469\) −11.6476 + 11.6476i −0.537838 + 0.537838i
\(470\) 8.50330 + 9.36107i 0.392228 + 0.431794i
\(471\) 4.89406i 0.225506i
\(472\) −14.9170 19.9741i −0.686613 0.919384i
\(473\) 11.1366i 0.512060i
\(474\) 6.80746 6.18369i 0.312677 0.284026i
\(475\) 3.54101 3.54101i 0.162473 0.162473i
\(476\) −1.46216 + 15.1908i −0.0670182 + 0.696270i
\(477\) 0.663344 + 0.663344i 0.0303724 + 0.0303724i
\(478\) 1.40233 29.2056i 0.0641409 1.33583i
\(479\) 2.43354 0.111191 0.0555957 0.998453i \(-0.482294\pi\)
0.0555957 + 0.998453i \(0.482294\pi\)
\(480\) 2.16192 8.83843i 0.0986776 0.403417i
\(481\) 0.0886224 0.00404083
\(482\) 1.12856 23.5040i 0.0514045 1.07058i
\(483\) −2.15314 2.15314i −0.0979712 0.0979712i
\(484\) −0.283407 + 2.94439i −0.0128821 + 0.133836i
\(485\) 13.1094 13.1094i 0.595268 0.595268i
\(486\) −1.47458 + 1.33946i −0.0668884 + 0.0607593i
\(487\) 20.5609i 0.931701i 0.884863 + 0.465851i \(0.154252\pi\)
−0.884863 + 0.465851i \(0.845748\pi\)
\(488\) −2.69813 + 2.01501i −0.122139 + 0.0912154i
\(489\) 1.13273i 0.0512239i
\(490\) −3.40067 3.74371i −0.153627 0.169124i
\(491\) −9.62643 + 9.62643i −0.434435 + 0.434435i −0.890134 0.455699i \(-0.849389\pi\)
0.455699 + 0.890134i \(0.349389\pi\)
\(492\) 23.3676 19.2642i 1.05349 0.868496i
\(493\) −4.48623 4.48623i −0.202049 0.202049i
\(494\) 0.0759629 + 0.00364740i 0.00341773 + 0.000164105i
\(495\) −0.455432 −0.0204701
\(496\) −8.94823 1.73870i −0.401788 0.0780699i
\(497\) 11.9201 0.534689
\(498\) 25.7752 + 1.23761i 1.15502 + 0.0554588i
\(499\) −4.73643 4.73643i −0.212032 0.212032i 0.593098 0.805130i \(-0.297905\pi\)
−0.805130 + 0.593098i \(0.797905\pi\)
\(500\) −10.9989 13.3418i −0.491888 0.596664i
\(501\) 1.69117 1.69117i 0.0755558 0.0755558i
\(502\) −10.6518 11.7263i −0.475415 0.523372i
\(503\) 36.7222i 1.63736i 0.574250 + 0.818680i \(0.305294\pi\)
−0.574250 + 0.818680i \(0.694706\pi\)
\(504\) 0.0990186 0.683176i 0.00441064 0.0304311i
\(505\) 5.23822i 0.233098i
\(506\) −3.69792 + 3.35907i −0.164393 + 0.149329i
\(507\) 15.5552 15.5552i 0.690832 0.690832i
\(508\) −10.3229 0.993613i −0.458005 0.0440844i
\(509\) −8.83197 8.83197i −0.391470 0.391470i 0.483741 0.875211i \(-0.339278\pi\)
−0.875211 + 0.483741i \(0.839278\pi\)
\(510\) 0.462696 9.63636i 0.0204885 0.426705i
\(511\) −1.28124 −0.0566786
\(512\) 9.46990 20.5504i 0.418514 0.908210i
\(513\) −6.48700 −0.286408
\(514\) −0.511605 + 10.6550i −0.0225659 + 0.469970i
\(515\) −7.63341 7.63341i −0.336368 0.336368i
\(516\) 10.6219 + 1.02239i 0.467603 + 0.0450083i
\(517\) −23.5032 + 23.5032i −1.03367 + 1.03367i
\(518\) 3.79404 3.44639i 0.166701 0.151426i
\(519\) 33.5045i 1.47069i
\(520\) 0.0169630 0.117036i 0.000743878 0.00513237i
\(521\) 2.90487i 0.127265i 0.997973 + 0.0636323i \(0.0202685\pi\)
−0.997973 + 0.0636323i \(0.979732\pi\)
\(522\) 0.192963 + 0.212428i 0.00844576 + 0.00929772i
\(523\) 7.62526 7.62526i 0.333430 0.333430i −0.520458 0.853887i \(-0.674239\pi\)
0.853887 + 0.520458i \(0.174239\pi\)
\(524\) 22.6085 + 27.4243i 0.987657 + 1.19804i
\(525\) 8.82086 + 8.82086i 0.384974 + 0.384974i
\(526\) 42.4164 + 2.03665i 1.84944 + 0.0888022i
\(527\) −9.66505 −0.421016
\(528\) 23.4755 + 4.56145i 1.02164 + 0.198512i
\(529\) −1.00000 −0.0434783
\(530\) 9.28424 + 0.445789i 0.403282 + 0.0193638i
\(531\) 0.845440 + 0.845440i 0.0366890 + 0.0366890i
\(532\) 3.39392 2.79793i 0.147145 0.121306i
\(533\) 0.278321 0.278321i 0.0120554 0.0120554i
\(534\) 9.33979 + 10.2819i 0.404172 + 0.444943i
\(535\) 15.8191i 0.683918i
\(536\) 20.7480 15.4950i 0.896178 0.669282i
\(537\) 4.36741i 0.188468i
\(538\) −31.8925 + 28.9701i −1.37498 + 1.24899i
\(539\) 9.39949 9.39949i 0.404865 0.404865i
\(540\) −0.966471 + 10.0409i −0.0415903 + 0.432093i
\(541\) −1.63403 1.63403i −0.0702524 0.0702524i 0.671108 0.741360i \(-0.265819\pi\)
−0.741360 + 0.671108i \(0.765819\pi\)
\(542\) 0.834258 17.3747i 0.0358344 0.746308i
\(543\) −5.87455 −0.252101
\(544\) 5.70033 23.3043i 0.244400 0.999164i
\(545\) 7.38809 0.316471
\(546\) −0.00908589 + 0.189228i −0.000388840 + 0.00809820i
\(547\) −13.7469 13.7469i −0.587776 0.587776i 0.349253 0.937028i \(-0.386435\pi\)
−0.937028 + 0.349253i \(0.886435\pi\)
\(548\) 2.12284 22.0548i 0.0906834 0.942134i
\(549\) 0.114203 0.114203i 0.00487407 0.00487407i
\(550\) 15.1494 13.7613i 0.645974 0.586782i
\(551\) 1.82861i 0.0779012i
\(552\) 2.86435 + 3.83540i 0.121915 + 0.163245i
\(553\) 6.91320i 0.293979i
\(554\) 23.6452 + 26.0304i 1.00459 + 1.10593i
\(555\) −2.29120 + 2.29120i −0.0972562 + 0.0972562i
\(556\) 7.43240 6.12724i 0.315204 0.259853i
\(557\) −18.0271 18.0271i −0.763834 0.763834i 0.213179 0.977013i \(-0.431618\pi\)
−0.977013 + 0.213179i \(0.931618\pi\)
\(558\) 0.436684 + 0.0209677i 0.0184863 + 0.000887632i
\(559\) 0.138690 0.00586595
\(560\) −3.82514 5.67013i −0.161642 0.239607i
\(561\) 25.3561 1.07053
\(562\) 31.6478 + 1.51959i 1.33498 + 0.0641000i
\(563\) −17.3124 17.3124i −0.729632 0.729632i 0.240914 0.970546i \(-0.422553\pi\)
−0.970546 + 0.240914i \(0.922553\pi\)
\(564\) 20.2593 + 24.5747i 0.853070 + 1.03478i
\(565\) 2.19899 2.19899i 0.0925124 0.0925124i
\(566\) 3.00493 + 3.30805i 0.126306 + 0.139048i
\(567\) 15.4273i 0.647886i
\(568\) −18.5454 2.68794i −0.778147 0.112784i
\(569\) 23.4044i 0.981164i −0.871395 0.490582i \(-0.836784\pi\)
0.871395 0.490582i \(-0.163216\pi\)
\(570\) −2.05821 + 1.86961i −0.0862089 + 0.0783095i
\(571\) 18.8951 18.8951i 0.790736 0.790736i −0.190878 0.981614i \(-0.561134\pi\)
0.981614 + 0.190878i \(0.0611335\pi\)
\(572\) 0.309386 + 0.0297794i 0.0129361 + 0.00124514i
\(573\) −0.571636 0.571636i −0.0238804 0.0238804i
\(574\) 1.09182 22.7388i 0.0455716 0.949099i
\(575\) 4.09674 0.170846
\(576\) −0.308108 + 1.04056i −0.0128378 + 0.0433568i
\(577\) −8.99343 −0.374402 −0.187201 0.982322i \(-0.559941\pi\)
−0.187201 + 0.982322i \(0.559941\pi\)
\(578\) 0.0669450 1.39423i 0.00278454 0.0579925i
\(579\) −6.66993 6.66993i −0.277193 0.277193i
\(580\) 2.83041 + 0.272436i 0.117526 + 0.0113123i
\(581\) 13.7162 13.7162i 0.569044 0.569044i
\(582\) 34.5599 31.3932i 1.43256 1.30129i
\(583\) 24.4296i 1.01177i
\(584\) 1.99336 + 0.288915i 0.0824858 + 0.0119554i
\(585\) 0.00567174i 0.000234498i
\(586\) −6.69137 7.36636i −0.276418 0.304301i
\(587\) −23.8405 + 23.8405i −0.984005 + 0.984005i −0.999874 0.0158694i \(-0.994948\pi\)
0.0158694 + 0.999874i \(0.494948\pi\)
\(588\) −8.10217 9.82801i −0.334128 0.405300i
\(589\) 1.96976 + 1.96976i 0.0811625 + 0.0811625i
\(590\) 11.8329 + 0.568163i 0.487152 + 0.0233909i
\(591\) −24.4014 −1.00374
\(592\) −6.67996 + 4.50638i −0.274545 + 0.185211i
\(593\) −16.6058 −0.681921 −0.340960 0.940078i \(-0.610752\pi\)
−0.340960 + 0.940078i \(0.610752\pi\)
\(594\) −26.4817 1.27153i −1.08656 0.0521717i
\(595\) −5.12796 5.12796i −0.210226 0.210226i
\(596\) −0.0119727 + 0.00987025i −0.000490421 + 0.000404301i
\(597\) 8.52324 8.52324i 0.348833 0.348833i
\(598\) 0.0418324 + 0.0460522i 0.00171065 + 0.00188322i
\(599\) 11.7422i 0.479775i −0.970801 0.239887i \(-0.922889\pi\)
0.970801 0.239887i \(-0.0771105\pi\)
\(600\) −11.7345 15.7126i −0.479059 0.641466i
\(601\) 0.512081i 0.0208882i −0.999945 0.0104441i \(-0.996675\pi\)
0.999945 0.0104441i \(-0.00332452\pi\)
\(602\) 5.93750 5.39344i 0.241994 0.219820i
\(603\) −0.878196 + 0.878196i −0.0357629 + 0.0357629i
\(604\) −3.20236 + 33.2702i −0.130302 + 1.35375i
\(605\) −0.993937 0.993937i −0.0404093 0.0404093i
\(606\) 0.632686 13.1767i 0.0257011 0.535266i
\(607\) −33.8421 −1.37361 −0.686805 0.726842i \(-0.740987\pi\)
−0.686805 + 0.726842i \(0.740987\pi\)
\(608\) −5.91121 + 3.58773i −0.239731 + 0.145502i
\(609\) −4.55516 −0.184584
\(610\) 0.0767482 1.59840i 0.00310745 0.0647174i
\(611\) 0.292698 + 0.292698i 0.0118413 + 0.0118413i
\(612\) −0.110243 + 1.14534i −0.00445629 + 0.0462976i
\(613\) 25.3570 25.3570i 1.02416 1.02416i 0.0244582 0.999701i \(-0.492214\pi\)
0.999701 0.0244582i \(-0.00778608\pi\)
\(614\) 8.97685 8.15429i 0.362276 0.329080i
\(615\) 14.3912i 0.580309i
\(616\) 14.4033 10.7566i 0.580325 0.433398i
\(617\) 40.1544i 1.61655i −0.588802 0.808277i \(-0.700400\pi\)
0.588802 0.808277i \(-0.299600\pi\)
\(618\) −18.2798 20.1237i −0.735320 0.809495i
\(619\) 32.8697 32.8697i 1.32114 1.32114i 0.408293 0.912851i \(-0.366124\pi\)
0.912851 0.408293i \(-0.133876\pi\)
\(620\) 3.34236 2.75543i 0.134233 0.110661i
\(621\) −3.75254 3.75254i −0.150584 0.150584i
\(622\) −32.4697 1.55905i −1.30192 0.0625124i
\(623\) 10.4416 0.418336
\(624\) 0.0568062 0.292354i 0.00227407 0.0117035i
\(625\) −12.2670 −0.490681
\(626\) −24.8310 1.19228i −0.992446 0.0476529i
\(627\) −5.16763 5.16763i −0.206375 0.206375i
\(628\) 3.67888 + 4.46251i 0.146803 + 0.178074i
\(629\) −6.04122 + 6.04122i −0.240879 + 0.240879i
\(630\) 0.220565 + 0.242815i 0.00878753 + 0.00967397i
\(631\) 16.0760i 0.639976i 0.947422 + 0.319988i \(0.103679\pi\)
−0.947422 + 0.319988i \(0.896321\pi\)
\(632\) −1.55891 + 10.7556i −0.0620099 + 0.427836i
\(633\) 7.12387i 0.283148i
\(634\) 30.5174 27.7210i 1.21200 1.10094i
\(635\) 3.48470 3.48470i 0.138286 0.138286i
\(636\) 23.3006 + 2.24275i 0.923927 + 0.0889309i
\(637\) −0.117057 0.117057i −0.00463797 0.00463797i
\(638\) −0.358430 + 7.46486i −0.0141904 + 0.295536i
\(639\) 0.898737 0.0355535
\(640\) 4.67259 + 9.68420i 0.184700 + 0.382802i
\(641\) 11.2505 0.444368 0.222184 0.975005i \(-0.428681\pi\)
0.222184 + 0.975005i \(0.428681\pi\)
\(642\) −1.91067 + 39.7926i −0.0754081 + 1.57049i
\(643\) −31.2948 31.2948i −1.23415 1.23415i −0.962356 0.271791i \(-0.912384\pi\)
−0.271791 0.962356i \(-0.587616\pi\)
\(644\) 3.58180 + 0.344760i 0.141143 + 0.0135854i
\(645\) −3.58563 + 3.58563i −0.141184 + 0.141184i
\(646\) −5.42688 + 4.92961i −0.213518 + 0.193953i
\(647\) 49.0505i 1.92837i 0.265222 + 0.964187i \(0.414555\pi\)
−0.265222 + 0.964187i \(0.585445\pi\)
\(648\) −3.47881 + 24.0020i −0.136661 + 0.942886i
\(649\) 31.1358i 1.22219i
\(650\) −0.171377 0.188664i −0.00672194 0.00740002i
\(651\) −4.90678 + 4.90678i −0.192312 + 0.192312i
\(652\) −0.851479 1.03285i −0.0333465 0.0404496i
\(653\) −33.9819 33.9819i −1.32982 1.32982i −0.905527 0.424288i \(-0.860524\pi\)
−0.424288 0.905527i \(-0.639476\pi\)
\(654\) 18.5846 + 0.892354i 0.726717 + 0.0348938i
\(655\) −16.8896 −0.659930
\(656\) −6.82619 + 35.1310i −0.266518 + 1.37164i
\(657\) −0.0966013 −0.00376877
\(658\) 23.9134 + 1.14822i 0.932241 + 0.0447621i
\(659\) −13.6716 13.6716i −0.532570 0.532570i 0.388766 0.921337i \(-0.372901\pi\)
−0.921337 + 0.388766i \(0.872901\pi\)
\(660\) −8.76863 + 7.22882i −0.341318 + 0.281382i
\(661\) −2.22873 + 2.22873i −0.0866877 + 0.0866877i −0.749121 0.662433i \(-0.769524\pi\)
0.662433 + 0.749121i \(0.269524\pi\)
\(662\) −28.5580 31.4388i −1.10994 1.22190i
\(663\) 0.315773i 0.0122636i
\(664\) −24.4327 + 18.2468i −0.948175 + 0.708114i
\(665\) 2.09018i 0.0810536i
\(666\) 0.286059 0.259847i 0.0110846 0.0100689i
\(667\) −1.05780 + 1.05780i −0.0409580 + 0.0409580i
\(668\) −0.270789 + 2.81330i −0.0104772 + 0.108850i
\(669\) 15.0340 + 15.0340i 0.581247 + 0.581247i
\(670\) −0.590176 + 12.2913i −0.0228005 + 0.474856i
\(671\) 4.20586 0.162365
\(672\) −8.93724 14.7252i −0.344761 0.568035i
\(673\) −8.55906 −0.329928 −0.164964 0.986300i \(-0.552751\pi\)
−0.164964 + 0.986300i \(0.552751\pi\)
\(674\) 1.09227 22.7483i 0.0420728 0.876232i
\(675\) 15.3732 + 15.3732i 0.591715 + 0.591715i
\(676\) −2.49070 + 25.8765i −0.0957961 + 0.995251i
\(677\) −12.9425 + 12.9425i −0.497420 + 0.497420i −0.910634 0.413214i \(-0.864406\pi\)
0.413214 + 0.910634i \(0.364406\pi\)
\(678\) 5.79714 5.26594i 0.222638 0.202237i
\(679\) 35.0967i 1.34689i
\(680\) 6.82178 + 9.13446i 0.261603 + 0.350291i
\(681\) 19.8816i 0.761866i
\(682\) 7.65499 + 8.42718i 0.293125 + 0.322693i
\(683\) −14.3129 + 14.3129i −0.547668 + 0.547668i −0.925766 0.378098i \(-0.876578\pi\)
0.378098 + 0.925766i \(0.376578\pi\)
\(684\) 0.255891 0.210955i 0.00978422 0.00806607i
\(685\) 7.44503 + 7.44503i 0.284460 + 0.284460i
\(686\) −27.3540 1.31342i −1.04438 0.0501466i
\(687\) −40.5781 −1.54815
\(688\) −10.4538 + 7.05227i −0.398548 + 0.268865i
\(689\) 0.304235 0.0115904
\(690\) −2.27213 0.109098i −0.0864986 0.00415328i
\(691\) −5.47908 5.47908i −0.208434 0.208434i 0.595168 0.803602i \(-0.297086\pi\)
−0.803602 + 0.595168i \(0.797086\pi\)
\(692\) 25.1855 + 30.5502i 0.957408 + 1.16134i
\(693\) −0.609645 + 0.609645i −0.0231585 + 0.0231585i
\(694\) 2.02709 + 2.23157i 0.0769473 + 0.0847094i
\(695\) 4.57732i 0.173628i
\(696\) 7.08696 + 1.02717i 0.268631 + 0.0389350i
\(697\) 37.9453i 1.43728i
\(698\) 17.9161 16.2744i 0.678133 0.615995i
\(699\) 30.2057 30.2057i 1.14248 1.14248i
\(700\) −14.6737 1.41239i −0.554615 0.0533834i
\(701\) 27.6960 + 27.6960i 1.04606 + 1.04606i 0.998887 + 0.0471776i \(0.0150227\pi\)
0.0471776 + 0.998887i \(0.484977\pi\)
\(702\) −0.0158351 + 0.329791i −0.000597658 + 0.0124472i
\(703\) 2.46243 0.0928723
\(704\) −24.8344 + 13.4874i −0.935981 + 0.508325i
\(705\) −15.1346 −0.570001
\(706\) −1.75263 + 36.5011i −0.0659609 + 1.37374i
\(707\) −7.01192 7.01192i −0.263710 0.263710i
\(708\) 29.6968 + 2.85842i 1.11608 + 0.107426i
\(709\) −21.7835 + 21.7835i −0.818096 + 0.818096i −0.985832 0.167736i \(-0.946354\pi\)
0.167736 + 0.985832i \(0.446354\pi\)
\(710\) 6.59141 5.98743i 0.247371 0.224704i
\(711\) 0.521234i 0.0195478i
\(712\) −16.2452 2.35456i −0.608815 0.0882408i
\(713\) 2.27890i 0.0853454i
\(714\) −12.2799 13.5187i −0.459565 0.505924i
\(715\) −0.104439 + 0.104439i −0.00390580 + 0.00390580i
\(716\) −3.28300 3.98231i −0.122691 0.148826i
\(717\) 24.7428 + 24.7428i 0.924038 + 0.924038i
\(718\) 45.9521 + 2.20642i 1.71492 + 0.0823429i
\(719\) 7.79232 0.290605 0.145302 0.989387i \(-0.453585\pi\)
0.145302 + 0.989387i \(0.453585\pi\)
\(720\) −0.288404 0.427510i −0.0107482 0.0159324i
\(721\) −20.4363 −0.761087
\(722\) −24.7285 1.18735i −0.920298 0.0441887i
\(723\) 19.9125 + 19.9125i 0.740552 + 0.740552i
\(724\) 5.35655 4.41592i 0.199075 0.164116i
\(725\) 4.33352 4.33352i 0.160943 0.160943i
\(726\) −2.38019 2.62029i −0.0883370 0.0972479i
\(727\) 30.0643i 1.11502i 0.830169 + 0.557511i \(0.188244\pi\)
−0.830169 + 0.557511i \(0.811756\pi\)
\(728\) −0.133958 0.179372i −0.00496483 0.00664797i
\(729\) 28.1080i 1.04104i
\(730\) −0.708482 + 0.643562i −0.0262221 + 0.0238193i
\(731\) −9.45423 + 9.45423i −0.349677 + 0.349677i
\(732\) 0.386118 4.01149i 0.0142713 0.148269i
\(733\) −4.64126 4.64126i −0.171429 0.171429i 0.616178 0.787607i \(-0.288680\pi\)
−0.787607 + 0.616178i \(0.788680\pi\)
\(734\) −1.88110 + 39.1768i −0.0694326 + 1.44604i
\(735\) 6.05268 0.223256
\(736\) −5.49486 1.34407i −0.202543 0.0495429i
\(737\) −32.3421 −1.19134
\(738\) 0.0823197 1.71443i 0.00303023 0.0631092i
\(739\) 7.50615 + 7.50615i 0.276118 + 0.276118i 0.831557 0.555439i \(-0.187450\pi\)
−0.555439 + 0.831557i \(0.687450\pi\)
\(740\) 0.366867 3.81148i 0.0134863 0.140113i
\(741\) −0.0643553 + 0.0643553i −0.00236415 + 0.00236415i
\(742\) 13.0247 11.8312i 0.478152 0.434338i
\(743\) 22.4518i 0.823678i 0.911257 + 0.411839i \(0.135113\pi\)
−0.911257 + 0.411839i \(0.864887\pi\)
\(744\) 8.74048 6.52755i 0.320442 0.239312i
\(745\) 0.00737352i 0.000270145i
\(746\) 16.7200 + 18.4066i 0.612163 + 0.673915i
\(747\) 1.03416 1.03416i 0.0378379 0.0378379i
\(748\) −23.1203 + 19.0603i −0.845360 + 0.696912i
\(749\) 21.1755 + 21.1755i 0.773737 + 0.773737i
\(750\) 20.6690 + 0.992435i 0.754725 + 0.0362386i
\(751\) 22.4533 0.819334 0.409667 0.912235i \(-0.365645\pi\)
0.409667 + 0.912235i \(0.365645\pi\)
\(752\) −36.9457 7.17880i −1.34727 0.261784i
\(753\) 18.9586 0.690892
\(754\) 0.0929639 + 0.00446372i 0.00338555 + 0.000162559i
\(755\) −11.2310 11.2310i −0.408738 0.408738i
\(756\) 12.1471 + 14.7346i 0.441787 + 0.535892i
\(757\) 2.19410 2.19410i 0.0797460 0.0797460i −0.666109 0.745855i \(-0.732041\pi\)
0.745855 + 0.666109i \(0.232041\pi\)
\(758\) −28.0488 30.8782i −1.01878 1.12155i
\(759\) 5.97864i 0.217011i
\(760\) 0.471329 3.25192i 0.0170969 0.117959i
\(761\) 12.3804i 0.448788i 0.974499 + 0.224394i \(0.0720402\pi\)
−0.974499 + 0.224394i \(0.927960\pi\)
\(762\) 9.18661 8.34483i 0.332796 0.302301i
\(763\) 9.88976 9.88976i 0.358033 0.358033i
\(764\) 0.950932 + 0.0915302i 0.0344035 + 0.00331145i
\(765\) −0.386632 0.386632i −0.0139787 0.0139787i
\(766\) 2.43446 50.7014i 0.0879606 1.83192i
\(767\) 0.387751 0.0140009
\(768\) 10.5842 + 24.9249i 0.381923 + 0.899398i
\(769\) −44.4954 −1.60454 −0.802272 0.596958i \(-0.796376\pi\)
−0.802272 + 0.596958i \(0.796376\pi\)